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Abstract
CaMn7O12 precursor sol was prepared by using Ca(NO3)2·4H2O and Mn(CH3COO)4·4H2O as the raw materials,
acetylacetone (AcAcH) as the chelating agent, and methyl alcohol (MeOH) as the solvent. The CaMn7O12 crystalline film
was obtained via dip-coating and annealing treatment on the LaAlO3 (001) single-crystal substrate. XRD θ-2θ scan indicated
that the as-prepared CaMn7O12 film had strong preferred orientation along the c-axis. In addition, the results of the ω and ϕ
scans demonstrated that the film exhibited outstanding out-of-plane and in-plane texture characteristics. The SEM
characterization showed that the CaMn7O12 film was dense and free of cracks. The grain size was uniform with an average
size of ~180 nm. Vibrating sample magnetometer (VSM) test results indicated the CaMn7O12 film was antiferromagnetic and
had a saturation magnetization of 114.2 emu/cm3 at 50 K.
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Highlights
● A CaMn7O12 film was deposited on (001) LaAlO3 substrate by sol-gel method.
● The as-prepared film exhibited good out-of-plane and in-plane texture characteristics.
● The film was antiferromagnetic and had a saturation magnetization of 114.2 emu/cm3 at 50 K.
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● Thin film ● Epitaxy ● Sol-gel method ● Magnetic properties ● Multiferroic materials

1 Introduction

Single-phase multiferroic materials possess both ferro-
electric and ferromagnetic orders, resulting in the magne-
toelectric effect. These materials have been successfully
employed in the fields of spintronics, multi-state storage
devices, and micro electro mechanical system [1–3].
According to the microscopic origin of ferroelectricity,
Khomskii et al. classified single-phase multiferroics into
two types [4, 5]. In the Type I multiferroics, such as
BiFeO3, ferroelectricity and magnetism have different ori-
gins. This type of materials often presents high critical
temperature and polarizations; however, the coupling
between ferroelectricity and magnetism is relatively weak,
which is a disadvantage to the practical application [6, 7]. In
the Type II multiferroics, such as CaMn7O12, the ferroe-
lectricity is induced by a particular magnetic order. Because
of the magnetically induced ferroelectric mechanism, the
intrinsic magnetoelectric effect is strong; therefore, a series
of new functions can be developed through the synergistic
effect of ferroelectricity. Owing to their outstanding prop-
erties, Type II multiferroic materials have attracted con-
siderable attention [8].

Dong et al. experimentally assessed the magnetically
induced multiferroic properties of CaMn7O12, and measured
its magnetic phase transition (~90 K) [9]. Then, the ferro-
electric polarization of the single crystalline CaMn7O12 was
measured by Johnson et al. to be 2870 μC/m2 [10], which
was the highest magnetic multiferroic polarization observed
in the bulk material system at that time. The ferroelectricity
of CaMn7O12 is caused by the propeller-like magnetic order
structure, i.e., the spontaneous polarization is caused by the
magnetic structure [11]. Because of the presence of a weak
Jahn–Teller distortion, strong Dzyaloshinskii–Moria inter-
action (which control the direction of the polarization), and
the simultaneous exchange striction (which increases the
polarization) in CaMn7O12, its intrinsic magnetoelectric
coupling is strong [9]. These works on CaMn7O12 not only
provide additional insights into the design of next-
generation multi-functional electronic devices but also sig-
nificantly expand the research scope of multiferroic mate-
rials. It will provide a huge driving force for the
development of new information storage-processing mag-
netoelectric devices based on magnetic-ferroelectric cou-
pling effect [12–14].

Previous studies focused on the properties of bulk
CaMn7O12, by taking advantage of first-principle calcula-
tions and density functional theory; nevertheless, little
research on CaMn7O12 films has been reported. However,
the thin film is an essential form for magnetoelectric devices
fabrication. Until 2015, Huon et al. deposited CaMn7O12

films with c-axis orientation on SrLaAlO4 and La0.3S-
r0.7Al0.65Ta0.35O3 substrates via the oxide molecular beam
epitaxy method. They studied the changes of the film
resistivity along with the temperature and determined the
phase transition temperature. Nonetheless, the correspond-
ing ferromagnetic properties are still lacking [15]. The high-
vacuum condition is required for physical methods, such as
the molecular beam epitaxy method, whereas the equipment
is expensive, thus not suitable for mass production. The cost
of the sol-gel method is low, and its composition is easy to
controls; therefore, this method can be applied to large-scale
industry. In this work, we prepared a CaMn7O12 film on
LaAlO3 (001) single-crystal substrate via the sol-gel method
and investigated its biaxial texture characteristics and
magnetic properties.

2 Experimental detail

2.1 Materials

All reagents of metallic salts and organic solvent were of
analytic grade, and were purchased from Aladdin. They
were used directly without further purification. A LaAlO3

(001) substrate was purchased from Hefei crystal material
Technology Co Ltd. It was cut into chips with the dimen-
sions of 1 cm × 2 cm and then used as substrates to deposit
CaMn7O12 films.

2.2 Preparation of CaMn7O12 films

Ca(NO3)2·4H2O and Mn(CH3COO)4·4H2O were chosen as
the precursors. Anhydrous MeOH was the solvent, whereas
acetylacetone (AcAcH) was the chelating agent. The
CaMn7O12 sol was prepared with the metal ion proportion
of Ca:Mn= 1:7. The preparation process is illustrated in
Fig. 1. First, the solution A was obtained by dissolving
0.1771 g of Ca(NO3)2·4H2O into 5 ml of MeOH. Afterward,
1.2867 g of Mn(CH3COO)4·4H2O was dissolved into 5 ml
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of MeOH; thus, 0.53 g of AcAcH was added. After stirring
and clarifying, the solution B was obtained. The CaMn7O12

sol was obtained by mixing the solutions A and B. By
supplementing proper amount of MeOH, the concentration
of total metal ions was adjusted to 0.4 mol·L−1. Finally, a
stable and uniform CaMn7O12 sol was obtained after stirring
for 24 h. The CaMn7O12 gel films were deposited on the
LaAlO3 (001) substrate via the dip-coating technique with a
drawing rate of 1.0 mm/s. Subsequently, the coated
CaMn7O12 gel films were annealed in air at 350 °C to
eliminate any organic components. A proper thickness of
the film was achieved by repeating the process of dip-
coating and annealing for six times. Finally, the crystalline
CaMn7O12 films were obtained after a re-annealing treat-
ment at 730 °C for 90 min.

2.3 Characterization

A SmartLab X-ray diffractometer in θ-2θ, ω, and ϕ scan
modes was used to determine the film phase, the out-of-plane
texture, and the in-plane texture, respectively. Scanning
electron microscopy (SEM) experiments were performed on a
JEM-6700F after depositing conductive Pt onto the surface of
the films. The chemical composition of the film was deter-
mined by energy dispersive X-ray spectrometry (EDS), and
chemical state of ions was characterized via X-ray photo-
electron spectroscopy (XPS) with Al Kα (1486.71 eV) line at
a power of 150W (10mA, 15 kV). All the binding energies
obtained in the XPS analysis were referenced to the C1s peak
at 284.80 eV of the surface adventitious carbon. Magnetic
measurements were performed with a vibrating sample
magnetometer (VSM) in a physical property measurement
system (Versalab, Quan-tum Design).

3 Results and discussion

3.1 Phase and orientation of the CaMn7O12 film

The CaMn7O12 film was prepared on LaAlO3 (001) sub-
strate. The XRD results are shown in Fig. 2. CaMn7O12 has

a pseudo-cubic structure with a lattice parameter of 3.682 Å.
The crystal-lattice mismatch with LaAlO3 (3.789 Å) sub-
strate is only 2.9% [15, 16]. Therefore, it is possible to make
the CaMn7O12 film growing epitaxially on the LaAlO3

substrate. Figure 2(a) presents the XRD θ-2θ scanning
results. It can be seen that, except the diffraction peaks of
(001) and (002) from LaAlO3, the peaks at 2θ= 24.09° and
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Fig. 2 XRD patterns of the CaMn7O12 film deposited on the LaAlO3

substrate: a θ-2θ scan, b (002) ω-scan, and c (011) ϕ-scan

Ca(NO3)2·4H2O+MeOH Mn(Ac)4·4H2O+MeOH+AcAcH

Solution A Solution B
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CaMn7O12 sol

Stirring Stirring

Fig. 1 Scheme of the preparation of the CaMn7O12 film
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49.38° correspond to the CaMn7O12 crystal planes of (001)
and (002). This indicates that the as-prepared CaMn7O12

film has strong preferred orientation along the c-axis, which
is in agreement with the results obtained by A. Huon et al.
via the molecular beam epitaxy method [15].

To further characterize the in-plane and out-of-plane
textures of the CaMn7O12 film, ω and ϕ scanning tests were
conducted on the (002) and (011) planes, as shown in Fig. 2
(b), (c), respectively. In the ω scan, the full-width at half-
maximum (FWHM) of the CaMn7O12 (002) plane was
1.20°, indicating that the prepared CaMn7O12 film pos-
sessed outstanding out-of-plane texture characteristics.
During the ϕ scan process, the sample was tilted at 45.15°
first; then, the test was conducted within the range of a 360°
sample rotation. It can be found from the ϕ scan result in
Fig. 2(c) that the diffraction peaks occurred with 90°
intervals are in accordance with the rotational symmetry of
the pseudo-cubic structure. The average FWHM of the four
peaks was 1.90°, which demonstrates that the CaMn7O12

film has good in-plane texture characteristics as well. Based
on the XRD results, the as-prepared CaMn7O12 film has
biaxial texture characteristics, which further confirms that

CaMn7O12 film grew on LaAlO3 substrate in epitaxial mode
[17].

3.2 XPS measurement of the CaMn7O12 film

XPS is an excellent technique to determine the valence
states of the samples. Thus, in this study, XPS was
employed to analyze the valence states of the CaMn7O12

film (Fig. 3). XPS peak fitting and background subtraction
were conducted using the XPS-PEAK4.1 software. From
Fig. 3(a), it can be observed that there are two peaks at the
binding energy positions of 346.6 eV and 350.0 eV, which
correspond to 2p3/2 and 2p1/2 of Ca2+, respectively, indi-
cating that Ca is bivalent [18–22]. According to the high-
resolution spectrum of Mn, shoulder peaks appear near the
two main peaks. Through the peak-fit process, two peaks
can be obtained at the binding energies of 641.5 eV and
643.6 eV, which correspond to the 2p3/2 paeks of trivalent
and quadrivalent Mn, respectively. In addition, there are
two peaks located at the binding energies of 653.3 eV and
655.3 eV, corresponding to the 2p1/2 peaks of trivalent and
quadrivalent Mn, respectively. It, thus, indicates the Mn
element in the CaMn7O12 film is in the mixed valence state
of trivalence and quadrivalence [23–26].

3.3 Morphology of the CaMn7O12 film

Figure 4 shows the SEM morphology of the CaMn7O12

film. According to Fig. 4(a), the thickness of the film is
about 280 nm. From Fig. 4(b), it can be seen that the film is
dense and free of cracks. The grain size is uniform, whereas
the average size is ~180 nm. The EDS spectra acquired from
the CaMn7O12 film were examined and the results were
shown in Fig. 4(c). Beside the peaks attributed to La and Al
of LaAlO3 substrate and Pt of conductive layer, the peaks of
Ca and Mn were observed. The atomic rations of Ca:Mn is
1:7.4, which is closed to the stoichiometry (1:7.0) of the
nominal chemical composition of CaMn7O12. This indicates
that the chemical component of the as-prepared film is
relative appropriate.

3.4 Magnetism of the CaMn7O12 film

CaMn7O12 belongs to perovskite materials and has anti-
ferromagnetic characteristics at low temperature. Although
the magnetic property of bulk CaMn7O12 has been reported,
that of CaMn7O12 films has not been studied yet. Figure 5
shows the hysteresis loop of the CaMn7O12 film deposited
on the LaAlO3 substrate at 50 K. The external magnetic
field was in the range of −30 kOe to 30 kOe, which was
perpendicular to the surface plane of the film. From Fig. 5, it
can be seen that the CaMn7O12 film exhibits evident anti-
ferromagnetic properties. It has a saturation magnetization

Fig. 3 XPS spectra of the CaMn7O12 film: high-resolution spectra of a
Ca 2p and b Mn 2p
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of 114.2 emu/cm3, a residual magnetization of 15.4 emu/
cm3, and a coercivity of 220 Oe. As measured by Jaiswar S
et al., the saturation magnetization of the polycrystalline
CaMn7O12 bulk material is ~10 emu/g under a magnetic
field of 30 kOe at 50 K [18]. According to the density of
CaMn7O12 of 5.107 g/cm

3, as found in PDF card 26-1114,
the saturation magnetization of the bulk polycrystalline
CaMn7O12 is 51.07 emu/cm3. Therefore, the saturation
magnetization of the CaMn7O12 film is higher than that of
polycrystalline bulk materials, which is correlated to the
highly biaxial textured characteristics of the as-prepared
film. Compared with the bulk CaMn7O12, the as-prepared
CaMn7O12 film exhibited improved ferromagnetic proper-
ties. It might be attributed to two causes. Firstly, it is
probably attributed to the size effect of nanostructures in the
thin film. It is well known that there is a cycloid structure in
the bulk, which can restrict the release of magnetic prop-
erties. While, for CaMn7O12 thin film, the cycloid structure
is partially broken down and then leads to better ferro-
magnetic properties [27–29]. Furthermore, strain effect
might be the other primary reason. Several reports have
indicated that the saturated magnetism of the highly strained

phase in multiferroic materials are about several times larger
than that of the relaxed one [6, 30]. As mentioned above,
the lattice constants of CaMn7O12 and LaAlO3 are 3.682
and 3.789 Å, respectively. It makes the CaMn7O12
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Fig. 4 SEM images and EDS spectra of CaMn7O12 film: a Cross-section image, b Surface morphology image, and c EDS spectra

-30 -20 -10 0 10 20 30
-150

-100

-50

0

50

100

150

M
ag

ne
tiz

at
io

n 
(e

m
u/

cm
3 )

Magnetic Field (kOe)

Fig. 5 Hysteresis loop of the CaMn7O12 film measured at 50 K

Journal of Sol-Gel Science and Technology (2018) 88:639–645 643



feromagnetic phase suffer a compressive strain, resulting in
the enhancement of ferromagnetic properties.

It is well known that the easy magnetization axis of the
CaMn7O12 is along c-axis direction [31, 32]. For
CaMn7O12 film, the epitaxial growth on c-axis orientated
LaAlO3 substrate will be beneficial to improve its ferro-
magnetic properties. Furthermore, in epitaxial ferromag-
netic film, the epitaxial constraint can induce a transition
between cycloidal and homogeneous antiferromagnetic
spin states which can release a latent antiferromagnetic
component locked within the cycloid via magnetoelectric
exchange. As a result, an enhanced magnetization value
can be obtained in epitaxial ferromagnetic film [29].
Thus, the highly biaxial textured characteristics of as-
prepared CaMn7O12 film make it exhibit excellent
ferromagnetism.

4 Conclusions

The CaMn7O12 film was prepared via sol-gel process on
LaAlO3 (001) single-crystal substrate. The crystalline
structure, phase composition, and elemental valence state
were determined via XRD, SEM, and XPS techniques,
respectively. Our results indicated that the as-prepared film
was characterized by a perovskite structure with a dense
surface, uniform grain size, and with an average grain size
of ~180 nm. In addition, ω and ϕ scan tests demonstrated
that the CaMn7O12 film exhibited good biaxial texture
properties, leading to a saturation magnetization value of
114.2 emu/cm3 at 50 K, which was notably higher than the
reported value of the magnetization of the polycrystalline
CaMn7O12 bulk materials.
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