
Research Article
Nonlinear Parametric Vibration and Chaotic Behaviors of an
Axially Accelerating Moving Membrane

Mingyue Shao ,1,2 Jimei Wu ,1,2 Yan Wang,3 and Qiumin Wu2

1School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China
2School of Printing, Packaging and Digital Media Engineering, Xi’an University of Technology, Xi’an 710048, China
3School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an 710048, China

Correspondence should be addressed to Jimei Wu; wujimei1@163.com

Received 5 September 2018; Revised 17 January 2019; Accepted 18 February 2019; Published 11 March 2019

Academic Editor: Francesco Pellicano

Copyright © 2019Mingyue Shao et al..is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nonlinear vibration characteristics of a moving membrane with variable velocity have been examined..e velocity is presumed
as harmonic change that takes place over uniform average speed, and the nonlinear vibration equation of the axially moving
membrane is inferred according to the D’Alembert principle and the von Kármán nonlinear thin plate theory. .e Galerkin
method is employed for discretizing the vibration partial differential equations. However, the solutions concerning to dif-
ferential equations are determined through the 4th order Runge–Kutta technique. .e results of mean velocity, velocity
variation amplitude, and aspect ratio on nonlinear vibration of moving membranes are emphasized..e phase-plane diagrams,
time histories, bifurcation graphs, and Poincaré maps are obtained; besides that, the stability regions and chaotic regions of
membranes are also obtained. .is paper gives a theoretical foundation for enhancing the dynamic behavior and stability of
moving membranes.

1. Introduction

Membrane materials are extensively used in the packaging
and printing industry; together with this, it is also used in
mechanical instruments, aerospace, biomedical science, and
some other fields. In engineering activities, the membrane is
not strictly possessing a uniform motion; for instance, the
disturbance appears during the rotation of a guide roller in
the printing process, it would result in the change in
membrane velocity, and the vibration characteristics of the
membrane would become highly complex; in certain cases,
the nonlinear vibration perhaps results in printing failure
(e.g., snap or tear). .us, the nonlinear vibration of the
membrane with variable velocity should be taken into
account.

In current years, various researchers have reviewed
more regarding nonlinear vibrational issues pertaining to
axial structure of strings, plates, and beams with variable
velocities. Nevertheless, the transverse nonlinear vibration
of membranes with variable velocities has obtained

attention by few scholars. Wickert and Mote [1, 2] in-
vestigated transverse vibrations of axially moving strings
and beams..e dynamic response of an axially accelerating
string was investigated by Pakdemirli and Ulsoy [3], the
method of multiple scales was applied to solve the partial
differential system. Ravindra and Zhu [4] analyzed non-
linear dynamics of one-mode approximation of an axially
moving continuum, the system was modeled as a beam
moving with varying speed, and the low-dimensional
chaotic response of the system was studied by Melni-
kov’s method. Pakdemirli and Öz [5] and Öz et al. [6]
studied a beam with a time-varying axial velocity by using
perturbation analysis. Suweken and Van Horssen [7, 8]
studied transversal vibrations of a conveyor belt with a low
and time-varying velocity. Pellicano [9] reviewed some
recent numerical and experimental results regarding the
complex dynamics of axially moving systems. .e response
of axially moving systems was studied by using recent
techniques of the nonlinear time series analysis. Pellicano
and Vestroni [10] studied nonlinear dynamics and
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bifurcation of a simply supported beam subjected to an
axial transport of mass by the Galerkin method. .e dy-
namic response of a simply supported travelling beam
subjected to a transverse load in the supercritical speed
range was investigated by Pellicano and Vestroni [11].
Periodic oscillations were studied by means of continuation
techniques, while nonstationary dynamics were in-
vestigated through direct simulations. .e velocity was
presumed as harmonic change that takes place over uni-
form average speed, which was assumed by Ghayesh [12]
and Chen et al. [13], and they used the method of multiple
scales and examined nonlinear vibration properties and
stability of an axially accelerating string. .e findings in-
dicated that the speed changing amplitude and the average
speed both had effects on the frequencies and amplitudes.
For determining the solution of equations of an axially
moving string with time-dependent velocity, two time-
scales perturbation method and Laplace transformation
technique were used [14]. Ghayesh and Amabili [15] ex-
amined the bifurcation diagrams of an axially moving
beam, and it was figured out that when the mean axial speed
and amplitude of the speed fluctuations changed, the in-
tervals of periodic, quasi-periodic, and chaotic motions
took place. Lv et al. [16] used the method of multiple scales
and Galerkin truncation for examining the nonlinear dy-
namic behavior of moving viscoelastic sandwich beams
with variable velocities. .e effects of average speed, initial
tension, and moving speed amplitude on unstable regions
and amplitude-frequency response curves were empha-
sized; consequently a time-dependent speed cannot be
ignored in the mathematical modeling. Nguyen et al. [17]
considered axial transporting speed as a control input and
provided a fresh control algorithm for reducing the in-
fluence of transverse vibration through regulating the axial
translating speed. Liu et al. [18] presented an ideal deferred
feedback control technique for suppressing the nonlinear
vibration of an elastic beam with the actuator and piezo-
electric sensor. Gong et al. [19] examined the effects of
feedback gains, excitation voltage, and damping on the
nonlinear vibration properties and amplitude-frequency
response of a nanobeam vibrational system. Rezaee and
Lotfan [20] evidently expressed that the variation occurring
in the axial speed has influence on the slope of “frequency-
response” curvatures, when the small-scale effects of axially
moving nanoscale beams were considered. Yan and co-
workers [21], Mao et al. [22], and Ding et al. [23] examined
bifurcation and chaos of a translating beam with pulsating
axial velocity, particularly the solution method and mod-
eling were provided. However, 4th order Runge–Kutta
algorithm and Galerkin truncation technique were used by
them for analyzing the effects of parameter variables on
nonlinear behavior of an accelerating viscoelastic beam.
Ding and Chen [24] applied the finite difference method to
study nonlinear response of axially moving viscoelastic
beams. Gafsi et al. [25] analyzed the large deflections of a
flexible beam, and a novel strategy was proposed to control
the nonlinear vibrations. Breslavsky and Avramov [26]
analyzed the effects of boundary condition nonlinearities
on free nonlinear vibrations of thin rectangular plates.

Avramov and Raimberdiyev [27] investigated lateral vi-
brations of the beams with two breathing cracks. .e
stability and bifurcations were also studied. Strozzi and
Pellicano [28] studied nonlinear vibrations of functionally
graded material (FGM) circular cylindrical shells, and the
effects of the geometry (thickness, radius, and length) and
material properties on nonlinear dynamics of the shell were
highlighted. Liu et al. [29] examined the stability and bi-
furcations of an axially variable speed plate with large
transverse deflections, and the nonlinear dynamic behav-
iors were studied according to Poincaré map andmaximum
Lyapunov exponent. Tang and Chen [30, 31] investigated
the influence of average in-plane moving speed, viscosity
coefficient, in-plane moving speed variation amplitude, and
the nonlinear coefficient on the nonlinear vibration of
accelerating viscoelastic plates.

Besides, the literature linked to dynamics of amembrane is
in abundance, although there is limited literature referring to
the nonlinear vibration behavior of the membrane with
variable velocity. Marynowski [32, 33] reviewed the nonlinear
behavior of the paper web through employing 4th order
Runge–Kutta method with the Galerkin method; the visco-
elastic beam theory was used to establish the paper webmodel,
and the viscous damping was considered, but the influence of
velocity fluctuation was neglected. Lin and Mote [34] for-
mulated the large deflection vibration equations of a moving
web; it was shown that the deflection increased with the in-
crease of the translating speed. Luo [35] introduced that
nonlinear concept regarding continuous deformational webs
and the theory can be used for examining the wrinkling
stability of the deformational webs. Banichuk et al. [36] and
Ma et al. [37] examined small vibrations and stability of a
moving web with nonuniform tension. .e undamped
nonlinear vibrational response of pretension quadrilateral
orthotropic membranes was examined by mathematical and
analytical methods in Reference [38]. Soares and Gonçalves
[39] investigated the nonlinear dynamic analysis of a stretched
hyperelastic membrane subjected to a transversal harmonic
force using the shooting method and the finite element
technique. Li et al. [40] reviewed the nonliner dynamic re-
sponse of a membrane under impact load based on the
perturbation method and von Kármán’s large deformation
theory. Free linear vibration properties and stability of a
printing paper with variable velocity were discovered by Wu
and coworkers [41]; it is shown that the amplitude of pulse
speed had influence on the stable region, as well as unstable
region of the web. In printing, a time-dependent velocity will
affect the printing quality of a membrane, although few au-
thors were attentive towards the effects of variable velocity of
membranes on the nonlinear vibration. .us, our report is
focused on the examination of nonlinear parametric vibration
of membranes with variable velocity.

In the current research work, the nonlinear vibration
characteristics regarding an axially moving membrane with
varying velocity are explored through employing the 4th
order Runge–Kutta technique and Galerkin method. In
addition, chaos and bifurcation behavior of the membrane
due to change of mean velocity and velocity pulsation
amplitude together with aspect ratio are examined.
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2. Establishment of Nonlinear
Vibration Equation

Figure 1 is exhibiting the moving membrane with varying
velocity, where x is the membrane moving direction, y is
the direction that is indicating the width of the membrane,
and the z direction is indicating the lateral vibration di-
rection. Axial velocity vx is assumed as small simple
harmonic variations about a constant average axial ve-
locity. Transverse vibration displacement of a membrane
is w(x, y, t), t represents the time, a is representing the
length of a membrane, b is representing the membrane
width, Ty and Tx both are the tensions along with
membrane’s unit length at the edges along y and x di-
rections, p cosωt is indicating in-plane cosine external
excitation per unit area in the z direction, p represents the
amplitude of external excitation, the surface density is
denoted by ρ.

During the instant when lateral vibration of a
moving membrane is generated, the absolute velocity vector
at all the points within the membrane can be determined as
follows:

V � vxi +
dw

dt
k, (1)

where dw/dt is the speed in the direction of lateral vibration
and i and k both are indicating the unit vectors along the x
and z directions, correspondingly.

.e differential operator is expressed as

d

dt
�

z

zt
+ vx

z

zx
. (2)

.e velocity in the transverse vibration direction is
expressed as

v(t) �
dw

dt
�

zw

zt
+ vx

zw
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. (3)

.ereafter, the lateral acceleration is obtained:

a �
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�
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(4)

.e equilibrium differential equations are given by
[36, 42]
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(5)

where Nx, Ny, and Nxy are the membrane inner forces/unit
length.

Elastic surface differential equation is defined as [42]

ρ
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(6)

.e membrane is subjected to an external force p cosωt

in the z direction, and the damping effect is taken into
account; the forced vibration differential equation of a
moving membrane with variable velocity is obtained
according to the D’Alembert principle [43]:

ρ
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(7)

where λ is denoting the damping coefficient.
.e axial speed of a moving membrane has a simple

harmonic fluctuation about the constant mean velocity
[29, 30] which can be expressed as follows:

vx � v0 + v1 sinΩt, v0, v1 > 0( 􏼁, (8)

where v0 is denoting the axial average velocity, v1 represents
the change of amplitude with respect to axial velocity, that is,
speed pulsation amplitude, and Ω is denoting the frequency
of axial velocity.

.e nonlinear vibration equation concerning themoving
membrane with varying velocity is attained by using von
Kármán nonlinear thin plate theory [30]:

ρ
z2w

zt2
+ 2vx

z2w

zxzt
+ v

2
x

z2w

zx2 +
dvx

dt
·
zw

zx
􏼠 􏼡−Nx

z2w

zx2

−Ny

z2w

zy2 − 2Nxy

z2w

zxzy
+ λ

zw

zt
−p cosωt � 0,

z2Nx

zy2 +
z2Ny

zx2 − μ
z2Nx

zx2 − μ
z2Ny

zy2

� Eh
z2w

zxzy
􏼠 􏼡−

z2w

zx2
z2w

zy2􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)
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Figure 1: Moving membrane with variable velocity.
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where E is used to denote the elasticity modulus and μ is
denoting Poisson’s ratio.

.e internal force of the membranes Nx, Ny, and Nxy
can be represented with help of the Airy stress function Φ
[36]:

Nx �
z2Φ
zy2 ,

Ny �
z2Φ
zx2 ,

Nxy � −
z2Φ

zxzy
.

(10)

.e equilibrium differential equations of the membrane
units are independent from each other, the membrane is soft
and homogeneous, and the effect of shear stress on the
vibration of the membrane is smaller; therefore, we can
assume Nxy � 0, so the boundary conditions of the mem-
brane are obtained:

Nx x�0,a

􏼌􏼌􏼌􏼌 � Tx,

Ny y�0,b

􏼌􏼌􏼌􏼌􏼌 � Ty,
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(11)

.en, equation (9) can be defined as follows:
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Substituting equation (8) into equation (12) yields
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Let the dimensionless quantities be expressed as
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(14)

where r is the aspect ratio, c is the dimensionless average
speed, c1 is representing the dimensionless amplitude of
pulsating speed, and p is the dimensionless external exci-
tation amplitude. .e dimensionless nonlinear governing
equations of the axially accelerating moving membrane can
be achieved as follows:

z2w

zτ2
+ 2 c + c1sinΩτ( 􏼁

z2w

zξzτ

+ c2 + 2cc1 sinΩτ + c21 sin
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(15)

.e boundary conditions of nonlinear vibration mem-
brane can be determined as [44]
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z2f

zη2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ξ�0,1
� 1,

z2f

zξzη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌ξ�0,1
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌η�0,1
� 1,

z2f

zξzη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌η�0,1
� 0,

w � 0.

(16)

3. Separation of the Variables

.e displacement function satisfying the boundary condi-
tions can be expressed as follows:

w(ξ, η, τ) � 􏽘

Mi

i�1
􏽘

Mj

j�1
qij(τ) sin(iπξ) sin(jπη). (17)

It is sufficient for reflecting the response characteristics
of the system when Mi � 2 and Mj � 1 [29, 45]:

w(ξ, η, t) � 􏽘
2

i�1
qi1(τ) sin(iπξ) sin(πη)

� q11(τ) sin(πξ) sin(πη) + q21(τ) sin(2πξ) sin(πη).

(18)
.e inner force function satisfying the boundary con-

ditions can be expressed as follows [45]:

f(ξ, η, τ) �
ξ2

2
+
η2

2
+ 􏽘

Mi

i�1
􏽘

Mj

j�1
fij(τ) sin2(iπξ) sin2(jπη), (19)

where fij(τ) is the undetermined coefficient.
When i � 1 and j� 1 and i � 2 and j� 1, the inner force

function f(ξ, η, t) can be determined as follows [45]:

f(ξ, η, τ) �
ξ2

2
+
η2

2
+ f11(τ) sin2(πξ) sin2(πη)

+ f21(τ) sin2(2πξ) sin2(πη),

(20)

where f11(τ) and f21(τ) are the undetermined coefficients.
According to the Galerkin method, substituting equa-

tions (18) and (20) into equation (15) produces

􏽚
1

0
􏽚
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0
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zξ4
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4z
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2
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· sin2(jπη)dξ dη � 0.

(21)
Performing two integrations on (21) when i� 1 and j� 1

and i� 2 and j� 1, correspondingly, then we obtain

6 + 6r
4

􏼐 􏼑f11(τ) + 4r
4
f21(τ) + r

2
q
2
11(τ)

+ 2r
2
q
2
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8r
4
f11(τ) + 192 + 12r

4
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2
q
2
11(τ)

+ 8r
2
q
2
21(τ) � 0.

(22)

f11(τ) and f21(τ) are signified as follows:

f11(τ) �
− 96r2 + 4r6( 􏼁q211(τ)− 192r2 − 4r6( 􏼁q221(τ)

20r8 + 612r4 + 576

� β α11q
2
11(τ) + α12q

2
21(τ)􏽨 􏽩􏽨 􏽩,
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r6 − 3r2( 􏼁q211(τ)− 16r6 + 24r2( 􏼁q221(τ)

20r8 + 612r4 + 576

� β α21q
2
11(τ) + α22q

2
21(τ)􏽨 􏽩,

(23)

where

α11 � − 96r
2

+ 4r
6

􏼐 􏼑,

α12 � 4r
6 − 192r

2
,

α21 � r
6 − 3r

2
,

α22 � − 16r
6

+ 24r
2

􏼐 􏼑,

β �
1

20r8 + 612r4 + 576
.

(24)

Substituting equations (18) and (20) into equation (15)
generates the subsequent equations by employing the
Galerkin method:

􏽚
1

0
􏽚
1

0
􏼢

z2w

zτ2
+ 2 c + c1 sinΩτ( 􏼁

z2w

zξzτ

+ c
2

+ 2cc1 sinΩτ + c
2
1 sin

2Ωτ􏼐 􏼑
z2w

zξ2
+Ωc1 cosΩτ

zw

zξ

− r
2z

2f

zη2
z2w

zξ2
− r

2z
2f

zξ2
z2w

zη2
+ c

zw

zτ
−p cosωτ􏼣

· sin(mπξ) sin(πη)dξ dη � 0.

(25)

.e state equations of the moving membrane system
with varying velocity whenm� 1 andm� 2 can be described
as follows:

€q11 + G11 _q21 + c _q11 + k11q11 + k12q21 + k13q
3
11

+ k14q11q
2
21 � Q cos(ωt),

(26)

€q21 + G21 _q11 + c _q21 + k21q11 + k22q21

+ k23q
3
21 + k24q

2
11q21 � 0,

(27)
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where

G11 � −
16 c + c1sinΩτ( 􏼁

3
,

k11 � 2π2r2 − π2 c
2

+ 2cc1sinΩτ + c
2
1 sin

2Ωτ􏼐 􏼑,

k12 � −
8Ωc1 cosΩτ

3
,

k13 � −
π4r2β
2

3α11 + α21( 􏼁,

k14 � −
π4r2β
2

3α12 + α22( 􏼁,

Q �
16p
π2

,

G21 �
16 c + c1 sinΩτ( 􏼁

3
,

k21 �
8Ωc1 cosΩτ

3
,

k22 � 5π2r2 − 4π2 c
2

+ 2cc1 sinΩτ + c
2
1 sin

2Ωτ􏼐 􏼑,

k23 � −2π4r2β α12 + 3α22( 􏼁,

k24 � −2π4r2β α11 + 3α21( 􏼁.

(28)

Introducing the following parameter variables:

X1 � q11,

X3 � q21,

X2 � _X1,

X4 � _X3,

(29)

Equations (26) and (27) can be expressed as follows:
_X2 � −G11X4 − cX2 − k11X1 − k12X3 − k13X

3
1

− k14X1X
2
3 + Q cos(ωt),

_X4 � −G21X2 − cX4 − k21X1 − k22X3 − k23X
3
3 − k24X3X

2
1,

(30)

where c is representing the dimensionless damping
coefficient.

4. Numerical Analysis

.e 4th order Runge–Kutta technique was used for math-
ematically solving the state equation of the moving mem-
brane structure. In this way, the association between
dynamic characteristics of the system, velocity pulsating
amplitude, average velocity, and aspect ratio are obtained.
For the purpose of revealing the nonlinear dynamic char-
acteristics of the system, Poincaré maps, bifurcation graphs,
phase-plane diagrams, and time histories were used
[32, 33, 46]. .e study is based on the commonly used
parameters of the printing membrane.

4.1. Effects of Velocity Pulsation Amplitude on Nonlinear
VibrationCharacteristics. As it is exhibited in Figure 2, the
displacement bifurcation graph of dimensionless velocity
pulsation amplitude when the frequency of dimensionless
velocity Ω � 2, average speed c � 0.5, dimensionless ex-
citation frequency ω� 1, dimensionless external excita-
tion amplitude p � 10, and dimensionless damping
constant c � 0.05, the aspect ratio r � 0.5, and the initial
values are [0.01, 0, 0.01, 0], the range of velocity pulsation
amplitude is 0.01≤ c1 ≤ 0.35. Figure 2 indicates that when
0.01≤ c1 < 0.195, the bifurcation graph resembles fewer
points, the membrane is in a periodic motion, and it is
demonstrated that the membrane is in stable motion in
this region. When 0.195≤ c1 ≤ 0.35, the bifurcation graph
is showing the irregular dense point, and it is observed
that membrane is in chaotic motion, and membrane is in
the unstable motion state at these points. .erefore, as
there is larger dimensionless velocity pulsation amplitude,
eventually it gives rise to the more obvious nonlinear
vibration phenomenon and results in easier instability.
Generally, the system moves from periodic motion to
chaotic motion.

Figure 3 shows the displacement bifurcation graph of
dimensionless velocity pulsation amplitude when the pa-
rameters are Ω� 2, c= 0.5, ω= 1, p= 10, c= 0.05, r= 0.5, and
the initial value is [0.05, 0, 0.05, 0]. As it can be observed
from Figures 2 and 3, the system motion process is re-
markably different because of different initial values. It is
found that the nonlinear vibration characteristics of
membranes are sensitive to the initial conditions.

4.2. Effects of Mean Velocity on Nonlinear Vibration
Characteristics. Figure 4 shows the displacement bifurcation
graph of dimensionless average velocity when the parameters
areΩ� 2, c1=0.05, ω=1, p = 10, c=0.1, r=0.5, and the initial
value is [0.01, 0, 0.01, 0]..e range of dimensionless velocity is
0.01≤ c≤ 1. Figure 4 shows that when 0.01≤ c< 0.66 and
0.67< c< 0.71, the bifurcation graph resembles fewer points,
and it is specified that membrane is in stable motion in these
regions. When 0.66≤ c≤ 0.67 and 0.71< c≤ 1, the bifurcation
graph shows the dense points, and it is observed that the
membrane is in chaotic motion, and the membrane is un-
stable in these regions. .erefore, as there is larger di-
mensionless velocity, faster would be the instability.

Figures 5–7 are all about phase-plane diagrams, Poincaré
maps, and time histories when c� 0.65, c� 0.658, and
c� 0.665, correspondingly.

.e phase-plane curve has a steady sealed graphic when
c� 0.65, and the Poincaré map possesses two points; it is
shown that the overall structure is in the periodic motion.
.e phase-plane curve possesses many steady sealed
graphics, whereas the Poincaré map has a circle of discrete
points, when c� 0.658, and it is shown that the system is in
quasi-periodic motion. When c� 0.665, the phase-plane
curve is not closed, the Poincaré maps possess lots of un-
stable dense points, and it is observed that the overall system
is in chaotic motion. It summarizes that, with the rise of
dimensionless velocity c, the system from the periodic
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motion transforms into quasi-periodic motion and later on
enters into chaotic motion.

4.3. Effects of Aspect Ratio on Stability. It is displayed in
Figure 8 that the bifurcation diagram of dimensionless dis-
placement and aspect ratio when the frequency of di-
mensionless velocity Ω � 2, dimensionless velocity pulsation
amplitude c1 � 0.05, dimensionless excitation frequency ω� 1,
dimensionless damping constant c � 0.05, dimensionless
speed c� 0.5, dimensionless external excitation amplitude
p � 10, and the initial values are [0.01, 0, 0.01, 0], the range of
variation of aspect ratio is 0.2≤ r≤ 2. As it is shown in
Figure 8, when 0.305< r< 0.355 and 0.395< r≤ 2, the bi-
furcation diagram has fewer points, and it is specified that the
membrane is in stable motion in these regions; thus the
membrane is in steady working range. When 0.2≤ r≤ 0.305,
0.355≤ r≤ 0.395, the bifurcation figure has the dense points,

and it is observed that membrane is in chaotic motion. .us,
in these regions, the nonlinear vibrational incidence is ap-
parent, and the membrane is in the unstable state. In sum-
mary, when the aspect ratio will increase, the membrane will
become more stable.

5. Conclusions

.e nonlinear vibration characteristics of the membrane in
motion with varying velocity are reviewed. .e results are
discussed as follows:

(1) .e nonlinear vibration characteristics of a mem-
brane are sensitive to the initial motion conditions.

(2) When dimensionless velocity pulsation amplitude is a
control parameter, the membrane is supposed to be in
the stable working condition in the region of
0.01≤ c1 < 0.195; the membrane is unstable in the
region of 0.195≤ c1 ≤ 0.35. Besides, the chaos is
prominent with the increase of the dimensionless
velocity pulsation amplitude, together with this irreg-
ularity can take place easily; therefore, we can efficiently
control the chaos phenomenon through reducing the
dimensionless velocity pulsation amplitude.

(3) When the dimensionless average velocity is variable,
the membrane is supposed to be in the condition of
steady working region, in the regions of
0.01≤ c< 0.66 and 0.67< c< 0.71, and the membrane
is unstable in the regions of 0.66≤ c≤ 0.67 and
0.71< c≤ 1. Furthermore, the higher the di-
mensionless average velocity is, the more prominent
will be the chaos motion, and the instability can take
place with relative ease; thus, we can efficiently
control the chaos phenomenon through reducing the
dimensionless average velocity.

(4) When the aspect ratio is used as a control parameter,
the membrane is supposed to be in the stable
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Figure 4: .e displacement bifurcation graph of mean speed
(Ω� 2, ω� 1, c � 0.1, r� 0.5, p � 10, c1 � 0.05, and the initial value is
[0.01, 0, 0.01, 0]).
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Figure 3: .e displacement bifurcation graph of velocity pulsation
amplitude (Ω� 2, ω� 1, c � 0.05, r� 0.5, p � 10, c� 0.5, and the
initial value is [0.05, 0, 0.05, 0]).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
–3

–2

–1

0

1

2

3

4

5

c1

X 1

Figure 2: .e displacement bifurcation graph of velocity pulsation
amplitude (Ω� 2, ω� 1, c � 0.05, r� 0.5, p � 10, c� 0.5, and the
initial value is [0.01, 0, 0.01, 0]).
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working condition in regions of 0.305< r< 0.355 and
0.395< r≤ 2, and the membrane is unstable in the
regions of 0.2≤ r≤ 0.305 and 0.355≤ r≤ 0.395. .e
findings indicated that the system is highly unstable
with the decrease of the aspect ratio. .us, with the
increase in the aspect ratio, we can efficiently control
possible stability issues owning to stronger nonlinear
phenomenon.

(5) Note that, in this paper, there are truncation errors
(formula (17)). In practical applications, the limited
terms of formula (17) are retained for different needs
of the problem. However, we should discuss that how
accurately the numerical results for the ODEs are
approximating the solutions of the PDEs and these
are hard questions.
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T. Tuovinen, “.eoretical study on travelling web dynamics
and instability under non-homogeneous tension,”

International Journal of Mechanical Sciences, vol. 66,
pp. 132–140, 2013.

[37] L. Ma, J. Chen,W. Tang, and Z. Yin, “Transverse vibration and
instability of axially travelling web subjected to non-
homogeneous tension,” International Journal of Mechanical
Sciences, vol. 133, pp. 752–758, 2017.

[38] C. Liu, Z. Zheng, and X. Yang, “Analytical and numerical
studies on the nonlinear dynamic response of orthotropic
membranes under impact load,” Earthquake Engineering and
Engineering Vibration, vol. 15, no. 4, pp. 657–672, 2016.

[39] R. M. Soares and P. B. Gonçalves, “Nonlinear vibrations and
instabilities of a stretched hyperelastic annular membrane,”
International Journal of Solids & Structures, vol. 49, no. 3-4,
pp. 514–526, 2012.

[40] D. Li, Z. Zheng, Y. Tian, J. Sun, X. He, and Y. Lu, “Stochastic
nonlinear vibration and reliability of orthotropic membrane
structure under impact load,” Bin-Walled Structures,
vol. 119, pp. 247–255, 2017.

[41] J. Wu, Q. Wu, L. e. Ma, and L. Liu, “Parameter vibration and
dynamic stability of the printing paper web with variable
speed,” Journal of Low Frequency Noise, Vibration and Active
Control, vol. 29, no. 4, pp. 281–291, 2010.

[42] Z. L. Xu, Elastic Mechanics (Part II), Higher Education Press,
Beijing, China, 2015, in Chinese.

[43] J. Wu, W. Lei, Q. Wu, Y. Wang, and L. e. Ma, “Transverse
vibration characteristics and stability of a moving membrane
with elastic supports,” Journal of Low Frequency Noise, Vi-
bration and Active Control, vol. 33, no. 1, pp. 65–77, 2014.

[44] J. Wu, M. Shao, Y. Wang, Q. Wu, and Z. Nie, “Nonlinear
vibration characteristics and stability of the printing moving
membrane,” Journal of Low Frequency Noise, Vibration and
Active Control, vol. 36, no. 3, pp. 306–316, 2017.

[45] Y. Hu and Z. Q. Feng, “Harmonic resonance and stability
analysis of axially moving rectangular plate,” Journal of
Mechanical Engineering, vol. 48, no. 09, pp. 123–128, 2012, in
Chinese.

[46] Y. Z. Liu and L. Q. Chen, Nonlinear Vibrations, Higher
Education Press, Beijing, China, 2001, in Chinese.

Shock and Vibration 11



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

