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Nonlinear dynamical behaviors
of a moving membrane under
external excitation

Mingyue Shao1 , Jimei Wu1,2, Yan Wang3 and Shudi Ying1

Abstract

In this paper, the nonlinear vibration characteristics of a moving printing membrane under external excitation are

studied. Based on the Von Karman nonlinear plate theory, the nonlinear vibration equation of the axial motion mem-

brane under the external excitation is deduced. The Galerkin’s method is used to discretize the vibration differential

equations of the membrane, and then the state equation of the system is obtained. The state equation of the system is

numerically solved by the fourth-order Runge–Kutta method. The relationship between the nonlinear vibration char-

acteristics and the amplitude of external excitation, damping coefficient, and aspect ratio of the printing membrane is

analyzed by using the time histories, phase-plane portraits, Poincare maps, and bifurcation diagrams. Chaotic intervals

and the stable working range of the moving membrane are obtained. This study provides a theoretical basis for

predicting and controlling the stability of the membrane.
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Introduction

The membrane, including plastic film, paper web, cloth, metal foil and other types of film-like material, is widely

used in the manufacture of printing and packaging products. In the process of gravure printing, the printing

membrane is subjected to a certain external excitation during printing or transmission, i.e. during the printing

process, there is a printing pressure when the ink is transferred to the surface of the membrane. During the

transfer process, the membrane is affected by the impact of the hot air in the oven, so the nonlinear vibration

characteristics of the high-speed printing membrane will change, thereby the membrane instability phenomenon

such as wrinkling, tearing, and surface scratches can be caused by the transverse vibrations of the membrane

under external excitation, so the overprint accuracy and quality of printing are deteriorated.
In recent years, many scholars have studied more about the nonlinear vibration problem of the axial system,

for example, strings, beams, plates, and so on but have less research on the nonlinear vibration characteristics of a

membrane under external excitation.
Chen et al.1 analyzed the steady-state periodic transverse responses and stabilities of axially accelerating vis-

coelastic strings. The amplitude, the existence conditions, and the stability were determined, and the effects of the

viscosity, the mean axial speed, the axial speed fluctuation amplitude, and the axial support rigidity on the

amplitude and the existence were examined via the numerical examples. Kesimli et al.2 investigated the nonlinear
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vibration characteristics of multi-supported axially moving string and the variable speed by multi-time-scaled
method. Lewandowski and Wielentejczyk3 applied the finite element method together with the harmonic balance
method to study nonlinear vibration of beams under harmonic forces. Zenkour4 analyzed the effect of length-to-
thickness ratio and elastic foundation parameters on the natural frequencies of a thermoelastic microbeam res-
onator. Hadj et al.5 employed the higher order shear deformation theories to obtain general differential equations
of motion in nonlinear forced vibration analysis of multilayered composite beams. The equation of motion was
obtained via Hamilton’s principle and discretized by the Galerkin’s method. Bifurcation diagrams of Poincare
maps were obtained. Beni et al.6 analyzed free vibration behavior of a single-walled carbon nanotube based on
couple stress theory. Liu et al.7 applied an optimal delayed feedback control method to mitigate the nonlinear
vibration of a flexible simply–simply supported beam. Hirwani et al.8 investigated transient responses of the shear
deformable layered composite plate under the mechanical transverse (uniform and sinusoidal) loading by using
the nonlinear finite element method. Kumar et al.9 studied the nonlinear bending and vibration analyses of
trapezoidal and arbitrary straight-sided quadrilateral composite plates by using smoothed finite element tech-
nique. Chai et al.10 investigated the nonlinear dynamical analysis and design of the composite laminated plate with
time-dependent boundary conditions based on the Von Karman plate theory and Bubnov Galerkin’s method.
Ghayesh et al.11 applied Von Karman plate theory to examine the nonlinear vibration for forced motions of an
axially moving plate, and the equations of motion were obtained via an energy method based on Lagrange
equations. Khanna and Kaur12 analyzed vibration characteristics of temperature-thickness coupling problem
of a non-homogeneous isotropic viscoelastic rectangular plate. A numerical and an experimental study on optimal
velocity feedback control for vibration suppression of a plate-like structure by Boz, Aridogan and Basdogan,13

and the results showed that the developed control methodology effectively suppressed the vibration amplitudes at
multiple modes of the structure. The improved multiple-scale method was used to analyze the nonlinear vibration
and chaotic motion of the axially moving current-conducting thin plate under external harmonic force in magnetic
field by Hu and Zhang.14 Ansari et al.15 studied the nonlinear mechanical behavior of plates based on the
micropolar elasticity theory. Saleema and Manoranjan16 investigated the nonlinear free flexural vibration of
stiffened plates by using a super parametric element. Khanna and Singhal17 studied vibration of isotropic tapered
rectangular plate with different boundary conditions by using Rayleigh Ritz technique. Wang and Zu applied18

the method of harmonic balance and an adaptive step-size fourth-order Runge–Kutta technique to analyze
nonlinear dynamic thermoelastic response of rectangular functionally graded material (FGM) plates with longi-
tudinal velocity. Lin and Mote19 established the nonlinear vibration of an axially moving web with small flexural
stiffness under transverse loading by Von Karman nonlinear plate theory. The finite element method was applied
to analyze nonlinear vibration of an axially moving membrane by Koivurova and Pramila.20 Kulachenko
et al.21,22 used the finite element method to investigate nonlinear vibration and stability of the web. The Von
Karman nonlinear plate theory and the differential quadrature method were employed to study the nonlinear
vibration of the moving rectangular membrane by Zhao and Wang.23 Soares and Gonçalves24 investigated the
nonlinear vibrations and instabilities of a stretched hyperelastic membrane by using the finite element method.
Marynowski25 studied nonlinear vibrations of beam-like model of two-dimensional axially moving web with time-
dependent tension by using the Galerkin’s method and the fourth-order Runge–Kutta method. The effects of the
transport speed, the tension perturbation amplitude and the internal damping on the dynamic behavior of the
system were numerically investigated. A fundamental theory for deformable webs not resisting any compressive
membrane forces was developed through a direct derivation on the deformed configuration by Luo.26 Nguyen and
Hong27 presented a control algorithm for suppression of the transverse vibration of an axially moving web system
via regulation of axial velocity. Banichuk et al.28 analyzed the dynamics and stability of a moving web under non-
homogeneous tension by using analytical approaches. The natural frequencies of a specially orthotropic rectan-
gular membrane were examined with respect to its design parameters by Wetherhold and Padliya.29 A method was
presented for inferring the initial tensions from measured vibration frequencies and the sensitivity of the tensions
with respect to imprecision in the measured frequencies was demonstrated. Li et al.30 investigated the stochastic
dynamic response and reliability analysis of membrane structure under impact load by using perturbation
method. Ma et al.31 studied transverse vibration and instability of axially travelling web subjected to non-
homogeneous tension, the influence of tension inhomogeneity on the critical velocity and mode shape
was discussed.

Through the above literature survey, there are few studies on the nonlinear vibration of an axially moving rectan-
gular membrane under external excitation. In this study, the nonlinear vibration characteristics of an axially moving
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membrane under external excitation are studied by using the fourth-order Runge–Kutta method. The influence of the

amplitude of external excitation, aspect ratio, and damping coefficient on the nonlinear vibration characteristics are

analyzed by using the time histories, phase-plane portraits, Poincare maps, and bifurcation diagrams.

The model of the moving membrane under external excitation

Figure 1 shows the kinematic model of the axially moving rectangular membrane under external excitation.

The membrane is soft and homogeneous and has no flexural stiffness, shear force, or bending moment. vx is the

velocity of the moving membrane in the x direction, a and b are the length and width of the membrane, separately. q
is mass per unit area of the membrane, h denotes the thickness of the membrane, Pcos-t denotes in-plane uniform
external excitation, and wðx; y; tÞ denotes the transverse vibration displacement of web in z direction.

The velocity of the moving membrane in the transverse deflection wðx; y; tÞ direction is

vzðtÞ ¼ dw ðx; y; tÞ
dt

¼ @w

@t
þ vx

@w

@x
(1)

The lateral acceleration of the moving membrane is obtained

az ¼ dvzðtÞ
dt

¼ d @w
@t þ vx

@w
@x

� �
dt

¼ @2w

@t2
þ 2vx

@2w

@x@t
þ vx

2 @
2w

@x2
(2)

The nonlinear vibration equations of the moving membrane are obtained based on the Von Karman nonlinear

plate theory32

q
@2w

@t2
þ 2vx

@2w

@x@t
þ vx

2 @
2w

@x2

� �
�Nx

@2w

@x2
�Ny

@2w

@y2
� 2Nxy

@2w

@x@y
� Pcos-t ¼ 0 (3)

@2Nx

@y2
þ @2Ny

@x2
� k

@2Nx

@x2
� k

@2Ny

@y2
¼ Eh

@2w

@x@y

� �
� @2w

@x2
@2w

@y2

� �
(4)

where E is the modulus of elasticity and k is the Poisson’s ratio.
The internal force function of the membrane Uðx; yÞ is introduced for equations (3) and (4)

Nx ¼ @2U
@y2

Ny ¼ @2U
@x2

Nxy ¼ � @2U
@x@y

8>>>>>>>><
>>>>>>>>:

(5)

Figure 1. Mechanical model of the axial motion membrane under external excitation.
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Because Nxy ¼ � @2U
@x@y ¼ 0, so we can get

@

@x@y

@2U
@x@y

� �
¼ @4U

@x2@y2
¼ 0 (6)

Substituting equations (5) and (6) into equations (3) and (4) yields

q
@2w

@t2
þ 2vx

@2w

@x@t
þ vx

2 @
2w

@x2

� �
� @2U

@y2
@2w

@x2
� @2U

@x2
@2w

@y2
� Pcos-t ¼ 0 (7)

@4U
@x4

þ @4U
@y4

¼ Eh
@2w

@x@y

� �2

� @2w

@x2
@2w

@y2

" #
(8)

In order to make the research results more widely applicable to engineering problems of the moving membrane,

the dimensionless quantities are adopted in solving the nonlinear vibration equation of the system and investi-

gating the relationship between nonlinear vibration characteristics and various parameters. Introduce the dimen-

sionless quantities

1 ¼ x

a
; d ¼ y

b
; W ¼ w

h
; s ¼ t

ffiffiffiffiffiffiffiffi
Eh3

qa4

s
; c ¼ vx

ffiffiffiffiffiffiffiffi
qa2

Eh3

s
;

e ¼ a

b
; f ¼ U

Eh3
; p ¼ P

a4

Eh4
; x ¼ -

ffiffiffiffiffiffiffiffi
qa4

Eh3

s (9)

Then the dimensionless form equations of the printing membrane under external excitation can be

expressed as

@2W

@s2
þ 2c

@2W

@1@s
þ c2

@2W

@12

� �
� e2

@2f

@d2
@2W

@12
� e2

@2f

@12
@2W

@d2
¼ pcosxs (10)

@4f

@14
þ e4

@4f

@d4
¼ e2

@2W

@1@d

� �2

� e2
@2W

@12
@2W

@d2
(11)

The boundary condition of nonlinear vibration equations of the moving membrane are

1 ¼ 0; 1 :
@2f

@d2
¼ 1;

@2f

@1@d
¼ 0; W ¼ 0 (12)

g ¼ 0; 1 :
@2f

@12
¼ 1;

@2f

@1@d
¼ 0; W ¼ 0 (13)

The state equation of the system

Suppose the solutions which satisfy the boundary conditions of equations (12) and (13) are

W 1; d; sð Þ ¼ U 1; dð Þq sð Þ (14)

f 1; d; sð Þ ¼ F 1; dð Þq2 sð Þ (15)
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The displacement function satisfying the boundary condition is

U 1; dð Þ ¼ sinp1sinpd (16)

Then substituting equation (16) into equation (11) yields

@4F

@14
þ e4

@4F

@d4
¼ e2p4

2
cos2p1þ cos2pdð Þ (17)

The solution of the equation (17) is

F 1; dð Þ ¼ e2

32
cos2p1þ 1

32e2
cos2pd (18)

Substituting equations (14) – (18) into equation (10) yields the following equation by using the
Galerkin’s method.

ZZ
s

U
@2q sð Þ
@s2

þ 2c
@U

@1
@q sð Þ
@s

þ c2
@2U

@12
q sð Þ � e2

@2F

@d2
@2U

@12
q3 sð Þ � e2

@2F

@12
@2U

@d2
q3 sð Þ � pcosxs

	 

U 1; dð Þds ¼ 0

(19)

0 0.1 0.2 0.3 0.4 0.5
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

p

X
1

Figure 2. The amplitude of external excitation and displacement bifurcation diagram (x¼ 1, c¼ 0.1, e¼ 2, and c¼ 0.5).
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Figure 3. The amplitude of external excitation and displacement bifurcation diagram (x¼ 1, c¼ 0.1, e¼ 2, c¼ 0.5, the initial value
is [0.1,0.1]).
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The state equation of the moving printing membrane system under external excitation can be defined as

M €q þ B _q þ KqþDq3 ¼ Qcosxs (20)

where

M ¼
ZZ

s

U2ds¼ 1

4
(21)

B ¼ 2c

ZZ
s

@U

@1

� �
Uds¼0 (22)

K ¼ c2
ZZ

s

@2U

@12
Uds¼� p2c2

4
(23)

D ¼ �e2
ZZ

s

@2F

@d2
@2U

@12
þ @2F

@12
@2U

@d2

� �
Uds¼ p4

64
ð1þ e4Þ (24)
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Figure 4. Time histories, phase-plane portraits and Poincare maps (x¼ 1, c¼ 0.1, c¼ 0.5, e¼ 2, and p¼ 0.17).
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Q ¼ p

ZZ
s

Uds¼ 4

p2
p (25)

The equation (20) can be written as

€q � p2c2qþ p4

16
1þ e4
� �

q3 ¼ 16

p2
pcosxs (26)

Consider the effect of damping, introducing the following parameter variables

X1 ¼ q; X2 ¼ _X1 (27)

The equation (26) becomes

_X2 ¼ �cX2 þ p2c2X1 � p4

16
1þ e4
� �

X1
3 þ 16

p2
pcosxs (28)

where c is dimensionless damping coefficient.
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Figure 5. Time histories, phase-plane portraits and Poincare maps (x¼ 1, c¼ 0.1, c¼ 0.5, e¼ 2, and p¼ 0.2).
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Numerical calculation and analysis

The state equation of the moving membrane system is numerically solved by using the fourth-order Runge–Kutta

method. The effect of the amplitude of external excitation, aspect ratio, and damping coefficient of a membrane

on the stability of the system are analyzed. The time histories, phase-plane portraits, Poincare maps, and bifur-

cation diagrams are applied to reveal the complex nonlinear dynamics of the system.

Influence of amplitude of external excitation on nonlinear vibration characteristics

Figure 2 shows the bifurcation diagram of dimensionless amplitude of external excitation and displacement when

the dimensionless excitation frequency x¼ 1, the dimensionless damping coefficient c¼ 0.1, the dimensionless

velocity c¼ 0.5, the aspect ratio e¼ 2, the initial value is [0.01,0], and the range of amplitude of external excitation

is 0.01 � p � 0.5. Figure 2 shows that when 0.01 � p < 0.065, 0.085< p < 0.11, 0.17< p < 0.264, 0.305< p < 0.32,

0.36< p < 0.375, and 0.4< p < 0.42, the bifurcation diagram corresponds to a few points, indicating that the

membrane is in a periodic motion state in these regions. When 0.065< p < 0.085, 0.11< p < 0.17, 0.264< p <

0.305, 0.32< p < 0.36, 0.375< p < 0.4, and 0.42< p � 0.5, the bifurcation diagram is a pile of dense points,

indicating that the membrane is in chaotic state. To sum up, the system undergoes periodic motion to chaotic

motion and then from chaotic motion to reciprocating changes in periodic motion. The bifurcation points are p =

0.085, p = 0.17, p = 0.305, p = 0.36, and p = 0.4. On the whole, the system has gone through two kinds of roads

leading to chaos, period-doubling bifurcation into chaos and bursts of chaos.
Figure 3 shows the bifurcation diagram of amplitude of external excitation and displacement when the dimen-

sionless excitation frequency x¼ 1, the dimensionless damping coefficient c¼ 0.1, the dimensionless velocity

c¼ 0.5, the aspect ratio e¼ 2, the initial value is [0.1,0.1], and the range of amplitude of external excitation is

0.01 � p � 0.5. As can be seen from Figures 2 and 3, the system motion process is significantly different due to the
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Figure 6. Time histories, phase-plane portraits and Poincare maps (x¼ 1, c¼ 0.1, c¼ 0.5, e¼ 2, and p¼ 0.26).
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Figure 7. Time histories, phase-plane portraits and Poincare maps (x¼ 1, c¼ 0.1, c¼ 0.5, e¼ 2, and p¼ 0.264).
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Figure 8. Time histories, phase-plane portraits and Poincare maps (x¼ 1, c¼ 0.1, c¼ 0.5, e¼ 2, and p¼ 0.3).
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different initial values. Indicating that the nonlinear vibration of the membrane is sensitive to the ini-
tial conditions.

The membrane has a cycle of period-doubling bifurcation leading to chaos when 0:17 � p � 0:3. To illustrate
this bifurcation process, Figures 4–8 show time histories, phase-plane portraits, and Poincare maps when the
amplitude of dimensionless external excitation is different.

Figures 4–8 show time histories, phase-plane portraits, and Poincare maps when p = 0.17, p = 0.2, p = 0.26,
p = 0.264, and p = 0.3, respectively. When p = 0.17, the phase trajectory curve is regular closed graphic,
and the Poincare section has two fixed points, which shows that the system is in double periodic motion state.
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Figure 10. Time histories, phase-plane portraits and Poincare maps (x¼ 1, c¼ 0.1, c¼ 0.3, p¼ 0.4, and e¼ 0.8).
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Figure 9. The aspect ratio and displacement bifurcation diagram (x¼ 1, c¼ 0.1, c¼ 0.3, and p¼ 0.4).
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When p = 0.2, the phase trajectory curve is regular closed graphic, and the Poincare section has four fixed points,

indicating that the system is in quadruple periodic motion state. When p = 0.26, the phase trajectory curve has a

lot of regular closed graphics, and the Poincare section has a few discrete points, which indicates that the system is

in the multiple periodic motion state. When p = 0.264 and p = 0.3, the phase trajectory curve is not closed curves,

Poincare section has many dense points, indicating that the system is in chaotic motion state. To sum up, as the

amplitude of dimensionless external excitation increases gradually, the system moves from double periodic motion

to quadruple periodic motion, then to multiple periodic motion, and then enters chaotic motion. It can be seen

that this way of generating chaos belongs to period-doubling bifurcation into chaos.

Influence of aspect ratio on nonlinear vibration characteristics

Figure 9 shows the bifurcation diagram of aspect ratio and dimensionless displacement when the dimensionless

excitation frequency x¼ 1, the dimensionless damping coefficient c¼ 0.1, the dimensionless velocity c¼ 0.3, the

amplitude of dimensionless external excitation p¼ 0.4, the initial value is [0.01,0], and the range of aspect ratio is

0.5� e � 2. The Figure 2 shows that when 0.5� e < 1.12, 1.275< e < 1.715, and 1.85< e < 1.92, the bifurcation

diagram corresponds to a few points, indicating that the membrane is in a periodic motion state in these regions,

so the membrane is in a stable working range. When 1.12< e < 1.275, 1.715< e < 1.85, and 1.92< e � 2, the

bifurcation diagram has many dense points, indicating that the membrane is in chaotic state. So at these regions,

the nonlinear vibration phenomenon is obvious, and the membrane is divergent instability. To sum up, with the

increase in the dimensionless aspect ratio, the membrane suddenly fluctuates periodically and chaos and jumps

randomly between the two. As the dimensionless aspect ratio increases, the burst phenomenon becomes more and

more frequent. The periodic movement almost completely disappeared, and finally the system completely into the

chaotic state. The bifurcation points are e= 1.275, e= 1.57, and e= 1.685. We should make a reasonable choice
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Figure 11. Time histories, phase-plane portraits and Poincare maps (x¼ 1, c¼ 0.1, c¼ 0.3, p¼ 0.4, and e¼ 1).
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of membrane aspect ratio to avoid the occurrence of chaos according to the printing requirements and improve

the quality and accuracy of printing materials.
The membrane has a cycle of period-doubling bifurcation leading to chaos when 0:8 � e � 1:12. To illustrate

this bifurcation process, Figures 10–12 show time histories, phase-plane portraits, and Poincare maps when the

aspect ratio is different.
Figures 10–12 show time histories, phase-plane portraits, and Poincare maps when e = 0.8, e = 1, and e =

1.12, respectively. When e = 0.8, the phase trajectory curve is regular closed graphic, and the Poincare section has

three fixed points, which shows that the system is in triple periodic motion state. When e= 1, the phase trajectory

curve has a lot of regular closed graphics, and the Poincare section has a few discrete points, which indicates that

the system is in multiple periodic motion state. When e= 1.12, the phase trajectory curve is not closed curves,
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Figure 12. Time histories, phase-plane portraits and Poincare maps (x¼ 1, c¼ 0.1, c¼ 0.3, p¼ 0.4, and e¼ 1.12).
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Poincare section has many dense points, indicating that the system is in chaotic motion state. To sum up, when

0:8 � e � 1:12, as the aspect ratio e increases, the system undergoes triple periodic motion to the multiple

periodic motion and then to the chaotic motion.

Influence of damping coefficient on nonlinear vibration characteristics

Figure 13 shows the bifurcation diagram of dimensionless damping coefficient and dimensionless displacement

when the dimensionless excitation frequency x¼ 1, the aspect ratio e¼ 2, the dimensionless velocity c¼ 0.5, the

amplitude of dimensionless external excitation p¼ 0.2, the initial value is [0.001,0], and the range of damping

coefficient is 0:001 � c � 0:1. The Figure 13 shows that when 0:001 � c � 0:003 and c¼ 0.006, the bifurcation

diagram has many dense points, indicating that the membrane is in chaotic state. So at these regions, the nonlinear

vibration phenomenon is obvious, and the membrane is divergent instability. When 0:003< c< 0:006 and

0:006< c � 0:1, the bifurcation diagram corresponds to a few points, indicating that the membrane is in a

periodic motion state in these regions, so the membrane is in a stable working range. To sum up, with the increase

in the dimensionless damping coefficient, the system experiences chaotic motion to periodic motion, and then

moves from periodic motion to chaos, finally entering the process of periodic motion completely.
Figure 14 shows time histories, phase-plane portraits, and Poincare maps when c¼ 0.003, the phase trajectory

curve is not closed curves, Poincare section has many dense points, indicating that the system is in chaotic

motion state.

Conclusions

The nonlinear vibration characteristics of an axially moving printing membrane under external excitation are

studied by using the fourth-order Runge–Kutta method. The influence of the amplitude of external excitation,

aspect ratio, and damping coefficient of the printing membrane on the nonlinear vibration characteristics are
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Figure 14. Time histories, phase-plane portraits and Poincare maps (x¼ 1, e¼ 2, c¼ 0.5, p¼ 0.2, and c¼ 0.003).
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highlighted by using the time histories, phase-plane portraits, Poincare maps, and bifurcation diagrams. The
conclusions are as follows:

1. When the dimensionless excitation frequency x¼ 1, the dimensionless damping coefficient c¼ 0.1, the dimen-
sionless velocity c¼ 0.5, the aspect ratio e¼ 2, the initial value is [0.01,0], and the range of amplitude of the
external excitation is 0.01� p� 0.5. When 0.01� p< 0.065, 0.085< p< 0.11, 0.17< p< 0.264, 0.305< p< 0.32,
0.36< p< 0.375, and 0.4< p< 0.42, the membrane is in a stable state in these regions. When 0.065< p< 0.085,
0.11< p< 0.17, 0.264< p< 0.305, 0.32< p< 0.36, 0.375< p< 0.4, and 0.42< p� 0.5, the membrane is in cha-
otic regions, so the membrane is divergent instability. To sum up, the system undergoes a reciprocating alter-
nation of periodic motion to chaotic motion. The bifurcation points are p¼ 0.085, p¼ 0.17, p¼ 0.305, p¼ 0.36,
and p¼ 0.4. On the whole, the system has gone through two kinds of roads leading to chaos, period-doubling
bifurcation into chaos and bursts of chaos.

2. When the initial values are changed, the system motion process is significantly different. Indicating that the
nonlinear vibration of the membrane is sensitive to the initial conditions.

3. When the dimensionless excitation frequency x¼ 1, the dimensionless damping coefficient c¼ 0.1, the dimen-
sionless velocity c¼ 0.3, the amplitude of dimensionless external excitation p¼ 0.4, the initial value is [0.01,0],
and the range of aspect ratio is 0.5� e� 2. When 0.5� e< 1.12, 1.275< e< 1.715, and 1.85< e< 1.92, the
membrane is in a stable working state in these regions. When 1.12< e< 1.275, 1.715< e< 1.85, and
1.92< e� 2, the membrane is in chaotic regions, the membrane is divergent instability. The bifurcation
points are e¼ 1.275, e¼ 1.57, and e¼ 1.685. Periodic motion and chaotic motion occur when aspect ratio e
increases. We should make a reasonable choice of membrane aspect ratio to avoid the occurrence of chaos
according to the printing requirements and improve the quality and accuracy of printing materials.

4. The dimensionless damping coefficient has effect on the nonlinear vibration, when 0:001 � c � 0:003 and
c¼ 0.006, the membrane is in chaotic state, and the membrane is divergent instability. When 0:003 < c < 0:006
and 0:006 < c � 0:1, the membrane is in a periodic motion state, and the membrane is in a stable working
range in these regions. With the increase in the dimensionless damping coefficient, the system experiences
chaotic motion to periodic motion and then moves from periodic motion to chaos, finally entering the periodic
motion.

5. Overall, the stable working regions and divergent instability regions are obtained in different parameters. We
should make a reasonable choice of membrane parameters in the stable working regions to avoid potential
stability issues due to strong nonlinear phenomena.
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