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This study investigates the thermoelastic coupling vibration and stability of rotating annular sector plates. Based on Hamilton’s
principle and thermal conduction equation with deformation effect, the differential equation of transverse vibration for a rotating
annular sector plate is established. The differential equation of vibration and corresponding boundary conditions are discretized
by the differential quadrature method. Then, the thermoelastic coupling transverse vibrations under three different boundary
conditions are calculated.The change curve of the first three order dimensionless complex frequencies of the rotating annular sector
plate with the dimensionless angular speed are analyzed in the case of the thermoelastic coupling and uncoupling. The effects of
the dimensionless angular speed, the ratio of inner to outer radius, the sector angle, and the dimensionless thermoelastic coupling
coefficient on transverse vibration and stability of the annular sector plate are discussed. Finally, we obtained the type of instability
and corresponding critical speed of the rotating annular sector plate in the case of the thermoelastic coupling and uncoupling.

1. Introduction

As a basic structure, the annular sector plate has been widely
used in practical engineering, such as missiles, ships, instru-
ments, and machine structures. The behavior of annular
sector plate is very important for these structures, which
has attracted great attention from many researchers. Some
research work has been done on the bending behavior of
the annular sector plate. For example, Jomehzadeh et al. and
Sahraee [1, 2] analyzed the bending of functionally graded
annular sector plates based on the Levinson plate theory and
the first order shear deformation plate theory. Fallah and
Nosier [3] reformulated the governing equations of the first
order theory into the interior and edge-zone problems of the
circular sector plate and analyzed the bending of functionally
graded circular sector plates subjected to transverse loading.
Qian and Yan [4] studied the bending problems of thin elastic
annular sector plate with simply supported along radial edges

and free along circular edges by a solution of deflection in the
form of Fourier-Bessel double series.

Recently, more and more researchers have realized the
importance of vibration analysis of the annular sector plate
and have done considerable researches on this topic. On the
one hand, some researchers have been devoted to unifying
the vibration modeling of circular, annular, and sector plates.
For example, Shi et al. and Wang et al. [5–7] established
a unified vibration model of circular, annular, and sector
plates with arbitrary boundary conditions and presented a
unified method based on a new form of trigonometric series
expansion for free vibration analysis of circular/annular
sector plates. Later, Zhong et al. and Guan et al. [8, 9] applied
the models and methods presented above to analyze free
vibration of sector-like thin plate with various boundary
conditions. Zhao et al. [10] constructed the unified theoretical
model of functionally graded porous (FGP) circular, annular,
and sector plates with general elastic restraints based on the
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first order shear deformation theory and studied free vibra-
tion and force vibration of FGP plates. On the other hand,
some researchers have studied the effects of the structure and
boundary condition on free vibration of the annular sector
plate. Rezaei and Saidi [11] studied free vibration response of
the fluid-saturated porous annular sector plates by building
relative motion model between fluid and solid skeleton of the
porous medium. By applying the Ritz method, Zhou et al.
[12] obtained natural frequencies of free vibration of annular
sector plates based on the three-dimensional elasticity theory.
Belalia andHoumat [13] analyzed the nonlinear free vibration
of moderately thick functionally graded sector plates by
the p-version of the finite element method. Mizusawa [14]
investigated free vibration of isotropic annular sector plates
with arbitrary boundary conditions by using the spline
element method. However, some sector plates rotate at the
certain angular speed in many fields of engineering, such as
sector mechanism in vibration mill and sector gear in high-
speed rapier loom.The researches mentioned above have not
involved the effect of the rotating angular speed on vibration
characteristics of the annular sector plate.

Furthermore, the annular sector plate is under varying
temperature environment in actual engineering applications,
which needs to be considered. Behzad et al. [15] used 3D elas-
ticity theory to analyze the thermal buckling of functionally
graded perforated annular sector plates. Shaterzadeh et al.
[16] used the finite element method to discuss the stability
of composite perforated annular sector plates under thermo-
mechanical loading. Mirtalaie [17] studied free vibration of
functionally graded sector plates in thermal environment and
examined the effects of temperature field, volume fraction
exponent, radius ratio, and sector angle on free vibrations of
the sector plate. The above researches have not involved the
interaction between temperature field and strain field. In fact,
the temperature field and the strain filed can affect each other,
so the thermoelastic coupling should be taken into account
in the vibration characteristic analysis of the rotating annular
sector plate.

The differential equation of thermoelastic coupling trans-
verse vibration of the rotating annular sector plate is the
fourth-order partial differential equation with variable coef-
ficients. The high-order partial differential equation has been
solved by the finite element method and Galerkin method
in some literature [13, 16, 18–20]. The differential quadrature
method (DQM) was firstly proposed by Bellman and Casti in
early 1970s [21]. Later, some researchers continued to improve
this method and applied it to numerical solution of problems
in engineering [22–25]. In recent years, as a numerically accu-
rate and computationally efficient technique, the differential
quadraturemethod (DQM)has also been applied in vibration
analysis. Tornabene et al. [26, 27] used the generalized
differential quadrature method to study free vibration of
functionally graded conical, cylindrical shells and annular
plates, and they compared numerical solutions using the
DQMwith those obtained using commercial programswhich
show the DQM can provide accurate and computationally
efficient results. Fantuzzi [28] used the DQM to analyze
free vibration analysis of arbitrarily shaped functionally
graded carbon nanotube-reinforced plates. Shao et al. [29]

discretized the transverse vibration differential equations
of moving membrane by using the DQM and investigated
the effects of the density coefficient and the tension ratio
on transverse vibration characteristics of the membrane.
However, few papers have focused on the fourth-order partial
differential equation of thermoelastic coupling transverse
vibration by DQM. In this paper, we use the DQM to solve
the differential equation of thermoelastic coupling transverse
vibration of the rotating annular sector plate.

This study aims to construct the differential equation of
thermoelastic coupling transverse vibration of the rotating
annular sector plate based on Hamilton’s principle and the
thermal conduction equation. The dimensionless complex
frequencies of the rotating annular sector plate in the case
of the thermoelastic coupling and uncoupling are analyzed
by the differential quadrature method. The change curve of
the first three order dimensionless complex frequencies of the
rotating annular sector plate with the dimensionless angular
speed is analyzed under different boundary conditions. The
effects of the ratio of inner to outer radius, the sector angle,
and the dimensionless thermoelastic coupling coefficient on
dynamic stability of the rotating annular sector plate are
analyzed.

2. Differential Equation of Thermoelastic
Coupling Vibration

2.1. Differential Equation of Transverse Vibration with Varying
Temperature. Figure 1 shows an annular sector plate with
inner radius 𝑎, outer radius 𝑏, sector angle 𝜙, and thicknessℎ. The annular sector plate in the polar coordinate (𝑟, 𝜃) is
rotating around an axis perpendicular to its surface with a
constant rotating annular speed Ω.

The strain-displacement relation in the middle surface of
the rotating annular sector plate can be given by

𝜀0𝑟 = 𝜕𝑢𝜕𝑟
𝜀0𝜃 = 1𝑟 (𝑢 + 𝜕V𝜕𝜃)
𝛾0𝑟𝜃 = 1𝑟 (𝜕𝑢𝜕𝜃 − V) + 𝜕V𝜕𝑟

(1)

where 𝑢 and V are the displacement field components along
the radial direction 𝑟 and the circumferential direction 𝜃
in the middle plane of the rotating annular sector plate,
respectively.

The stresses in the middle surface can be written as

𝜎0𝑟 = 𝐸1 − 𝜇2 (𝜀0𝑟 + 𝜇𝜀0𝜃)
= 𝐸1 − 𝜇2 [𝜕𝑢𝜕𝑟 + 𝜇𝑟 (𝑢 + 𝜕V𝜕𝜃)]

𝜎0𝜃 = 𝐸1 − 𝜇2 (𝜀0𝜃 + 𝜇𝜀0𝑟)
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Figure 1: Schematic diagram of the rotating annular sector plate.

= 𝐸1 − 𝜇2 [1𝑟 (𝑢 + 𝜕V𝜕𝜃) + 𝜇𝜕𝑢𝜕𝑟 ]
𝜏0𝑟𝜃 = 𝐸2 (1 + 𝜇)𝛾0𝑟𝜃 = 𝐸2 (1 + 𝜇) [1𝑟 (𝜕𝑢𝜕𝜃 − V) + 𝜕V𝜕𝑟]

(2)

where 𝐸 is the elastic modulus and 𝜇 denotes Poisson’s ratio.
The strain-displacement relation at a distance 𝑧 from the

middle surface of the rotating annular sector plate can be
given by

𝜀𝑟 = 𝜕𝑢𝜕𝑟 − 𝑧𝜕2𝑤𝜕𝑟2
𝜀𝜃 = 1𝑟 (𝑢 + 𝜕V𝜕𝜃) − 𝑧(1𝑟 𝜕𝑤𝜕𝑟 + 1𝑟2 𝜕

2𝑤𝜕𝜃2 )
𝛾𝑟𝜃 = 1𝑟 (𝜕𝑢𝜕𝜃 − V) + 𝜕V𝜕𝑟 − 2𝑧 (1𝑟 𝜕2𝑤𝜕𝑟𝜕𝜃 − 1𝑟2 𝜕𝑤𝜕𝜃 )

(3)

where𝑤 is transverse displacement of the plate.
The corresponding stresses with the varying temperature𝑇 can be written as

𝜎𝑟 = 𝐸1 − 𝜇2 [(𝜀𝑟 + 𝜇𝜀𝜃) − (1 + 𝜇) 𝛼𝑇]
= 𝜎0𝑟 − 𝑧𝐸1 − 𝜇2 [𝜕2𝑤𝜕𝑟2 + 𝜇(1𝑟 𝜕𝑤𝜕𝑟 + 1𝑟2 𝜕

2𝑤𝜕𝜃2 )]
− 𝐸𝛼𝑇1 − 𝜇

𝜎𝜃 = 𝐸1 − 𝜇2 [(𝜀𝜃 + 𝜇𝜀𝑟) − (1 + 𝜇) 𝛼𝑇]
= 𝜎0𝜃 − 𝑧𝐸1 − 𝜇2 [(1𝑟 𝜕𝑤𝜕𝑟 + 1𝑟2 𝜕

2𝑤𝜕𝜃2 ) + 𝜇𝜕2𝑤𝜕𝑟2 ]
− 𝐸𝛼𝑇1 − 𝜇

𝜏𝑟𝜃 = 𝐸2 (1 + 𝜇)𝛾𝑟𝜃 = 𝜏0𝑟𝜃 − 𝑧𝐸1 + 𝜇 (1𝑟 𝜕2𝑤𝜕𝑟𝜕𝜃 − 1𝑟2 𝜕𝑤𝜕𝜃 )

(4)

where 𝛼 denotes the linear thermal expansion coefficient.

By using (4), the membrane forces {𝑁𝑟,𝑁𝜃, 𝑁𝑟𝜃} are given
by the following.

𝑁𝑟 = ∫ℎ/2
−ℎ/2

𝜎𝑟d𝑧 = ℎ𝜎0𝑟
𝑁𝜃 = ∫ℎ/2

−ℎ/2
𝜎𝜃d𝑧 = ℎ𝜎0𝜃

𝑁𝑟𝜃 = ∫ℎ/2
−ℎ/2

𝜏𝑟𝜃d𝑧 = ℎ𝜏0𝑟𝜃
(5)

The bending and twisting moments per unit length are
given by

𝑀𝑟 = ∫ℎ/2
−ℎ/2

𝜎𝑟𝑧 d𝑧
= −𝐷[𝜕2𝑤𝜕𝑟2 + 𝜇(1𝑟 𝜕𝑤𝜕𝑟 + 1𝑟2 𝜕

2𝑤𝜕𝜃2 )] − 𝐸𝛼1 − 𝜇𝑀𝑇
𝑀𝜃 = ∫ℎ/2

−ℎ/2
𝜎𝜃𝑧 d𝑧

= −𝐷[(1𝑟 𝜕𝑤𝜕𝑟 + 1𝑟2 𝜕
2𝑤𝜕𝜃2 ) + 𝜇𝜕2𝑤𝜕𝑟2 ] − 𝐸𝛼1 − 𝜇𝑀𝑇

𝑀𝑟𝜃 = ∫ℎ/2
−ℎ/2

𝜏𝑟𝜃𝑧 d𝑧 = −𝐷 (1 − 𝜇)(1𝑟 𝜕2𝑤𝜕𝑟𝜕𝜃 − 1𝑟2 𝜕𝑤𝜕𝜃 )

(6)

where 𝐷 = 𝐸ℎ3/12(1 − 𝜇2) is the flexural rigidity and 𝑀𝑇 =∫ℎ/2
−ℎ/2

𝑇𝑧d𝑧 indicates the thermal moment.
The kinetic energy is

𝑇 = 12 ∫𝑏
𝑎

∫𝜙
0

𝜌ℎ(Ω𝜕𝑤𝜕𝜃 + 𝜕𝑤𝜕𝑡 )2 𝑟d𝑟d𝜃 (7)

and the potential energy is

𝑈 = 12 ∫𝑏
𝑎

∫𝜙
0

(𝑀𝑟𝜅𝑟 + 𝑀𝜃𝜅𝜃 + 𝑀𝑟𝜃𝜅𝑟𝜃) 𝑟d𝑟d𝜃 (8)

where 𝜅𝑟 = −𝜕2𝑤/𝜕𝑟2 , 𝜅𝜃 = −(1/𝑟)(𝜕𝑤/𝜕𝑟) − (1/𝑟2)(𝜕2𝑤/𝜕𝜃2), 𝜅𝑟𝜃 = −(2/𝑟)(𝜕2𝑤/𝜕𝑟𝜕𝜃) + (2/𝑟2)(𝜕𝑤/𝜕𝜃).
Considering the symmetry of rotation, the strain pro-

duced by rotation is a function of 𝑟, which is independent of𝜃, so 𝑁𝑟𝜃 = 0. Based on the above analyses, the force balance
condition in the axisymmetric annular sector plate is given by

𝜕𝑁𝑟𝜕𝑟 + 𝑁𝑟 − 𝑁𝜃𝑟 + 𝑞 = 0 (9)

where 𝑞 = 𝜌ℎΩ2𝑟 is the inertial force per unit area in the
middle surface and 𝜌 denotes the density of materials.

The strain energy due to the rotating centrifugal force is
reduced to the following.

𝑉 = 12 ∫𝑏
𝑎

∫𝜙
0

[𝑁𝑟 (𝜕𝑤𝜕𝑟 )2 + 𝑁𝜃 ( 𝜕𝑤𝑟𝜕𝜃)2] 𝑟d𝑟d𝜃 (10)
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The equation of motion of the rotating annular sector
plate can be obtained from the followingHamilton’s principle.

∫𝑡2
𝑡1

(𝛿𝑇 − 𝛿𝑈 − 𝛿𝑉) d𝑡 = 0 (11)

Substituting (7), (8), and (10) into (11) and using (9), the
differential equation of transverse vibration can be obtained.

𝐷(𝜕4𝑤𝜕𝑟4 + 2𝑟 𝜕3𝑤𝜕𝑟3 − 1𝑟2 𝜕
2𝑤𝜕𝑟2 − 2𝑟3 𝜕3𝑤𝜕𝑟𝜕𝜃2 + 1𝑟3 𝜕𝑤𝜕𝑟

+ 2𝑟2 𝜕4𝑤𝜕𝑟2𝜕𝜃2 + 4𝑟4 𝜕
2𝑤𝜕𝜃2 + 1𝑟4 𝜕

4𝑤𝜕𝜃4 ) + 𝐸𝛼1 − 𝜇 ( 𝜕2𝜕𝑟2
+ 1𝑟 𝜕𝜕𝑟 + 1𝑟2 𝜕2𝜕𝜃2)𝑀𝑇 + 𝜌ℎ(𝜕2𝑤𝜕𝑡2 + 2Ω 𝜕2𝑤𝜕𝑡𝜕𝜃
+ Ω2 𝜕2𝑤𝜕𝜃2 ) − 𝑁𝑟 𝜕2𝑤𝜕𝑟2 − 𝑁𝜃 (1𝑟 𝜕𝑤𝜕𝑟 + 1𝑟2 𝜕

2𝑤𝜕𝜃2 )
+ 𝜌ℎΩ2𝑟𝜕𝑤𝜕𝑟 = 0

(12)

Given that the varying temperature 𝑇 along the lateral
direction is considerably larger than that along radial direc-
tion, the thermal conduction equation can be described as
follows

𝜕𝑇𝜕𝑡 − 𝑘𝜌𝐶V

𝜕2𝑇𝜕𝑧2
+ 𝐸𝛼𝑇0(1 − 2𝜇) 𝜌𝐶V

𝜕𝜕𝑡 (−𝑧𝜕2𝑤𝜕𝑟2 − 𝑧1𝑟 𝜕𝑤𝜕𝑟 − 𝑧 1𝑟2 𝜕
2𝑤𝜕𝜃2 )

= 0
(13)

where 𝑇 = 𝑇(𝑧, 𝑡) is the varying temperature, 𝑘 denotes
the thermal conductivity, 𝐶V indicates the specific heat at a
constant volume, and 𝑇0 represents the initial temperature of
the plate.

Equation (12) involves 𝑇(𝑧, 𝑡), and (13) involves 𝑤 =𝑤(𝑟, 𝑡). In this way, the temperature and deflection fields are
coupled together, and the coupling method must be used to
solve both equations.

2.2. Solution of𝑁𝑟 and𝑁𝜃. In order to solve (12) and (13),𝑁𝑟
and 𝑁𝜃 need to be solved firstly. Considering the symmetry
of rotation, the relationship between strain and displacement
in the middle surface is written as follows.

𝜀0𝑟 = 𝜕𝑢𝜕𝑟
𝜀0𝜃 = 𝑢𝑟
𝛾0𝑟𝜃 = 0

(14)

The membrane forces can be written as follows.

𝑁𝑟 = 𝐸ℎ1 − 𝜇2 (𝜕𝑢𝜕𝑟 + 𝜇𝑟 𝑢)
𝑁𝜃 = 𝐸ℎ1 − 𝜇2 (1𝑟𝑢 + 𝜇𝜕𝑢𝜕𝑟 )
𝑁𝑟𝜃 = 0

(15)

Based on (14), the strain compatibility equation is
obtained.

𝜀0𝑟 = 𝜕 (𝑟𝜀0𝜃)𝜕𝑟 (16)

Considering that the varying temperature 𝑇 along the
radial direction 𝑟 is ignored, the following equation is derived
by using (9) and (16).

𝑟2 𝜕2𝑁𝑟𝜕𝑟2 + 3𝑟𝜕𝑁𝑟𝜕𝑟 + (3 + 𝜇) 𝜌ℎΩ2𝑟2 = 0 (17)

From (17), the solution of 𝑁𝑟 can be obtained.

𝑁𝑟 = −(3 + 𝜇) 𝜌ℎΩ2𝑟28 + 𝐴 + 𝐵𝑟2 (18)

Substituting (18) into (9), 𝑁𝜃 can be obtained

𝑁𝜃 = −(1 + 3𝜇) 𝜌ℎΩ2𝑟28 + 𝐴 − 𝐵𝑟2 (19)

where 𝐴 and 𝐵 are integral constants.
Based on (15), (18), and (19), one obtains the following.

𝑢 = 𝑟𝐸ℎ [(−1 + 𝜇2) 𝜌ℎΩ2𝑟2
8 + (1 − 𝜇)𝐴

+ (−1 − 𝜇) 𝐵𝑟2]
(20)

The boundary conditions of clamped or simply supported
edge at the inner radius (𝑟 = 𝑎) and outer radius (𝑟 = 𝑏) are
given by

𝑢|𝑟=𝑎 = 0
𝑢|𝑟=𝑏 = 0 (21)

while the boundary conditions of free edge at the inner
radius (𝑟 = 𝑎) and outer radius (𝑟 = 𝑏) are as follows.

𝜎0𝑟 󵄨󵄨󵄨󵄨󵄨𝑟=𝑎 = 0
𝜎0𝑟 󵄨󵄨󵄨󵄨󵄨𝑟=𝑏 = 0 (22)

Substituting (20) into (21),𝐴 and 𝐵 can be determined by
the above boundary conditions, and then, 𝑁𝑟 and 𝑁𝜃 of the
annular sector plate with the two radial edges having clamped
or simply supported can be obtained.
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𝑁𝑟 = (−(3 + 𝜇) 𝑟28 + (1 + 𝜇) (𝑎2 + 𝑏2)
8

+ (1 − 𝜇) 𝑎2𝑏28𝑟2 )𝜌ℎΩ2

𝑁𝜃 = (−(1 + 3𝜇) 𝑟28 + (1 + 𝜇) (𝑎2 + 𝑏2)
8

− (1 − 𝜇) 𝑎2𝑏28𝑟2 )𝜌ℎΩ2

(23)

Similarly, 𝑁𝑟 and 𝑁𝜃 of the annular sector plate with the
two free radial edges can be obtained by substituting (18) into
(22).

𝑁𝑟 = (−(3 + 𝜇) (𝑟2 − 𝑎2)
8 + (3 + 𝜇) (𝑟2 − 𝑎2) 𝑏2

8𝑟2 )
⋅ 𝜌ℎΩ2

𝑁𝜃 = (−(1 + 3𝜇) 𝑟28 + (3 + 𝜇) (𝑎2 + 𝑏2)
8

+ (3 + 𝜇) 𝑎2𝑏28𝑟2 )𝜌ℎΩ2

(24)

2.3. Dimensionless Differential Equation and Boundary Condi-
tions. The following dimensionless quantities are introduced
as follows.

𝑟 = 𝑟𝑏 ,
𝑤 = 𝑤ℎ ,
𝜃 = 𝜃𝜙 ,
𝑧 = 𝑧ℎ,
𝜏 = 𝑡ℎ𝑏2√ 𝐸12𝜌 (1 − 𝜇2) ,
𝜉 = 𝑎𝑏 ,
𝑐 = 𝑏2Ωℎ √ 𝜌𝐸

(25)

As a result, (12) and (13) take the form of

(𝜕4𝑤𝜕𝑟4 + 2𝑟 𝜕3𝑤𝜕𝑟3 − 1𝑟2 𝜕
2𝑤𝜕𝑟2 − 2𝑟3𝜙2 𝜕3𝑤

𝜕𝑟𝜕𝜃2 +
1𝑟3 𝜕𝑤𝜕𝑟

+ 2𝑟2𝜙2 𝜕4𝑤
𝜕𝑟2𝜕𝜃2 +

4𝑟4𝜙2 𝜕
2𝑤

𝜕𝜃2 + 1𝑟4𝜙4 𝜕
4𝑤

𝜕𝜃4 )
+ 𝐴1 (𝜕2𝑀𝑇𝜕𝑟2 + 1𝑟 𝜕𝑀𝑇𝜕𝑟 + 1𝑟2𝜙2 𝜕

2𝑀𝑇𝜕𝜃2 ) + (𝜕2𝑤𝜕𝜏2
+ 2𝜂1/2𝑐𝜙 𝜕2𝑤𝜕𝜏𝜕𝜃 + 𝜂𝑐2𝜙2 𝜕2𝑤

𝜕𝜃2 ) − 𝜂(𝑁1 𝜕2𝑤𝜕𝑟2
+ 𝑁2 1𝑟 𝜕𝑤𝜕𝑟 + 𝑁2 1𝑟2𝜙2 𝜕

2𝑤
𝜕𝜃2 − 𝑐2𝑟𝜕𝑤𝜕𝑟 ) = 0

(26)

𝜕2𝑇𝜕𝑧2 − 𝐴2 𝜕𝑇𝜕𝜏 + 𝐴3 𝜕𝜕𝜏 (𝜕2𝑤𝜕𝑟2 + 1𝑟 𝜕𝑤𝜕𝑟 + 1𝑟2𝜙2 𝜕
2𝑤

𝜕𝜃2 )𝑧
= 0

(27)

where𝑀𝑇 = ∫1/2
−1/2

𝑇𝑧d𝑧, 𝜂 = 12(1−𝜇2),𝐴1 = 12(1+𝜇)𝑏2𝛼𝑇0/
ℎ2, 𝐴2 = (𝐶Vℎ3/𝑘𝑏2)√𝜌𝐸/12(1 − 𝜇2), and 𝐴3 = (𝐸𝛼ℎ5/(1 −
2𝜇)𝑘𝑏4)√𝐸/12𝜌(1 − 𝜇2).

For simply supported or clamped edge at the inner radius
(𝑟 = 𝜉) and outer radius (𝑟 = 1), 𝑁1 and 𝑁2 are as follows.

𝑁1 = (−(3 + 𝜇) 𝑟28 + 1 + 𝜇8 (1 + 𝜉2) + 1 − 𝜇8 𝜉2𝑟2) 𝑐2

𝑁2 = (−(1 + 3𝜇) 𝑟28 + 1 + 𝜇8 (1 + 𝜉2) − 1 − 𝜇8 𝜉2𝑟2) 𝑐2
(28)

For free edges at the inner radius (𝑟 = 𝜉) and outer radius
(𝑟 = 1), 𝑁1 and 𝑁2 are as follows.

𝑁1 = (−(3 + 𝜇) (𝑟2 − 𝜉2)
8 + (3 + 𝜇) (𝑟2 − 𝜉2)

8𝑟2 )𝑐2

𝑁2 = (−(1 + 3𝜇) 𝑟28 + (3 + 𝜇) (1 + 𝜉2)
8

+ (3 + 𝜇) 𝜉28𝑟2 )𝑐2
(29)

The solution of (26) and (27) is assumed in the following
form

𝑤(𝑟, 𝜃, 𝜏) = 𝑊(𝑟, 𝜃) 𝑒j𝜔𝜏
𝑇 (𝑧, 𝜏) = 𝑇∗ (𝑧) 𝑒j𝜔𝜏 (30)

where j = √−1, 𝜏 is the dimensionless time, and 𝜔 denotes
the dimensionless complex frequency of the rotating annular
sector plate.
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Substituting (30) into (26) and (27), one obtains the
following.

(d4𝑊
d𝑟4 + 2𝑟 d

3𝑊
d𝑟3 − 1𝑟2 d

2𝑊
d𝑟2 + 1𝑟3 d𝑊d𝑟 − 2𝑟3𝜙2 d

3𝑊
d𝑟d𝜃2

+ 2𝑟2𝜙2 d4𝑊
d𝑟2d𝜃2 +

4𝑟4𝜙2 d
2𝑊
d𝜃2 + 1𝑟4𝜙4 d

4𝑊
d𝜃4 )

+ 𝐴1 ( d2

d𝑟2 + 1𝑟 d
d𝑟 + 1𝑟2𝜙2 d

2

d𝜃2)∫1/2
−1/2

𝑇∗𝑧d𝑧
+ (−𝜔2𝑊 + 2j𝜔𝜂1/2𝑐𝜙 d𝑊

d𝜃 + 𝜂𝑐2𝜙2 d
2𝑊
d𝜃2 )

− 𝜂(𝑁1d2𝑊d𝑟2 + 𝑁2 1𝑟 d𝑊d𝑟 + 𝑁2 1𝑟2𝜙2 d
2𝑊
d𝜃2

− 𝑐2𝑟d𝑊
d𝑟 ) = 0

(31)

d2𝑇∗
d𝑧2 − 𝐴2j𝜔𝑇∗ + 𝐴3j𝜔(d2𝑊

d𝑟2 + 1𝑟 d𝑊d𝑟
+ 1𝑟2𝜙2 d

2𝑊
d𝜃2 )𝑧 = 0 (32)

From (32), the solution of 𝑇∗ can be obtained

𝑇∗ = 𝑎1𝑒𝜁𝑧 + 𝑎2𝑒−𝜁𝑧
+ 𝐸𝛼ℎ2(1 − 2𝜇) 𝜌𝐶V𝑏2 (

d2𝑊
d𝑟2 + 1𝑟 d𝑊d𝑟 + 1𝑟2𝜙2 d

2𝑊
d𝜃2 )

⋅ 𝑧
(33)

where 𝑎1 and 𝑎2 are two integral constants and 𝜁 = √𝐴2j𝜔.

Substituting (33) into (31) results in

(1 + 𝜓)(d4𝑊
d𝑟4 + 2𝑟 d

3𝑊
d𝑟3 − 1𝑟2 d

2𝑊
d𝑟2 + 1𝑟3 d𝑊d𝑟

− 2𝑟3𝜙2 d
3𝑊

d𝑟d𝜃2 +
2𝑟2𝜙2 d4𝑊

d𝑟2d𝜃2 +
4𝑟4𝜙2 d
2𝑊
d𝜃2

+ 1𝑟4𝜙4 d
4𝑊
d𝜃4 ) + (−𝜔2𝑊 + 2j𝜔𝜂1/2𝑐𝜙 d𝑊

d𝜃
+ 𝜂𝑐2𝜙2 d

2𝑊
d𝜃2 ) − 𝜂(𝑁1d2𝑊d𝑟2 + 𝑁2 1𝑟 d𝑊d𝑟

+ 𝑁2 1𝑟2𝜙2 d
2𝑊
d𝜃2 − 𝑐2𝑟d𝑊

d𝑟 ) = 0

(34)

where 𝜓 = (1 + 𝜇)𝐸𝛼2𝑇0/(1 − 2𝜇)𝜌𝐶V is the dimensionless
thermoelastic coupling coefficient and indicates
the coupling degree between the temperature and
strain.

Figures 2(a), 2(b), and 2(c) present the definitions of
the boundary conditions. The clamped, simply supported,
and free boundary conditions are abbreviated as letters
C, S, and F, respectively. For example, the symbolism SS-
CC identifies an annular sector plate with the two radial
edges having simply supported boundary conditions and
the two circular edges having clamped boundary conditions,
respectively.

Considering that the edge of plate is held at a con-
stant temperature, the dimensionless boundary condi-
tions of CC-CC, SS-CC, and SS-FF are given as follows,
respectively.

CC-CC:
{{{{{

𝑊|𝑟=𝜉 = 𝑊|𝑟=1 = 𝑊|𝜃=0 = 𝑊|𝜃=1 = 0
d𝑊
d𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝜉 = d𝑊
d𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=1 = d𝑊
d𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃=0 =
d𝑊
d𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃=1 = 0 (35)

SS-CC:

{{{{{{{{{{{{{{{

𝑊|𝑟=𝜉 = 𝑊|𝑟=1 = 𝑊|𝜃=0 = 𝑊|𝜃=1 = 0
d𝑊
d𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝜉 = d𝑊
d𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=1 = 0
(1𝑟 d𝑊d𝑟 + 1𝑟2𝜙2 d

2𝑊
d𝜃2 + 𝜇d2𝑊

d𝑟2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃=0 = (1𝑟 d𝑊d𝑟 + 1𝑟2𝜙2 d
2𝑊
d𝜃2 + 𝜇d2𝑊

d𝑟2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃=1 = 0
(36)

SS-FF:

{{{{{{{{{{{{{{{{{{{{{{{{{

𝑊|𝜃=0 = 𝑊|𝜃=1 = 0
(1𝑟 d𝑊d𝑟 + 1𝑟2𝜙2 d

2𝑊
d𝜃2 + 𝜇d2𝑊

d𝑟2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃=0 = (1𝑟 d𝑊d𝑟 + 1𝑟2𝜙2 d
2𝑊
d𝜃2 + 𝜇d2𝑊

d𝑟2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃=1 = 0
(d2𝑊

d𝑟2 + 𝜇1𝑟 d𝑊d𝑟 + 𝜇 1𝑟2𝜙2 d
2𝑊
d𝜃2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝜉 = (d2𝑊

d𝑟2 + 𝜇1𝑟 d𝑊d𝑟 + 𝜇 1𝑟2𝜙2 d
2𝑊
d𝜃2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=1 = 0

(d3𝑊
d𝑟3 + 1𝑟 d

2𝑊
d𝑟2 − 1𝑟2 d𝑊d𝑟 + 2 − 𝜇𝑟2𝜙2 d3𝑊

d𝑟d𝜃2 −
3 − 𝜇𝑟3𝜙2 d

2𝑊
d𝜃2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝜉 = (d3𝑊

d𝑟3 + 1𝑟 d
2𝑊
d𝑟2 − 1𝑟2 d𝑊d𝑟 + 2 − 𝜇𝑟2𝜙2 d3𝑊

d𝑟d𝜃2 −
3 − 𝜇𝑟3𝜙2 d

2𝑊
d𝜃2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=1 = 0

(37)



Mathematical Problems in Engineering 7

3. Discretization Method of
Vibration Equation

The differential quadrature method (DQM) is used to solve
(34). The DQM [30–32] approximates the derivatives of the
function at the given nodes by weighted sums of the function
at the total nodes. According to DQM, the annular sector
plate adopts the 𝛿 method to treat the boundary conditions.
The nodes of the plate are calculated by the following formula

𝑟1 = 0,𝑟2 = 𝛿,𝑟𝑁−1 = 1 − 𝛿,𝑟𝑁 = 1,
𝑟𝑖 = 1 − 𝜉2 (1 + 𝜉1 − 𝜉 + 𝑥𝑖) (𝑖 = 3, . . . , 𝑁 − 2)
𝜃1 = 0,
𝜃2 = 𝛿,

𝜃𝑀−1 = 1 − 𝛿,
𝜃𝑀 = 1,
𝜃𝑖 = 12 (1 − cos

(𝑗 − 2) 𝜋𝑀 − 3 ) (𝑗 = 3, . . . ,𝑀 − 2)

(38)

where 𝑥𝑖 = 𝑆𝑖 ∈ (−1, 1) (𝑖 = 3, ⋅ ⋅ ⋅ ,𝑁 − 2) is Gauss-Legendre
integral point.

Based on the Lagrange interpolation polynomial, the
weight coefficients of the first derivative 𝐴(1)𝑖𝑗 and 𝐵(1)𝑘𝑚 are
obtained, respectively.

𝐴(1)𝑖𝑘 =
{{{{{{{{{{{{{{{{{

∏𝑁]=1
] ̸=𝑖,𝑘

(𝑟𝑖 − 𝑟])
∏𝑁]=1

] ̸=𝑘
(𝑟𝑘 − 𝑟]) (𝑖, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁; 𝑘 ̸= 𝑖)

𝑁∑
]=1
] ̸=𝑖

1𝑟𝑖 − 𝑟] (𝑖, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁; 𝑘 = 𝑖)
(39)

𝐵(1)𝑗𝑚

=
{{{{{{{{{{{{{{{{{

∏𝑀]=1
] ̸=𝑗,𝑚

(𝜃𝑗 − 𝜃])
∏𝑀]=1

] ̸=𝑚
(𝜃𝑚 − 𝜃]) (𝑗, 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀; 𝑚 ̸= 𝑗)

𝑀∑
]=1
] ̸=𝑗

1𝜃𝑗 − 𝜃] (𝑗, 𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀; 𝑚 = 𝑗)
(40)

In the case of 𝑥 = 2, 3, ...,𝑁−1 and 𝑦 = 2, 3, ...,𝑀−1, the
weight coefficients of the higher derivatives are as follows.

𝐴(𝑥)𝑖𝑘 =
{{{{{{{{{{{{{

𝑥(𝐴(𝑥−1)𝑖𝑖 𝐴(1)𝑖𝑘 − 𝐴(𝑥−1)𝑖𝑘𝑥𝑖 − 𝑥𝑘) (𝑖, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁; 𝑘 ̸= 𝑖)
− 𝑁∑

]=1
] ̸=𝑖

𝐴(𝑥)𝑖] (𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑁; 1 ≤ 𝑥 ≤ (𝑁 − 1)) (41)

𝐵(𝑦)𝑗𝑚 =
{{{{{{{{{{{{{{{

𝑦(𝐵(𝑦−1)𝑗𝑗 𝐵(1)𝑗𝑚 − 𝐵(𝑦−1)𝑗𝑚𝑦𝑗 − 𝑦𝑚) (𝑗,𝑚 = 1, 2, ⋅ ⋅ ⋅ ,𝑀; 𝑚 ̸= 𝑗)
− 𝑀∑

]=1
] ̸=𝑗

𝐵(𝑦)𝑗] (𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀; 1 ≤ 𝑦 ≤ (𝑀 − 1)) (42)

In this paper, 𝑁 = 𝑀 is chosen, and (34) can be
discretized into the following form by DQM.

(1 + 𝜓)( 𝑁∑
𝑘=1

𝐴(4)𝑖𝑘𝑊𝑘𝑗 + 2𝑟𝑖
𝑁∑
𝑘=1

𝐴(3)𝑖𝑘𝑊𝑘𝑗 − 1𝑟2𝑖
𝑁∑
𝑘=1

𝐴(2)𝑖𝑘𝑊𝑘𝑗
+ 1𝑟3𝑖
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘𝑊𝑘𝑗 − 2𝑟3𝑖 𝜙2
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘 𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑘𝑚
+ 2𝑟2𝑖 𝜙2

𝑁∑
𝑘=1

𝐴(2)𝑖𝑘 𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑘𝑚 + 4𝑟4𝑖 𝜙2
𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑘𝑚

+ 1𝑟4𝑖 𝜙4
𝑁∑
𝑚=1

𝐵(4)𝑗𝑚𝑊𝑘𝑚) + (−𝜔2𝑊𝑖𝑗
+ 2j𝜔𝜂1/2𝑐𝜙

𝑁∑
𝑚=1

𝐵(1)𝑗𝑚𝑊𝑘𝑚 + 𝜂𝑐2𝜙2
𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑘𝑚)
− 𝜂(𝑁1𝑖 𝑁∑

𝑘=1

𝐴(2)𝑖𝑘𝑊𝑘𝑗 + 𝑁2𝑖 1𝑟𝑖
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘𝑊𝑘𝑗
+ 𝑁2𝑖 1𝑟2𝜙2

𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑘𝑚 − 𝑐2𝑟𝑖 𝑁∑
𝑘=1

𝐴(1)𝑖𝑘𝑊𝑘) = 0
(43)
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The discretization of (35)-(37) can be expressed as
follows.

CC-CC:

{{{{{{{{{{{{{{{{{

𝑊1𝑗 = 𝑊𝑁𝑗 = 𝑊𝑖1 = 𝑊𝑖𝑁 = 0, (𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅, 𝑁)
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘𝑊𝑘𝑗 = 0, (𝑖 = 2,𝑁 − 1; 𝑗 = 2, 3, ⋅ ⋅ ⋅, 𝑁 − 2)
𝑁∑
𝑚=1

𝐵(1)𝑗𝑚𝑊𝑖𝑚 = 0, (𝑗 = 2,𝑁 − 1; 𝑖 = 2, 3, ⋅ ⋅ ⋅, 𝑁 − 2)
(44)

SS-CC:

{{{{{{{{{{{{{{{{{

𝑊1𝑗 = 𝑊𝑁𝑗 = 𝑊𝑖1 = 𝑊𝑖𝑁 = 0, (𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅, 𝑁)
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘𝑊𝑘𝑗 = 0, (𝑖 = 2,𝑁 − 1; 𝑗 = 2, 3, ⋅ ⋅ ⋅,𝑁 − 2)
1𝑟𝑖
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘𝑊𝑘𝑗 + 1𝑟2𝑖 𝜙2
𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑖𝑚 + 𝜇 𝑁∑
𝑘=1

𝐴(2)𝑖𝑘𝑊𝑘𝑗 = 0, (𝑗 = 1,𝑁; 𝑖 = 1, 2, ⋅ ⋅ ⋅, 𝑁)
(45)

SS-FF:

{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑊𝑖1 = 𝑊𝑖𝑁 = 0, (𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅, 𝑁)
1𝑟𝑖
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘𝑊𝑘𝑗 + 1𝑟2𝑖 𝜙2
𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑖𝑚 + 𝜇 𝑁∑
𝑘=1

𝐴(2)𝑖𝑘𝑊𝑘𝑗 = 0, (𝑗 = 1,𝑁; 𝑖 = 1, 2, ⋅ ⋅ ⋅, 𝑁)
𝑁∑
𝑘=1

𝐴(2)𝑖𝑘𝑊𝑘𝑗 + 𝜇 1𝑟𝑖
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘𝑊𝑘𝑗 + 𝜇 1𝑟2𝑖 𝜙2
𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑖𝑚 = 0, (𝑖 = 1,𝑁; 𝑗 = 1, 2, ⋅ ⋅ ⋅, 𝑁)
𝑁∑
𝑘=1

𝐴(3)𝑖𝑘𝑊𝑘𝑗 + 1𝑟𝑖
𝑁∑
𝑘=1

𝐴(2)𝑖𝑘𝑊𝑘𝑗 − 1𝑟2𝑖
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘𝑊𝑘𝑗 + 2 − 𝜇𝑟2𝑖 𝜙2
𝑁∑
𝑘=1

𝐴(1)𝑖𝑘 𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑖𝑚 − 3 − 𝜇𝑟3𝑖 𝜙2
𝑁∑
𝑚=1

𝐵(2)𝑗𝑚𝑊𝑖𝑚 = 0, (𝑖 = 2,𝑁 − 1; 𝑗 = 1, 2, ⋅ ⋅ ⋅,𝑁)
(46)

Equation (43) and one of the boundary conditions (44)-
(46) can be expressed in the matrix form as

(𝜔2 [𝑅] + 𝜔 [𝐺] + [𝐾]) {𝑊𝑘𝑗} = 0 (47)

where the matrices [𝑅], [𝐺], and [𝐾] involve the dimension-
less angular speed, the ratio of inner to outer radius, the
sector angle, and the dimensionless thermoelastic coupling
coefficient. The necessary and sufficient condition when 𝑊𝑘𝑗
has nonzero solution is that coefficient determinant is equal
to zero. Then, the eigenvalue equation of the thermoelastic
coupling vibration of rotating annular sector plate is as
follows. 󵄨󵄨󵄨󵄨󵄨𝜔2 [𝑅] + 𝜔 [𝐺] + [𝐾]󵄨󵄨󵄨󵄨󵄨 = 0 (48)

In (48), 𝜔 is a complex eigenvalue. Therefore, one can
obtain the complex frequency of the annular sector plate with
various parameter values by solving the eigenvalue equation.

4. Numerical Results and Discussion

When𝜓 = 0 and 𝑐 = 0, (34) can be reduced to the differential
equation of transverse vibration of the nonrotating annular
sector plate. The first five order natural frequencies of the
nonrotating annular sector plate with three different bound-
ary conditions are calculated in the case of 𝜉 = 0.5 and 𝜇 =0.3. The frequency parameter in this study is defined by 𝜔𝐷 =
(𝑏2𝜔/ℎ)√12𝜌(1 − 𝜇2)/𝐸, while the frequency parameter in

[14, 33, 34] is defined by 𝜔𝑅 = ((𝑏 − 𝑎)2𝜔/ℎ)√12𝜌(1 − 𝜇2)/𝐸.
When 𝜉 = 𝑎/𝑏 = 0.5, 𝜔𝐷 = 4𝜔𝑅. The calculation results
by conversing 𝜔𝐷 to 𝜔𝑅 are in good agreement with those
exhibited in [14, 33, 34], which can be seen in Table 1, where
the node number is 𝑁 = 11.
4.1. Rotating Annular Sector Plate with CC-CC. Figure 3
shows the variation of the first three order dimensionless
complex frequencies of the rotating annular sector plate (𝜙 =𝜋/3, 𝜉 = 0.5) with the dimensionless angular speed for
the dimensionless thermoelastic coupling coefficient 𝜓 = 0.
When the dimensionless angular speed 𝑐 = 0, the first three
order dimensionless complex frequencies𝜔 are real numbers.
With the increase of the dimensionless angular speed, the real
parts Re(𝜔) of the first three order dimensionless complex
frequencies decrease, while their imaginary parts Im(𝜔)
remain zero. When the dimensionless angular speed reaches
a certain critical speed 𝑐 = 7.34, the real part of the first
order dimensionless complex frequency becomes zero, while
its imaginary part has two branches. The critical speed 𝑐𝑑 =7.34 is called the first order critical divergence speed. The
divergence instability appears in the first order mode of the
rotating annular sector plate in the region of 7.34 ≤ 𝑐 ≤ 7.55.
When 7.55 < 𝑐 ≤ 8.11, the rotating annular sector plate
regains stability, and subsequently in the case of 8.11 < 𝑐 ≤8.61, the real parts of the first and second order complex
frequencies merge with each other and keep positive, while
their imaginary parts become two branches with positive and
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Table 1: First five order dimensionless natural frequencies of the non-rotating annular sector plate (𝜉 = 0.5, 𝜇 = 0.3).
Sector angle Boundary condition Methods 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5

𝜋/6
SS-CC Reference[14] (𝜔𝑅) 33.90 75.11 76.46 121.8 135.3

Present (𝜔 = 𝜔𝐷/4) 33.9230 75.1841 76.4747 121.9212 135.2661

CC-CC Reference[14] (𝜔𝑅) 48.04 85.52 104.4 142.8 151.3
Present (𝜔 = 𝜔𝐷/4) 48.1164 85.6430 104.5898 142.7932 151.5388

SS-FF Reference[14] (𝜔𝑅) 11.70 28.87 44.03 50.51 82.13
Present (𝜔 = 𝜔𝐷/4) 11.7792 28.8884 44.0803 50.5733 82.1813

𝜋/4
SS-CC

Reference[14] (𝜔𝑅) 26.89 44.70 67.37 76.45 86.60
Reference[33] (𝜔𝑅) 26.91 44.69 74.03 77.34 88.32
Present (𝜔 = 𝜔𝐷/4) 26.9225 44.7239 67.4507 76.4300 86.6895

CC-CC Reference[14] (𝜔𝑅) 31.39 56.85 70.22 94.54 96.73
Present (𝜔 = 𝜔𝐷/4) 31.4375 56.9450 70.3175 94.3425 96.8775

SS-FF Reference[14] (𝜔𝑅) 5.267 16.68 20.40 36.60 44.03
Present (𝜔 = 𝜔𝐷/4) 5.2730 16.6916 20.4240 36.6488 44.0779

𝜋/3
SS-CC Reference[14] (𝜔𝑅) 24.74 33.89 51.44 64.79 75.08

Present (𝜔 = 𝜔𝐷/4) 24.7623 33.9237 51.4538 64.8695 75.1838

CC-CC Reference[14] (𝜔𝑅) 26.53 39.85 61.49 65.96 79.38
Present (𝜔 = 𝜔𝐷/4) 26.5729 39.9165 61.4045 66.0465 79.5028

SS-FF Reference[14] (𝜔𝑅) 2.856 11.77 11.87 25.51 28.87
Present (𝜔 = 𝜔𝐷/4) 2.8601 11.7788 11.8736 25.5408 28.8883

𝜋/2
SS-CC Reference[14] (𝜔𝑅) 23.33 26.88 33.87 44.65 58.96

Present (𝜔 = 𝜔𝐷/4) 23.3613 26.9207 33.9137 45.3747 56.4011

CC-CC
Reference[14] (𝜔𝑅) 23.80 28.73 37.63 50.33 63.30
Reference[34] (𝜔𝑅) 23.83 28.77 37.69 50.42 63.30
Present (𝜔 = 𝜔𝐷/4) 23.8389 28.7775 37.6349 50.4611 63.2698

SS-FF Reference[14] (𝜔𝑅) 1.068 5.267 7.779 11.77 16.68
Present (𝜔 = 𝜔𝐷/4) 1.0697 5.2728 7.7841 11.7778 16.6914

C

C

C

C

(a) CC-CC

S

C

S

C

(b) SS-CC

S

F

S

F

(c) SS-FF

Figure 2: Definitions of the boundary conditions.
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Figure 3: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.5, 𝜓 = 0).
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Figure 4: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.5, 𝜓 = 0.3).
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Figure 5: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.8, 𝜓 = 0).
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Figure 6: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.8, 𝜓 = 0.3).

negative values.The result shows that the annular sector plate
undergoes a coupled-mode flutter instability of the first and
second ordermodes. 𝑐𝑓 = 8.11 is called the first-second order
critical flutter speed.

Figure 4 shows the variation of the first three order
dimensionless complex frequencies of the rotating annular
sector plate (𝜙 = 𝜋/3, 𝜉 = 0.5) with the dimensionless
angular speed 𝑐 for the dimensionless thermoelastic coupling
coefficient 𝜓 = 0.3. In the case of thermoelastic coupling
(𝜓 = 0.3), the real parts of the first three order dimensionless
complex frequencies at 𝑐 = 0 are greater than those in
the case of uncoupling (𝜓 = 0), and the annular sector
plate undergoes the divergence instability in the first order
mode and the coupled-mode flutter instability of the first
and second order modes. The first order critical divergence
speed and the first-second order critical flutter speed in the
case of thermoelastic coupling are 𝑐𝑑 = 8.45 and 𝑐𝑓 =9.23, respectively, which are greater than those in the case of
uncoupling.

Figures 5 and 6 show the variation of the first three order
dimensionless complex frequencies 𝜔 of the rotating annular
sector plate (𝜙 = 𝜋/3, 𝜉 = 0.8) with the dimensionless
angular speed for 𝜓 = 0 and 𝜓 = 0.3. In comparison with
Figures 3 and 4, we can see that when the ratio of inner to
outer radius increases from 0.5 to 0.8, the real parts of the
first three order dimensionless complex frequencies increase
at the dimensionless angular speed 𝑐 = 0. With the increase
of 𝑐, the real parts of 𝜔 in the first and second modes become
zero successively, and then the imaginary parts of 𝜔 have two
branches with positive and negative values. This shows that
the annular sector plate undergoes the divergence instability
of the first and second modes, and the corresponding first
order critical divergence speed increases with the increase of
the ratio of inner to outer radius. When the dimensionless
angular speed further increases, the annular sector plate
undergoes the coupled-mode flutter instability of the second
and third order modes. By comparing Figure 5 with Figure 6,
it is found that the corresponding critical speed in the
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Figure 7: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.5, 𝜓 = 0).
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Figure 8: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.5, 𝜓 = 0.3).
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Figure 9: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.8, 𝜓 = 0).

thermoelastic coupling case is greater than that in the case
of uncoupling.

Figures 7 and 8 show the variation of the first three order
dimensionless complex frequencies of the rotating annular
sector plate (𝜙 = 𝜋/2, 𝜉 = 0.5) with the dimensionless
angular speed for 𝜓 = 0 and 𝜓 = 0.3. The annular sector
plate undergoes the divergence instability in the first order
mode and the coupled-mode flutter instability of the first and
second order modes, and the first order critical divergence
speed and the first-second order critical flutter speed increase
when the dimensionless thermoelastic coupling coefficient
increases from 0 to 0.3. From Figures 3, 4, 7, and 8, it
is obtained that when other parameters are invariable, the
real parts of the first three order dimensionless complex
frequencies at 𝑐 = 0, the first order critical divergence speed,
and the first-second order critical flutter speed decrease with
the increase of the sector angle 𝜙.

Figures 9 and 10 show the variation of the first three order
dimensionless complex frequencies of the rotating annular
sector plate (𝜙 = 𝜋/2, 𝜉 = 0.8) with the dimensionless angular

speed for 𝜓 = 0 and 𝜓 = 0.3. In comparison with Figures
7 and 8, it is observed that when the ratio of inner to outer
radius increases from 0.5 to 0.8, the divergence instability
of the first order mode does not occur, while the coupled-
mode flutter instability of the first and second order modes
appears, and the corresponding first-second order critical
flutter speed increaseswith the increase of the ratio of inner to
outer radius. By comparing Figure 9 with Figure 10, it can be
seen that the first-second order critical flutter speed increases
with the increase of the dimensionless thermoelastic coupling
coefficient when other parameters are invariable.

From Figures 3–10, one can see that when the sector angle
increases from 𝜋/3 to 𝜋/2, the type of instability does not
change in the case of the ratio of inner to outer radius 𝜉 = 0.5,
while it changes in the case of 𝜉 = 0.8.
4.2. Rotating Annular Sector Plate with SS-CC. Figures 11 and
12 show the variation of the first three order dimensionless
complex frequencies of the rotating annular sector plate (𝜙 =𝜋/3, 𝜉 = 0.5) with the dimensionless angular speed for the
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Figure 10: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.8, 𝜓 = 0.3).
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Figure 11: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.5, 𝜓 = 0).
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Figure 12: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.5, 𝜓 = 0.3).

dimensionless thermoelastic coupling coefficient 𝜓 = 0 and𝜓 = 0.3. As can be seen from Figure 11, the plate undergoes
the divergence instability of the first order mode and the
coupled-mode flutter instability of the first and second order
modes in the case of thermoelastic uncoupling. However, for𝜓 = 0.3, with the increase of 𝑐, the real part of the first
order dimensionless complex frequency remains a positive
value, which decreases firstly and then increases.The annular
sector plate does not undergo the divergence instability of the
first order mode while it only undergoes the coupled-mode
flutter instability of the first and second ordermodes. It shows
that the dimensionless thermoelastic coupling coefficient can
change the type of instability of the annular sector plate. By
comparing Figure 11 with Figure 12, it is found that when𝑐 = 0, the real parts of the first three order dimensionless
complex frequencies in the thermoelastic coupling case are
greater than that in the case of uncoupling.

Figures 13 and 14 show the variation of the first three order
dimensionless complex frequencies of the rotating annular
sector plate (𝜙 = 𝜋/3, 𝜉 = 0.8) with the dimensionless angular
speed for𝜓 = 0 and𝜓 = 0.3.The values of the real parts of the
second and third order dimensionless complex frequencies
of the annular sector plate present declining, rising, and
declining tendency. The annular sector plate undergoes the
divergence instability of the first ordermode and the coupled-
mode flutter instability of the first and second order modes,
and the corresponding critical speed in the thermoelastic
coupling case is greater than that in the case of uncoupling.

Figures 15 and 16 show the variation of the first three
order dimensionless complex frequencies of the rotating
annular sector plate (𝜙 = 𝜋/2, 𝜉 = 0.5) with the
dimensionless angular speed for 𝜓 = 0 and 𝜓 = 0.3. we can
see that the annular sector plate undergoes the divergence
instability of the first order mode firstly, then it undergoes
the coupled-mode flutter instability of the first and second
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Figure 13: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.8, 𝜓 = 0).
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Figure 14: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.8, 𝜓 = 0.3).
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Figure 15: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.5, 𝜓 = 0).
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Figure 16: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.5, 𝜓 = 0.3).

order modes in the thermoelastic uncoupling case. However,
it undergoes the divergence instability of the first and second
order mode and the coupled-mode flutter instability of the
first and third order modes in the thermoelastic coupling
case.

Figures 17 and 18 show the variation of the first three order
dimensionless complex frequencies of the rotating annular
sector plate (𝜙 = 𝜋/2, 𝜉 = 0.8) with the dimensionless angular
speed for 𝜓 = 0 and 𝜓 = 0.3. In the case of 𝜉 = 0.8,
the annular sector plate only undergoes the coupled-mode
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Figure 17: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.8, 𝜓 = 0).
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Figure 18: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.8, 𝜓 = 0.3).

flutter instability in the first and second order modes. The
corresponding first-second order critical flutter speed in the
thermoelastic coupling case is greater than that in the case of
uncoupling.

4.3. Rotating Annular Sector Plate with SS-FF. Figures 19–22
show the variation of the first three order dimensionless
complex frequencies of the rotating annular sector plate
(𝜙 = 𝜋/3, 𝜙 = 𝜋/2, 𝜉 = 0.5) with the dimensionless
angular speed for the dimensionless thermoelastic coupling
coefficient 𝜓 = 0 and 𝜓 = 0.3. We can see that rotating
annular sector plate with SS-FF undergoes the divergence
instability in the first order mode and the coupled-mode
flutter instability of the first and second order modes. The
corresponding critical speed in the thermoelastic coupling
case is greater than that in the case of uncoupling. When
the ratio of inner to outer radius 𝜉 = 0.5, the correspond-
ing critical speed deceases with the increase of the sector
angle.

Figures 23–26 show the variation of the first three
order dimensionless complex frequencies of the rotating
annular sector plate (𝜙 = 𝜋/3, 𝜙 = 𝜋/2, 𝜉 = 0.8)
with the dimensionless angular speed for the dimensionless
thermoelastic coupling coefficient 𝜓 = 0 and 𝜓 = 0.3.
Compared with the case of 𝜉 = 0.5, besides the divergence
instability in the first order mode and the coupled-mode
flutter instability of the first and second order modes, the
rotating annular sector plate with SS-FF also undergoes the
divergence instability in the second order mode.When other
parameters are invariable, the corresponding critical speed

deceases with the increase of the sector angle, but increases
with the increase of the dimensionless thermoelastic coupling
coefficient.

From Figures 19–26, we can see that if the sector angle
and dimensionless thermoelastic coupling coefficient are
constant, when the ratio of inner to outer radius increases
from 𝜉 = 0.5 to 𝜉 = 0.8, the first order critical divergence
speed decreases, while the first-second order critical flutter
speed increases.

5. Conclusions

The thermoelastic coupling transverse vibration and stability
of the rotating annular sector plate with three boundaries
are investigated by DQM. The effects of the dimensionless
angular speed, the ratio of inner to outer radius, the sec-
tor angle, the dimensionless thermoelastic coupling coef-
ficient, and the boundary condition on transverse vibra-
tion and stability are discussed. The results are listed as
follows.

(1) When other parameters are invariable, the real parts
of the first three order dimensionless complex frequencies of
the nonrotating annular sector plate (𝑐 = 0) decrease with
the increase of the sector angle. And their values in the case
of thermoelastic coupling are greater than that in the case of
uncoupling.

(2) The increase of the dimensionless thermoelastic cou-
pling coefficient can change the type of instability of the
annular sector plate under CC-CC and SS-CC boundary
conditions, but it does not change under SS-FF boundary
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Figure 19: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.5, 𝜓 = 0).
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Figure 20: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.5, 𝜓 = 0.3).
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Figure 21: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.5, 𝜓 = 0).

0 0.5 1 1.5 2 2.5 3
c

0
5

10
15
20
25
30
35
40
45
50

1st

2nd

3rd

1st,2nd
couple

0 0.5 1 1.5 2 2.5 3
c

0

10

20

1st,2nd

3rd

1st

1st

1st,2nd
couple

1st,2nd
couple

3rd

−10

−20

Re
 (

)

Im
 (

)

Figure 22: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.5, 𝜓 = 0.3).
condition. The corresponding critical speed in the case of
thermoelastic coupling is greater than that in the case of
uncoupling when other parameters and the type of instability
are invariable.

(3) The annular sector plate undergoes the divergence
instability and the coupled-mode flutter instability under the
three boundary conditions; however, the modes undergoing
these two kinds of instability are different, which depend

on the ratio of inner to outer radius, the sector angle, the
dimensionless thermoelastic coupling coefficient, and the
boundary condition.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 23: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.8, 𝜓 = 0).
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Figure 24: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/3, 𝜉 = 0.8, 𝜓 = 0.3).
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Figure 25: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.8, 𝜓 = 0).
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Figure 26: First three order dimensionless complex frequencies versus dimensionless angular speed (𝜙 = 𝜋/2, 𝜉 = 0.8, 𝜓 = 0.3).
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