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Fused deposition modeling (FDM) has become one of the most extensively used additive manufacturing
technologies in recent years because of its wide adaptability, simple mechanism and low cost. It is difficult,
however, to achieve an equitable trade-off among mechanical properties, surface finish quality and pro-
duction time, which is an area seldom explored. This paper concentrates on the optimization of the
parameters to achieve higher tensile strength and lower surface roughness with less build time during the
FDM process based on central composite design for the tensile specimen forming process. The effects of five
extrusion parameters (nozzle diameter, liquefier temperature, extrusion velocity, filling velocity and layer
thickness) on the three outputs of tensile strength (TS), surface roughness (SR) and build time (BT) are
investigated. Response surface methodology combined with nondominated sorting genetic algorithm II is
developed to optimize the process parameters to achieve the maximum TS, minimum SR and BT, as verified
by subsequent experiments. The predicted results are found to be very close to the experimental data,
illustrating that the presented approach in this paper is effective for improving mechanical properties,
surface finish and efficiency of the FDM process.

Keywords build time, fused deposition modeling, multiobjective
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roughness, tensile strength

1. Introduction

In recent years, additive manufacturing (AM) has aroused
widespread public concern (Ref 1). AM technologies typically
fall into two categories: One involves altering the state of the
material by temperature change, such as fusion deposition
modeling (FDM) (Ref 2), stereolithography (SLA) (Ref 3) and
selective laser sintering (SLS) (Ref 4); and the other involves
the bonding of material together through an adhesive, for
example, 3D printing (3DP) (Ref 5) and laminated object
manufacturing (LOM) (Ref 6). Because of its capability of free
forming, the FDM process is used for a series of functions,
including but not limited to prototyping, modeling and
production applications. In the FDM process, a solid model
of a desired part is developed and saved as a STL file and is
sliced and input into a FDM machine. On this basis, the nozzle
head of FDM moves horizontally and vertically to form the
required three-dimensional parts directly. The filament material
is preheated and extruded through the nozzle onto the platform.
The deposited material is cooled, solidified and bonded with the
surrounding materials. After the accomplishment of one layer,
the platform drops one layer, and the procedure is repeated
layer by layer until the part is built. As a result of the selection
of multiple process parameters and the microstructural aniso-

tropy caused by the layer-by-layer effect of the building
procedure, the mechanical properties and the surface quality of
the final forming part by FDM are lower than those made by
traditional manufacturing processes. Two methods to overcome
the limitation have been proposed: One method is to achieve
good mechanical properties by exploiting new materials; and
the other is to enhance mechanical performance and surface
quality by adjusting and optimizing the technological param-
eters (Ref 7, 8).

In the literature, several researchers have been focused on
the adjustment of the FDM process parameters to optimize the
quality characteristics. Wang et al. (Ref 9) studied the impacts
of several significant process variables on dimensional accu-
racy, surface roughness and tensile strength of acrylonitrile–
butadiene–styrene (ABS) copolymers part and obtained the
optimum parameter combination. Zhang et al. (Ref 10)
investigated the effects of process variables (including wire-
width compensation, extrusion velocity, filling velocity and
layer thickness) on the dimensional error and deformation of a
FDM-processed ABS prototype through the Taguchi method
integrated with fuzzy comprehensive evaluation. Sood et al.
(Ref 11) found that the layer thickness and the raster angle
remarkably affect the residual stress and deformation compared
to other controllable factors by CCD combined with an
ANOVA. Rayegani et al. (Ref 12), adopting a method of full
factorial design, GMDH and DE, also suggested that build
orientation, air gap, raster angle and width influence the tensile
strength of the FDM prototype. The optimum technological
parameters of the maximum tensile strength were obtained.
Hossain et al. (Ref 13) focused on the improvement of ultimate
tensile strength, Young�s modulus and tensile strain by
modifying the process parameters. The results showed that air
gap removal has a significant effect on the mechanical
properties. Peng et al. (Ref 14) applied RSM combined with
the fuzzy inference system to investigate the effects of process
variables such as line width compensation, extrusion velocity,
filling velocity, and layer thickness on both manufacturing
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accuracy and efficiency. The application of FIS, however,
requires adequate professional knowledge and experience.
Dawoud et al. (Ref 15) suggested that an adequate selection
of FDM parameters is able to achieve mechanical properties
that are comparable to those of injection molded parts in both
static and dynamic loading modes. Torres et al. (Ref 16)
reported the influence of some important parameters on the
mechanical properties of FDM-processed PLA prototype; in
particular, a slower speed and lower layer thickness led to a
higher resolution with an improved surface quality. Panda et al.
(Ref 17) performed a demanding multiobjective optimization of
the fabricating precision and quality using an evolutionary
system identification method and found that the layer thickness
and extrusion speed have an effect on the warpage. Moreover,
the filling velocity and line width compensation affect the
dimensional error the most. Singh (Ref 18) studied and
optimized the processing parameters of single-screw extruder
fabricated ABS parts and the mathematical models of tensile
strength. Young�s modulus and the deviation were also
determined, and optimized settings of the screw extruder
parameters were obtained. Mohamed (Ref 19) developed
mathematical models to predict the process time, material cost
and mechanical performance and found that the most effective
variables were layer thickness, air gap, build direction, etc.
Vahabli (Ref 20) built a specific test piece to evaluate the
surface quality distribution for mutative build angles based on
the RBFNN-ICA model.

Most of the studies in the literature focus on the effect of
FDM process parameters, such as layer thickness, air gap, road
width, number of contours, raster angle and orientation.
Nevertheless, some significant parameters have not been
studied, for example, nozzle diameter and liquefier temperature.
Regarding the material properties, the great majority of the
research studies concentrated on optimization of the technical
parameters for an ABS part. In contrast, there are very few
studies on other FDM process material. Moreover, in practical
applications, the parameters require adjustment to take into
account the mechanical properties, surface finish and produc-
tion time simultaneously. This paper focuses on a polylactic
acid (PLA) filament study. CCD is applied to investigate the
influence of the major extrusion parameters, including nozzle
diameter, liquefier temperature, extrusion velocity, filling
velocity and layer thickness, on the tensile strength, surface
roughness and build time. Furthermore, on the basis of an
empirical model from response surface methodology, the
optimal combination of process parameters is obtained by
performing multiobjective optimization on the tensile strength,
surface roughness and build time using the NSGA-II algorithm.

2. Experimental Process

2.1 Parameter Modifications

In this study, five extrusion parameters are included for
investigation; their ranges and levels, which are defined on the
basis of the literature review, industrial experience, and the
approved low and high levels suggested by the device
manufacturers, are listed in Table 1. Other constant factors
are listed in Table 2. This study considered the new variables of
�nozzle diameter� and �liquefier temperature.� The levels of these
factors are defined as follows:

1. Nozzle diameter: Nozzle diameter refers to the internal
diameter of the nozzle terminal.

2. Liquefier temperature: It is the operating temperature of
the nozzle heating unit at which the filament starts to
melt and flow.

3. Extrusion velocity: It is the speed that the filament is ex-
truded through the preheated injector, based on the mate-
rial feeding pressure and speed.

4. Filling velocity: Filling velocity refers to the moving
velocity of the nozzle, namely, molding speed.

5. Layer thickness: It is the height of one layer sliced by
the layered software.

As shown in Fig. 1, the filament amount of nozzle extrusion
is equal to the quantity of deposition at the same time.
Therefore, the deposition width can be calculated as follows:

p
DN

2

� �2

VE ¼ p
x
2

� � HL

2

� �
VF ðEq 1Þ

where DN is the nozzle diameter, VE is the extrusion velocity,
VF is the filling velocity, HL is the layer thickness, and x is the
deposition width.

Table 1 The controllable factors and levels

Factor Symbol

Level

UnitLow (2 1) Center (0) High (1)

Nozzle diameter A 0.2 0.4 0.6 Mm
Liquefier temperature B 200 215 230 �C
Extrusion velocity C 20 25 30 mm/s
Filling velocity D 20 30 40 mm/s
Layer thickness E 0.1 0.2 0.3 mm

Table 2 The values of the fixed factors

Fixed factor Value Unit

Build orientation 0 �
Filament diameter 1.75 Mm
Envelop temperature 50 �C
Air gap 0 Mm
Filling rate 100 %
Part filling style Perimeter/raster …
Number of contours 5 …
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2.2 Experimental Equipment

All test specimens are fabricated using Raise3D N2 plus in
this work. Figure 2 shows the tensile specimen size diagram
based on the ISO 527-1:2012 standard (Ref 21). The tensile
strength is measured by HT-2402 Computer Servo Control
Material Testing Machines produced by Hung Ta Instrument
Co., Ltd. The model material used in each test piece is PLA,
which is a biodegradable thermoplastic polymerized from
natural sources, such as corn. Some of the characteristics of
PLA are given in Table 3 by the manufacturer Polymaker (Ref
22). In addition, the microstructures of the specimens and
fracture surfaces were determined using a Keyence VHX-5000
digital microscope.

Ra is the most widely used parameter for evaluating surface
roughness. In this paper, the value for Ra of the upper surface
of the specimen was measured using a TR300 roughness meter
produced by Beijing TIME High Technology Ltd. To minimize
the error, the five measurements are averaged to represent the
surface roughness of each specimen. Moreover, the build time,
which is the total time from the start of the nozzle heating at the
initial position to the return after fabricating completion, is the
main manufacturing cost.

2.3 Design of Experiment and Responses

As an empirical modeling method, RSM is adopted to study
the internal relations of process variables and to build a
mathematical model that can precisely represent the overall
process. To develop an empirical model for tensile strength,

surface roughness and process time and investigate the effects
of the process factors on them, experiments were implemented
in accordance with CCD. The specific experimental scheme and
results obtained for every experimental run were estimated to
build the best fitted empirical models, as shown in Table 4.

3. Results and Discussion

On the basis of the experimental results shown in Table 4,
further investigations were launched to study the effects of each
variable on three responses mentioned above. On this founda-
tion, the functional relationships of three responses were fitted
individually by using response surface methodology, and a
quadratic model was taken in this study:

y ¼ b0 þ bi
Xn
i¼1

xixj þ bij
X
i < j

xixj þ bii
Xn
i¼1

x2i þ e ðEq 2Þ

where y is the response, xi is a factor, bi is a linear coefficient,
and bii is a quadratic coefficient.

3.1 Tensile Strength

An ANOVA is employed to evaluate the fitness of the model
and to estimate the significance of each factor to the response.
The ANOVA results of tensile strength are listed in Table 5.
The 95% level of confidence means the factor effect is
identified as significant to the response in the situation, and the
corresponding P value is less than or equal to 0.05. From
Table 5, the P value of the model is less than 0.0001, which
indicates the satisfactory fitness of the established quadratic
model.

Fig. 1 Schematic representation of the extrusion parameters

Fig. 2 Schematic representation of the tensile specimen

Table 3 The characteristics of PLA

Property Unit Value

Density g/cm3 1.24
Glass transition temperature �C 60
Melt index g/10-min 11
Young�s modulus MPa 2636
Tensile strength MPa 46.6
Elongation at break % 1.9
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Figure 3 shows that the distribution of points tends to be
linear in the normal probability plot of the residual for the
response of tensile strength, i.e., the results have no large
deviations. In addition, the model prediction ability is com-
monly measured by the value of predicted R2, and the value R2

of 0.9837 indicates that a model that provides more matching
predictions can be widely used experimentally in further
studies.

Because of the diversity of measurement scales and units
from variables, the obtained model is not able to analyze the
impacts of each variable on response correctly. Accordingly, the
tensile strength model is obtained from the employment of
coded parameter values and the elimination of insignificant
factors, as presented in Eq 3. From the F-value in Table 5 and
coefficient in Eq 3, all the five factors have remarkable linear
effects, especially the nozzle diameter (A). Moreover, two level

Table 4 Experimental scheme and results

Exp. No.

Factors Responses

A, mm B, �C C, mm/s D, mm/s E, mm Tensile strength, MPa Surface roughness Ra, lm Build time, h

1 0.4 215 20 30 0.2 38.442 20.69 1.41
2 0.4 200 25 30 0.2 40.274 22.35 1.45
3 0.2 200 20 20 0.1 31.628 6.16 6.23
4 0.2 200 30 20 0.3 35.061 19.67 2.89
5 0.2 230 30 20 0.1 35.879 9.27 6.13
6 0.4 215 25 30 0.2 42.192 22.52 1.37
7 0.4 215 25 30 0.2 41.284 22.32 1.39
8 0.2 230 20 20 0.1 30.831 6.03 6.16
9 0.4 215 25 30 0.2 41.765 22.19 1.38
10 0.2 200 20 20 0.3 35.569 15.37 2.83
11 0.4 215 25 30 0.2 41.412 22.41 1.34
12 0.2 215 25 30 0.2 37.241 9.96 2.78
13 0.2 230 20 20 0.3 36.672 15.46 2.71
14 0.6 230 30 20 0.1 43.022 27.97 2.26
15 0.6 200 20 40 0.1 36.163 28.72 1.22
16 0.2 230 20 40 0.1 30.419 12.76 3.67
17 0.6 230 20 20 0.1 36.394 24.72 2.26
18 0.2 200 20 40 0.1 31.834 12.74 3.80
19 0.4 215 25 30 0.2 41.216 22.56 1.41
20 0.4 215 25 30 0.2 41.208 22.24 1.39
21 0.2 230 30 20 0.3 39.712 19.56 2.69
22 0.6 200 20 20 0.3 41.986 38.59 0.99
23 0.2 200 30 40 0.1 32.766 14.73 3.81
24 0.6 200 30 40 0.3 42.075 50.29 0.86
25 0.2 230 30 40 0.3 38.468 29.62 1.59
26 0.2 230 30 40 0.1 34.645 14.68 3.70
27 0.6 230 20 40 0.3 41.032 47.62 0.68
28 0.6 200 30 20 0.1 41.719 27.98 2.41
29 0.2 200 30 20 0.1 33.261 9.26 6.22
30 0.6 200 20 20 0.1 36.908 24.86 2.39
31 0.2 200 30 40 0.3 35.194 29.84 1.68
32 0.6 200 20 40 0.3 39.532 47.27 0.79
33 0.6 230 30 40 0.3 45.827 50.32 0.74
34 0.4 215 25 30 0.3 43.171 28.29 0.98
35 0.4 215 25 30 0.1 37.273 13.78 2.82
36 0.6 230 30 40 0.1 43.019 30.74 1.21
37 0.2 200 20 40 0.3 35.902 26.51 1.63
38 0.4 215 25 20 0.2 41.108 26.56 2.24
39 0.4 215 25 40 0.2 40.121 33.42 1.02
40 0.6 230 20 20 0.3 41.086 38.78 0.87
41 0.4 215 30 30 0.2 42.186 23.93 1.46
42 0.4 215 25 30 0.2 41.833 22.24 1.42
43 0.6 215 25 30 0.2 44.761 29.78 0.52
44 0.6 230 20 40 0.1 37.172 28.54 1.08
45 0.4 215 25 30 0.2 40.934 22.19 1.45
46 0.6 230 30 20 0.3 46.074 42.96 0.87
47 0.6 200 30 20 0.3 42.148 42.82 1.01
48 0.2 230 20 40 0.3 36.136 26.81 1.53
49 0.4 230 25 30 0.2 41.655 22.65 1.29
50 0.6 200 30 40 0.1 39.013 30.71 1.30
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interaction effects of liquefier temperature and extrusion
velocity (BC) have significant influence on the tensile strength.

TS ¼ 41:32þ 3:14Aþ 0:79Bþ 1:54C � 0:29D

þ 1:87E � 1:73C2 � 1:82E2 þ 0:52AC

þ 0:79BC þ 0:3BE � 0:48CE

ðEq 3Þ

As shown in Fig. 4, the interaction effects plot shows the
second-order interaction between the parameters and their
influence on tensile strength (TS). According to the first column
of Fig. 4 and specimens 50 and 23 in Fig. 5, the tensile strength

increases with the increase in the nozzle diameter because a
larger nozzle diameter corresponds to a lower number of sliced
layers for the same height of the part and the number of cooling
and heating cycles is also reduced, resulting in distortion,
delamination and fabrication failure of the build parts. Figure 6
shows that the fracture surface of specimen 50 is smoother than
that of specimen 23. In previous research work, Bayraktar (Ref
23) generated a mathematical model for the tensile results using
an ANN. On the basis of the model, the tensile strength values
of most of the samples were observed to improve with a rise in
liquefier temperature. The same variation is obviously observed

Table 5 The ANOVA for the tensile strength

Source SS DF MS F-value P value Remarks

Model 727.72 20 36.39 87.43 < 0.0001 Significant
A 334.93 1 334.93 804.77 < 0.0001 Significant
B 21.46 1 21.46 51.56 < 0.0001 Significant
C 80.64 1 80.64 193.77 < 0.0001 Significant
D 2.79 1 2.79 6.7 0.0149 Significant
E 119.34 1 119.34 286.75 < 0.0001 Significant
A^2 0.33 1 0.33 0.78 0.3839
B^2 0.39 1 0.39 0.95 0.3385
C^2 2.73 1 2.73 6.55 0.016 Significant
D^2 1.39 1 1.39 3.34 0.0781
E^2 3.22 1 3.22 7.75 0.0094 Significant
AB 0.2 1 0.2 0.48 0.4928
AC 8.64 1 8.64 20.76 < 0.0001 Significant
AD 0.16 1 0.16 0.38 0.5415
AE 0.81 1 0.81 1.95 0.1728
BC 19.83 1 19.83 47.64 < 0.0001 Significant
BD 0.25 1 0.25 0.61 0.4413
BE 2.79 1 2.79 6.71 0.0149 Significant
CD 0.28 1 0.28 0.67 0.4201
CE 7.34 1 7.34 17.65 0.0002 Significant
DE 6.87E�03 1 6.87E�03 0.017 0.8986
Residual 12.07 29 0.42
Lack of fit 10.87 22 0.49 2.89 0.0767
Total 739.79 49

Fig. 3 Normal probability plot of the residuals for the tensile strength
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in the second column of Fig. 4 because of the lower levels of
molecular diffusion as well as the inability to form high
numbers of cross-linked molecular bonds. Compared to that of
specimen 30 in Fig. 6, the fracture surface of specimen 17 is
smoother, and there is no obvious gap and crack, indicating that
the higher liquefier temperature is beneficial to the adhesion

between the layers. Similar to the liquefier temperature, as the
extrusion velocity increases, the tensile strength increases
because an increase in the extrusion velocity allows more force
to be available to push the material from the die, leading to
complete adhesion between layers, as shown in Fig. 6(e).
Otherwise, slower extrusion velocity results in small holes

Fig. 4 The influence of parameter interaction on the tensile strength

Fig. 5 (a) Representative stress–strain plots, (b) modulus of elasticity, (c) elongation at break and (d) fracture stress for typical specimens
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between layers, as it is seen from Fig. 6(f). This sort of
incomplete filling will lead to a decrease in tensile strength. In
contrast to the extrusion velocity, as displayed in the fourth
column of Fig. 4, the tensile strength is insensitive to the filling
speed. The tensile strength decreases slightly as the filling
speed increases, possibly because of the discontinuous filament
feeding, as shown in Fig. 6(i). Six FDM process parameters
were studied to evaluate their effects on tensile strength by
using the fraction factorial design and ANOVA (Ref 7). It was
concluded that the layer thickness has a remarkable impact on
tensile strength: as the layer thickness increases, the tensile
strength increases, and the same variation is obviously observed
in the fifth column of Fig. 4 and specimens 3 and 10 in Fig. 5.
With the increase in the layer thickness, the number of layers
required for the manufacturing parts decreases, resulting in
minimum deformation and heat cycles and thus improving the
dynamic mechanic performances of the parts. Comparing
Fig. 6(g) with Fig. 6(h), the fracture surface of the thinner
layer thickness has more obvious gaps and cracks and thus has
a negative effect on the tensile strength.

3.2 Surface Roughness

The ANOVA results of surface roughness resemble the
former analysis of tensile strength, as listed in Table 6. The
level of confidence is 95%. From Table 6, the P value of the
entire model is less than 0.0001, which indicates that the
established quadratic model is sufficiently adequate. In Fig. 7,
the normal probability plot of the residual for the response of
surface roughness has no large deviations. For the value of R2,
the predicted coefficient of 0.9923 indicates a decent estimate
in the experiments.

The surface roughness model with coded parameter values
is obtained in Eq 4 by eliminating insignificant factors. From
the F-value in Table 6 and the coefficient in Eq 4, the nozzle
diameter, extrusion velocity, filling velocity and layer thickness
have remarkable linear effects. The identical matching with the
results shown in Eq 4 suggests that the nozzle diameter has the
greatest influence on the surface roughness. Moreover, the
quadratic effect of the filling velocity (B2) and the two level
interaction effects of nozzle diameter and layer thickness (AE)

Fig. 6 The fracture surface microstructures of (a) specimen 50, (b) specimen 23, (c) specimen 17, (d) specimen 30, (e) specimen 46, (f)
specimen 40, (g) specimen 10, (h) specimen 3 and (i) the microstructure of specimen 16
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have the most significant influence on the surface roughness of
FDM parts.

Ra ¼ 22:35þ 9:51Aþ 2:14C þ 2:93Dþ 7:15E � 0:48AD

þ 0:68AE þ 0:46CE � 3:88A2 þ 8:27D2 � 1:75E2

ðEq 4Þ

For an in-depth study, variable factors were adopted to
obtain the interaction effects plot of surface roughness, as
presented in Fig. 8. According to the first column of Fig. 8, the
surface roughness increases with the rise of the nozzle diameter

because the larger nozzle diameter has a lower number of sliced
layers for the same height of the part and because both the
deposition width and the thickness increase, resulting in the
poor surface of the build parts. In contrast to the nozzle
diameter, as displayed in the third column of Fig. 8, the surface
roughness is insensitive to the extrusion velocity, and it
increases slightly with a higher extrusion velocity, possibly
because the filament width increases with increased extrusion
velocity. Peng (Ref 14) studied the effect of FDM parameters
on surface roughness through experimental investigations and
found that the choice of filling velocity should be suitable. The

Table 6 The ANOVA for the surface roughness

Source SS DF MS F-value P value Remarks

Model 5535.63 20 276.78 187.81 < 0.0001 Significant
A 3077.06 1 3077.06 2087.9 < 0.0001 Significant
B 0.023 1 0.023 0.015 0.9019
C 155.71 1 155.71 105.65 < 0.0001 Significant
D 291.59 1 291.59 197.86 < 0.0001 Significant
E 1740.02 1 1740.02 1180.67 < 0.0001 Significant
A^2 44.37 1 44.37 30.1 < 0.0001 Significant
B^2 0.36 1 0.36 0.24 0.6265
C^2 1.47 1 1.47 0.99 0.327
D^2 154.94 1 154.94 105.13 < 0.0001 Significant
E^2 10.96 1 10.96 7.44 0.0107 Significant
AB 1.24 1 1.24 0.84 0.3658
AC 0.5 1 0.5 0.34 0.5657
AD 7.36 1 7.36 5 0.0333 Significant
AE 14.65 1 14.65 9.94 0.0037 Significant
BC 0.77 1 0.77 0.52 0.475
BD 0.1 1 0.1 0.071 0.7918
BE 1.24 1 1.24 0.84 0.3658
CD 0.16 1 0.16 0.11 0.7455
CE 6.73 1 6.73 4.56 0.0412 Significant
DE 1.11 1 1.11 0.75 0.3934
Residual 42.74 29 1.47
Lack of fit 36.06 22 1.64 1.72 0.2366
Total 5578.37 49

Fig. 7 Normal probability plot of the residuals for the surface roughness
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ultralow velocity causes the lower manufacturing efficiency,
possibly causing deposited layers to burn via the searing heat
nozzle. The extremely high velocity, however, leads to machine
mechanical vibrations, thus reducing component accuracy. As
shown in the fourth column of Fig. 8, the roughness decreases
first and then increases with increasing filling velocity. The fifth
column of Fig. 8 illustrates that the thin layer produced a
smoother surface than that of the thick layer. Some results can
be found in a previous study (Ref 9, 24).

3.3 Build Time

The ANOVA results of build time are listed in Table 7. The
level of confidence is 95%, and the P value is less than 0.0001,
which shows good applicability of the model. Figure 9 shows
the normal probability plot of residual for the response of build
time; the plot indicates that the statistics are hardly deviated.
The predicted coefficient of 0.9990, similar to the surface
roughness, can provide a better evaluation in experiments.

As previously shown, model of build time is presented in
Eq 5. According to the F-values in Table 7 and the coefficients
in Eq 5, the nozzle diameter, liquefier temperature, filling
velocity and layer thickness have remarkable linear effects,
among which, the nozzle diameter (A) has the greatest effect.
Moreover, the quadratic effect of the layer thickness (E2) and
the two level interaction effects of nozzle diameter and layer

thickness (AE) have the most significant influence on the build
time of forming parts.

BT ¼ 1:39� 1:13A� 0:045B� 0:61D� 0:93E þ 0:30A2

þ 0:24D2 þ 0:51E2 þ 0:29ADþ 0:46AE þ 0:28DE

ðEq 5Þ

Variable factors were chosen to obtain the interaction effects
plot of build time, as shown in Fig. 10. According to the first
column of Fig. 10, the build time increases with decreasing
nozzle diameter, indicating that the extruded filament width is
larger when using larger nozzles by the same layer thickness,
thereby reducing the required path for the same part and
resulting in a shorter required build time. As displayed in the
second column of Fig. 10, the build time is insensitive to the
liquefier temperature and decreases slightly with greater
liquefier temperature because a higher liquefier temperature
corresponds to a longer heating time required for printing. In
previous research work (Ref 14), the relationship between
filling velocity and build time was given; the same variation is
obviously observed in the fourth column of Fig. 10. The
figure illustrates that, with the other factors fixed, a higher
filling velocity shortens the build time required to complete the
manufacturing. The fifth column of Fig. 10 demonstrates that
the greater the layer thickness, the shorter the processing time,

Fig. 8 The influence of parameter interaction on the surface roughness
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in agreement with a previous study (Ref 14, 19). More layers
are required to process the same parts when choosing a thin
layer, leading to longer processing time.

3.4 Multiobjective Optimization Process

In theory, the desirable finished parts should not only have
the higher tensile strength and surface quality but also lower
time cost. In reality, however, these three performance indices
are usually conflicting: A combined action of the process
parameters leading to higher tensile strength and surface quality
possibly results in a higher time cost. Therefore, NSGA-II on

controllable variables should be implemented to acquire the
optimal combinations of the technological parameters.

3.5 NSGA-II Algorithm

Based on nondominated sorting and sharing, multiobjective
evolutionary algorithms have the disadvantages of computa-
tional complexity, lack of elitism and the requirement for
specifying a sharing parameter. However, NSGA-II reduces all
the above weaknesses. NSGA-II is a sorting-based nondomi-
nated multiobjective evolutionary algorithm. The NSGA-II
algorithm can not only obtain the uniformly distributed Pareto

Table 7 The ANOVA for the build time

Source SS DF MS F-value P value Remarks

Model 108.4003 20 5.420016 1506.439 < 0.0001 Significant
A 43.73158 1 43.73158 12,154.75 < 0.0001 Significant
B 0.06885 1 0.06885 19.13616 0.0001 Significant
C 0.003012 1 0.003012 0.83709 0.3678
D 12.74919 1 12.74919 3543.508 < 0.0001 Significant
E 29.18382 1 29.18382 8111.35 < 0.0001 Significant
A^2 0.234973 1 0.234973 65.30845 < 0.0001 Significant
B^2 0.003345 1 0.003345 0.929741 0.3429
C^2 0.000167 1 0.000167 0.046496 0.8308
D^2 0.152396 1 0.152396 42.35689 < 0.0001 Significant
E^2 0.664233 1 0.664233 184.6169 < 0.0001 Significant
AB 0.001128 1 0.001128 0.313551 0.5798
AC 0.001128 1 0.001128 0.313551 0.5798
AD 2.662278 1 2.662278 739.9534 < 0.0001 Significant
AE 6.872778 1 6.872778 1910.219 < 0.0001 Significant
BC 0.001128 1 0.001128 0.313551 0.5798
BD 2.81E�05 1 2.81E�05 0.007817 0.9302
BE 2.81E�05 1 2.81E�05 0.007817 0.9302
CD 0.005778 1 0.005778 1.605972 0.2151
CE 0.000253 1 0.000253 0.070354 0.7927
DE 2.548153 1 2.548153 708.2335 < 0.0001 Significant
Residual 0.104339 29 0.003598
Lack of fit 0.093189 22 0.004236 2.659289 0.0935
Total 108.5047 49

Fig. 9 Normal probability plot of the residuals for the build time
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optimal solution set but also exhibit strong stability and
adaptability (Ref 25). Figure 11 illustrates the NSGA-II
flowchart. According to this figure, the response surface
method is employed in the optimization algorithm to obtain
the fitness function. In addition, to generate new groups of
crossed and mutated genetic operators, the response surface
method is adopted. Finally, the optimization procedure is
completed once the iteration condition is satisfied.

3.6 Setting of the NSGA-II Parameters

As shown in Table 8, the objective of the optimization
problem is to achieve the optimal process parameters (nozzle
diameter, liquefier temperature, extrusion velocity, filling
velocity and layer thickness), and the desired results of FDM
are to have the maximum tensile strength, minimum surface
roughness and minimum build time, all of which are obtained
by the ANOVA results.

Table 9 lists the setting for NSGA-II; the program runs in
MATLAB R2014b. The implementation of NSGA-II solves the
multiobjective optimization problem and obtains the Pareto
optimal front.

3.7 Optimization Results

The Pareto optimal front for tensile strength, surface
roughness and build time is shown in Fig. 12. Each point

represents an acceptable optimum solution, and the corre-
sponding technological parameter can be employed on the basis
of the demands of the designers. From Fig. 12, the optimal
results are noninferior because there are trade-offs among
tensile strength, surface roughness and build time. The
implementations of three solutions in the Pareto optimal front
confirmed the validity of the optimum results. The confirmation
test results obtained by the optimum process parameters are
listed in Table 10. From Table 10, the maximum relative error
of the tensile strength, surface roughness and build time is 7.95,
13.88 and 6.52%, respectively. By considering the measure-
ment error, the machine constraints and some accidental factors
during the experiment process, the error of optimum process
parameters is acceptable, indicating that the prediction accuracy
of the proposed optimization method is able to meet the
requirements of FDM.

4. Summary and Conclusions

In this paper, by applying RSM combined with NSGA-II,
the acquisition of the optimized process parameters achieved
the maximum tensile strength and the minimum surface
roughness and build time. In addition, the solutions are
validated by experimental verification. Based on the results,
the following conclusions are obtained:

Fig. 10 The influence of parameter interaction on the build time
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1. On the basis of the ANOVA and F-value results, the
most effective factors on tensile strength, surface rough-
ness and build time are found to be nozzle diameter and
layer thickness. In contrast, liquefier temperature is less
effective on surface roughness, and surface roughness is
insensitive to the extrusion velocity.

2. Tensile strength and surface roughness increase signifi-
cantly when using a larger nozzle diameter, high extru-
sion, filling velocity and thick layers. The increase in the
nozzle diameter, filling velocity and layer thickness re-
duces build time.

3. Based on the results of confirmation experiments, mathe-
matical models developed in this work were tested and
verified, which can precisely describe the interrelations
between the process conditions. The obtained models can
help practitioners achieve a balance among the various
mechanical properties, surface finish and build time,
thereby reducing effort, time and cost.

4. Although the optimal process parameters were confirmed
based only on tensile strength, surface roughness and
build time in this study, in practice, the evaluation indica-
tors may involve other parameters, such as dimensional
accuracy and material consumption. Moreover, the parts

Fig. 11 NSGA-II flowchart

Table 8 Constraints of the parameters and the responses

Name Goal Low limit Upper limit

A: Nozzle diameter Is in range 0.2 0.6
B: Liquefier temperature Is in range 200 230
C: Extrusion velocity Is in range 20 30
D: Filling velocity Is in range 20 40
E: Layer thickness Is in range 0.1 0.3
Tensile strength Maximize … …
Surface roughness Minimize … …
Build time Minimize … …

Table 9 NSGA-II parameters settings

Parameter Value

Population size 100
Maximum iterations 500
Crossover fraction 0.9
Mutation fraction 0.1
Function tolerance 10E�06
Scaling fitness function Rank
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required to be fabricated may be more complex in prac-
tice. Nevertheless, there is no doubt that the solutions
employed in this work have important guiding signifi-
cance in determining the process parameters.
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