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Elastic rectangular thin plate problems are very important both in theoretical research and engineering applications. Based on this,
the flexural deformation functions of the rectangular thin plates with two opposite edges simply supported, one edge clamped and
one edge free (SCSF) and three edges clamped and one edge free (CCCF), loaded by hydrostatic pressure are determined by single
trigonometric series. And the flexural deformation functions are solved via the principle of minimum potential energy. Next, the
internal force and stress functions of rectangular thin plates with two boundary conditions are obtained based on the small deflection
bending theory of thin plates. *e dimensionless deflection, dimensionless internal force, and dimensionless stress functions of the
rectangular thin plates are established as well.*e analytic solution in this paper is validated by the finite element method. Finally, the
influence of aspect ratio λ and Poisson’s ratio μ on the deformation and mechanical behaviors of the rectangle thin plates is analyzed
in this paper. *is research can provide references for the plane water gate problem in seaports and channels.

1. Introduction

Bending of rectangular thin plates has been heavily
researched and gained great achievements. Numerical and
analytical methods are two research methods that are often
used for the analysis of thin plate problems. It is well known
that many effective numerical methods have been developed
in recent years. Representative methods include the finite
element method (FEM) [1, 2], the finite difference method
[3–5], the finite strip method [6], the meshless method [7],
the spline element method [8], etc.*ese numerical methods
normally meet the engineering requirements with acceptable
errors and are greatly applied in practice. Meanwhile, an-
alytical solutions are regarded as the benchmarks for veri-
fication of various numerical methods and have been
investigated by many researchers. *e problem of a rect-
angular thin plate is first given by Dixon [9]. *e solution of
double trigonometric series of a rectangular thin plate with
four edges simply supported (SSSS) under arbitrary loading
has been proposed by Navier (Navier’s solution). *e

solution of single trigonometric series of a rectangular thin
plate with two opposite edges simply supported and other
two opposite edges free (SFSF) under transverse loading has
been given by Levy (Levy’s solution). Different methods are
used to analyze the rectangular thin plate problem under
different boundary conditions and loading, such as the
Fourier series method, the Rayleigh–Ritz method, the su-
perposition method, the semi-inverse method, the sym-
plectic geometry method, the integral-transform method,
etc.*e bending problem of a square plate with two adjacent
edges clamped and the others either simply supported or free
(CCSS or CCFF) under uniform loading has been in-
vestigated by Huang and Conway [10]. Many exact solutions
for the bending problem of elastic rectangular thin plates
have been obtained by Timoshenko and Woinwsky-Krieger
[11]. *e bending problem of a rectangular thin plate with
two opposite edges simply supported has been analyzed by
Hutchinson [12]. *e buckling problem of clamped rect-
angular plates with different aspect ratios has been solved by
El-Bayoumy using extended Kantorovich method [13]. *e
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problem of an isotropic rectangular thin plate with four
edges clamped has been given by Imrak and Gerdemeli [14].
*e accurate solution for a rectangular thin plate with two
adjacent edges clamped and the others free (CCFF) is
proposed by Chang [15], and the solution is yielded by
superposing six known solutions. *e symplectic geometry
method is employed by Lim et al. [16] to investigate the
bending problem of a rectangular thin plate with two op-
posite edges simply supported and the others free (SFSF).
Moreover, the symplectic geometrymethod is also employed
by Zhong and Li [17] and Liu and Li [18] to solve the de-
flection function and bending moment of a rectangular thin
plate with four edges clamped (CCCC) under arbitrary
loading. *e analytic bending solutions of free rectangular
thin plates resting on elastic foundations are obtained by Li
et al. [19] via a new accurate symplectic superposition
method. Moreover, Li et al. [20] extend the approach to the
free vibration problems of the same plates and obtain the
analytic solutions which cannot be obtained by the con-
ventional symplectic approach. Besides, the analytic bending
solutions of rectangular thin plates with a corner point-
supported, its adjacent corner free, and their opposite edge
clamped or simply supported are obtained by Li et al. [21] via
the superposition method in the symplectic space. *e
method of symplectic geometry is more reasonable than
traditional semi-inverse solution. Khan et al. [22] employed
the variation method to obtain a higher approximate so-
lution for a rectangular thin plate with four edges simply
supported (SSSS) under uniform loading. Based on this, the
bending problem of rectangular thin plates has also been
investigated by some other researchers under different
boundary conditions and loading [23–26]. However, it is still
difficult to obtain the exact solution through solving the
differential equation for the bending problem of the rect-
angular thin plate with certain boundary conditions. *us,
many exact solutions for the bending of thin plates are
obtained with simple boundary conditions and transverse
loading, such as the bending of thin plates with four edges
clamped or simply supported, two opposite edges clamped
or simply supported, three edges clamped or simply sup-
ported under uniform loading, and transverse loading. Most
approximate solutions have been obtained for the bending
problem of rectangular thin plates with relatively compli-
cated boundary conditions and transverse loading.

In this paper, the flexural deformation functions of two
types of rectangular thin plates (two opposite edges simply
supported, one edge clamped and one edge free (SCSF) and
three edges clamped and one edge free (CCCF)) loaded by
hydrostatic pressure are established with single trigono-
metric series. *e flexural deformation functions are solved
using the principle of minimum potential energy. Internal
force and stress functions of the rectangular thin plates
under the two boundary conditions are obtained using the
small deflection bending theory of thin plates. *e di-
mensionless deflection, dimensionless internal force, and
dimensionless stress functions of rectangular thin plates
under the two boundary conditions are established in this
paper. Moreover, the influence of aspect ratio and Poisson’s
ratio on the deformation and mechanical characteristics of

rectangular thin plates under the two boundary conditions is
analyzed in this paper. *is research can provide references
for the plane water gate problem of seaports and channels.

2. Deflection and Internal Force Function of the
SCSF Rectangular Thin Plate

2.1. Bending Equation and Boundary Condition of the SCSF
Rectangular 2in Plate. *e hydrostatic pressure qw �

q0(1−y/b) is loaded on the surface of the rectangular thin
plate.*e width is a along the x axis.*e height is b along the
y axis.*e thickness is δ along the z axis.*e dimensions and
load condition of the rectangular thin plate are shown in
Figure 1.

*e governing differential equation for the bending
problem of the rectangular thin plate is as follows:

D∇4w(x, y) � q(x, y), (1)

where D � Eδ3/12(1− υ2) is the flexural rigidity. E, δ, υ are
the elastic modulus, plate thickness, and Poisson’s ratio,
respectively. w(x, y) is the transverse deflection. q(x, y) is
the distributed transverse load acting on the surface of the
plate. (0≤ x≤ a, 0≤y≤ b, −δ/2≤ z≤ δ/2).

*e edges of x � 0 and x � a are simply supported, y � 0
is clamped, and y � b is free. *e boundary condition of the
SCSF rectangular thin plate can be expressed as follows:

w|x�0 � 0,

w|x�a � 0,

w|y�0 � 0,

zw

zy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
� 0.

(2)

It is difficult to obtain the deflection function if we solve
the differential equation for the bending problem of the
rectangular thin plate directly with the boundary conditions.
*us, the deflection of thin plates is solved via Rayleigh–Ritz
method.

2.2. Flexural Function. Based on the small deflection as-
sumption for the thin plate-bending problems, the deflection
w is the only unknown function, and other components can
be expressed in terms of w. *e expression of deflection w

can be expressed as w � 􏽐
∞
m�1,3,5,...Cmwm, where Cm is the

independent and undetermined coefficient and wm is the
deflection function. *e deflection function of the SCSF
rectangular thin plate loaded by hydrostatic pressure is as
follows:

w(x, y) � 􏽘
∞

m�1,3,5,...

Cmwm � 􏽘
∞

m�1,3,5,...

Cm sin
mπx

a
􏼒 􏼓

y

b
􏼒 􏼓

2
.

(3)

*e deflection function satisfies the boundary conditions
of equation (2), where Cm is the undetermined constant.*e
expression for strain energy of the thin plate is as follows:
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Vε �
D

2
B

A

⎧⎨

⎩ ∇
2
w􏼐 􏼑

2

− 2(1− ])
z2w

zx2
z2w

zy2 −
z2w

zxzy
􏼠 􏼡

2
⎡⎣ ⎤⎦

⎫⎬

⎭dx dy,

(4)

where A is the area of the thin plate, ∇2w � (z2w/zx2) +

(z2w/zy2).
Solving the second derivative of the deflection function

w versus x and y, respectively, and substituting them into
equation (4), the expression for strain energy of thin plate
can be written as follows:

Vε � 􏽘
∞

m�1,3,5,...

DC2
m

2
2 +

4
3
− 2]􏼒 􏼓

mπb

a
􏼠 􏼡

2

+
1
10

mπb

a
􏼠 􏼡

4
⎡⎣ ⎤⎦

a

b3
.

(5)

*e first derivative of the strain energy Vε versus the
coefficient Cm is as follows:

zVε

zCm

� DCm 2 +
4
3
− 2]􏼒 􏼓

mπb

a
􏼠 􏼡

2

+
1
10

mπb

a
􏼠 􏼡

4
⎡⎣ ⎤⎦

a

b3
.

(6)

From equation (3), we get

B
A

qwm dx dy � B
A

q0 1−
y

b
􏼒 􏼓wm dx dy

� 􏽚
a

0
􏽚

b

0
q0 1−

y

b
􏼒 􏼓

y

b
􏼒 􏼓

2
sin

mπx

a
dx dy

�
q0ab

6mπ
.

(7)

Based on the principle of minimum potential energy, the
first derivative of the strain energy Vε versus the coefficient
Cm can be expressed as follows:

zVε

zCm

� 􏽚
a

0
􏽚

b

0
qwm dx dy. (8)

Substituting equations (6) and (7) into equation (8), the
coefficient equation can be written as

Cm �
q0b

4

6mπD 2 +((4/3)− 2])(mπb/a)2 +(1/10)(mπb/a)4􏽨 􏽩
.

(9)

Substituting equation (9) into equation (3) allows the
deflection function w to be written as

w � 􏽘
∞

m�1,3,5,...

q0b
2 sin(mπx/a)y2

6mπD 2 +((4/3)− 2])(mπb/a)2 +(1/10)(mπb/a)4􏽨 􏽩

⎧⎨

⎩

⎫⎬

⎭.

(10)

*e dimensionless deflection w′ � Dw/q0b4 can be
formulated as

w′ � 􏽘
∞

m�1,3,5,...

sinmπx′ · y′2

6mπ 2 +((4/3)− 2]) m2π2/λ2􏼐 􏼑 + m4π4/10λ4􏼐 􏼑􏽨 􏽩

⎧⎨

⎩

⎫⎬

⎭ ,

(11)

where x′ � x/a, y′ � y/b, and λ � a/b.

2.3. Dimensionless Internal Force Function and Stress
Function. Substituting the deflection function w of the SCSF
rectangular thin plate loaded by the hydrostatic pressure into
the internal force equations and stress equations of classical
elastic thin plate, the internal force equation and stress
equation can be rewritten as

Mx � 􏽘
∞

m�1,3,5,...

−CmD
2]a2 −m2π2y2

a2b2
sin

mπx

a

My � 􏽘
∞

m�1,3,5,...

−CmD
2a2 − ]m2π2y2

a2b2
sin

mπx

a

Mxy � 􏽘
∞

m�1,3,5,...

−CmD
2(1− ])mπ

ab2
cos

mπx

a
y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

FSx � 􏽘
∞

m�1,3,5,...

−CmD
mπ 2a2 −m2π2y2( 􏼁

a3b2
cos

mπx

a

FSy � 􏽘
∞

m�1,3,5,...

2CmD
mπ
ab

􏼒 􏼓
2
sin

mπx

a
y

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

σx � 􏽘
∞

m�1,3,5,...

−
12CmD 2]a2 −m2π2y2( 􏼁

a2b2δ3
sin

mπx

a
z

σy � 􏽘
∞

m�1,3,5,...

−
12CmD 2a2 − ]m2π2y2( 􏼁

a2b2δ3
sin

mπx

a
z

τxy � 􏽘
∞

m�1,3,5,...

−
24CmD(1− ])mπ

ab2δ3
cos

mπx

a
yz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(12)

y

o

z
a

x

δ

b

(a)

q w
=
q 0 (

1
–
y/
b)

z

y

o

(b)

Figure 1: Rectangular thin plate under hydrostatic pressure.
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Moreover, the dimensionless bending moments Mij
′ �

a2Mij/q0b4, dimensionless shear forces FSi
′ � a3FSi/q0b4, and

dimensionless stresses σij
′ � a2δ2σij/q0b4 can be established

as follows:

Mx
′ � 􏽘

∞

m�1,3,5,...

−Cm
′ D 2]λ2 −m

2π2y′2􏼐 􏼑sinmπx′

My
′ � 􏽘

∞

m�1,3,5,...

−Cm
′D 2λ2 − ]m

2π2
y′2􏼐 􏼑sinmπx′

Mxy
′ � 􏽘

∞

m�1,3,5,...

−2Cm
′D(1− ])mπλ cosmπx′ · y′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

FSx
′ � 􏽘

∞

m�1,3,5,...

−Cm
′Dmπ 2λ2 −m

2π2
y′2􏼐 􏼑cosmπx′

FSy
′ � 􏽘

∞

m�1,3,5,...

2Cm
′Dm

2π2λ sinmπx′ · y′

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

σx
′ � 􏽘

∞

m�1,3,5,...

−12Cm
′ D 2]λ2 −m

2π2y′2􏼐 􏼑sinmπx′ · z′

σy
′ � 􏽘

∞

m�1,3,5,...

−12Cm
′D 2λ2 − ]m

2π2
y′2􏼐 􏼑sinmπx′ · z′

τxy
′ � 􏽘

∞

m�1,3,5,...

−24Cm
′ D(1− ])mπλ cosmπx′ · y′z′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(13)

where Mij is the bending moment, FSi is the shear force, σij

is the stress tensor, z′ � z/δ, Cm
′ � Cm/q0b4, and i, j � x, y.

3. Deflection and Internal Force Function of the
CCCF Rectangular Thin Plate

Similarly, the flexural deformation function of the CCCF
rectangular thin plate loaded by hydrostatic pressure can
also be established by single trigonometric series. *e
flexural deformation function coefficient is solved using the
Rayleigh–Ritz method and the principle of minimum po-
tential energy. *e internal force and stress functions are
obtained via the small deflection bending theory of thin
plate.

3.1. Bending Equation and Boundary Condition of the CCCF
Rectangular 2in Plate. *e rectangular thin plate surface
is loaded by the hydrostatic pressure qw � q0(1−y/b)

(along the direction of y ). *e width, height, and
thickness are shown in Figure 1. *e governing differ-
ential equation for the bending problem of rectangular
thin plate is given in equation (1). *e edges of x � 0,
x � a, and y � 0 are clamped and y � b is free. *e
boundary condition of the CCCF rectangular thin plate
can be expressed as follows:

w|x�0,a � 0,

zw

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�0,a
� 0,

w|y�0 � 0,

zw

zy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
� 0.

(14)

3.2. Flexural Function. Based on the small deflection as-
sumption for thin plate-bending problems, the deflection w

is the only unknown function, and other components can be
expressed in terms of w. *e expression of deflection w is
w � 􏽐

∞
m�1Cmwm, where Cm is the undetermined coefficients

and wm is the deflection function. *e deflection function of
the CCCF rectangular thin plate loaded by the hydrostatic
pressure is as follows:

w(x, y) � 􏽘
∞

m�1
Cmwm � 􏽘

∞

m�1
Cm sin2

mπx

a
􏼒 􏼓

y

b
􏼒 􏼓

2
. (15)

*us, the deflection function satisfies the boundary
condition of equation (14). Solving the second derivative of
the deflection function w versus x and y and substituting
them into equation (4), the expression for strain energy of
the thin plate can be rewritten as follows:

Vε � 􏽘
∞

m�1

DC2
m

2
3
2

+
4
3
− 2]􏼒 􏼓

mπb

a
􏼠 􏼡

2

+
2
5

mπb

a
􏼠 􏼡

4
⎡⎣ ⎤⎦

a

b3
.

(16)

*e first derivative of the strain energy Vε versus Cm can
be deduced as follows:

zVε

zCm

� DCm

3
2

+
4
3
− 2]􏼒 􏼓

mπb

a
􏼠 􏼡

2

+
2
5

mπb

a
􏼠 􏼡

4
⎡⎣ ⎤⎦

a

b3
.

(17)

From equation (15), we get

􏽚
a

0
􏽚

b

0
qwm dx dy � B

A
q0 1−

y

b
􏼒 􏼓wm dx dy

� 􏽚
a

0
􏽚

b

0
q0 1−

y

b
􏼒 􏼓

y

b
􏼒 􏼓

2
sin2

mπx

a
dx dy

�
q0ab

24
.

(18)

Based on the principle of minimum potential energy
equation (8), substituting equations (17) and (18) into equation
(8) gives the expression of the coefficient Cm as follows:

Cm �
q0b

4

24D (3/2) +((4/3)− 2])(mπb/a)2 +(2/5)(mπb/a)4􏽨 􏽩
.

(19)
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Substituting equation (19) into equation (15), the de-
flection function w can be written as follows:

w � 􏽘

∞

m�1

q0b
2 sin2(mπx/a)y2

24D (3/2) +((4/3)− 2])(mπb/a)2 +(2/5)(mπb/a)4􏽨 􏽩
.

(20)

*e dimensionless deflection w′ � Dw/q0b4 is as
follows:

w′ � 􏽘
∞

m�1

sin2 mπx′ · y′
2

24 (3/2) +((4/3)− 2]) m2π2/λ2􏼐 􏼑 + 2m4π4/5λ4􏼐 􏼑􏽨 􏽩
.

(21)

3.3. Dimensionless Internal Force Function and Stress
Function. Substituting the deflection function w of the
CCCF rectangular thin plate loaded by hydrostatic pressure
into the internal force equation and stress equation of elastic
thin plate, the internal force equation and stress equation
can be rewritten as follows:

Mx � 􏽘

∞

m�1
−2CmD

]
b2
sin2

mπx

a
+

m2π2

a2b2
cos

2mπx

a
y
2

􏼠 􏼡

My � 􏽘
∞

m�1
−2CmD

1
b2
sin2

mπx

a
+
]m2π2

a2b2
cos

2mπx

a
y
2

􏼠 􏼡

Mxy � Myx � 􏽘
∞

m�1
−2CmD(1− ])

mπ
ab2

sin
2mπx

a
y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

FSx � 􏽘
∞

m�1
−2CmD

mπ a2 − 2m2π2y2( 􏼁

a3b2
sin

2mπx

a

FSy � 􏽘

∞

m�1
−4CmD

m2π2

a2b2
cos

2mπx

a
y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

σx � 􏽘
∞

m�1
−
24CmD

δ3
]
b2
sin2

mπx

a
+

m2π2

a2b2
cos

2mπx

a
y
2

􏼠 􏼡z

σy � 􏽘
∞

m�1
−
24CmD

δ3
1
b2
sin2

mπx

a
+
]m2π2

a2b2
cos

2mπx

a
y
2

􏼠 􏼡z

τxy � τyx � 􏽘
∞

m�1
−
24(1− ])mπCmD

ab2δ3
sin

2mπx

a
yz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(22)

*en, the dimensionless bending moments Mij
′ �

a2Mij/q0b4, dimensionless shear forces FSi
′ � a3FSi/q0b4, and

dimensionless stresses σij
′ � a2δ2σij/q0b4 can be established

as follows:

Mx
′ � 􏽘
∞

m�1
−2Cm
′ D ]λ2 sin2 mπx′ + m

2π2y′2 cos 2mπx′􏼐 􏼑

My
′ � 􏽘

∞

m�1
−2Cm
′ D λ2 sin2 mπx′ + ]m

2π2
y′2 cos 2mπx′􏼐 􏼑

Mxy
′ � Myx

′ � 􏽘
∞

m�1
−2Cm
′ D(1− ])mπλ sin 2mπx′ · y′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

FSx
′ � 􏽘

∞

m�1
−2Cm
′ Dmπ λ2 − 2m

2π2y′2􏼐 􏼑sin 2mπx′

FSy
′ � 􏽘
∞

m�1
−4Cm
′ Dλm

2π2 cos 2mπx′ · y′

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

σx
′ � 􏽘
∞

m�1
−24Cm
′ D ]λ2 sin2 mπx′ + m

2π2y′2 cos 2mπx′􏼐 􏼑z′

σy
′ � 􏽘
∞

m�1
−24Cm
′ D λ2 sin2 mπx′ + ]m

2π2
y′2 cos 2mπx′􏼐 􏼑z′

τxy
′ � τyx
′ � 􏽘
∞

m�1
−24Cm
′ D(1− ])mπλ sin 2mπx′ · y′z′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(23)

4. Results and Discussion

*e influence of aspect ratio λ (0.5, 1.0, 1.5, and 2.0) and
Poisson’s ratio μ (0.25, 0.30, and 0.35) on the deformation and
mechanical properties of the rectangle thin plates with two
boundary conditions is analyzed in this paper. *e physical
and mechanical parameters of the two types of rectangular
thin plates are shown in Table 1. It is known that larger values
ofm give calculation accuracy.*e distribution regularities of
dimensionless deflection, dimensionless internal force, and
dimensionless stress of the two rectangular thin plates loaded
by the hydrostatic pressure are shown in Figures 2–7.

4.1. Influence of Aspect Ratio λ on the Deformation and Me-
chanical Properties of the Rectangular 2in Plates. *e
comparison between the analytic solution presented in this
paper and the finite element method (FEM) via the software
package ABAQUS for the SCSF rectangular thin plate with
aspect ratio λ� 2.0 is shown in Figures 2 and 3. *e finite
element types used in ABAQUS are C3D8R and 22400 uni-
form elements. Figures 2 and 3 show that there are some errors
between the analytical solutions presented in this paper and
the numerical solutions obtained by the FEM. *e errors are
mainly caused by the values of m and the selection of
the solution method. *e larger the values ofm, the closer the
analytical solutions to the exact solutions and the smaller
the error. Moreover, the flexural deformation function of the
SCSF rectangular thin plate loaded by the hydrostatic pressure
is obtained via the Rayleigh–Ritz method in this paper. It is
known that the thin plate-bending problems are solved by the
Rayleigh–Ritz method; only the flexural deformation function
is required to meet the displacement boundary conditions, but
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not the internal force boundary conditions (if it can partially or
completely meet the internal force boundary conditions, the
accuracy of solutions can be improved). Equation (2) is the
displacement boundary conditions. �us, the accuracy of the
solutions can be improved via the larger values of m and the
selection of the trial functions that meet the displacement
boundary conditions and internal force boundary conditions.

As shown in Figures 2 and 3, it is obvious that the results
of FEM computation well agree with that of the analytical
computation, which demonstrates the correctness of the
present method for the SCSF rectangular thin plate. �e
distribution regularities of the dimensionless de�ection,
dimensionless internal force, and dimensionless stress of the
SCSF rectangular thin plate with di�erent values of aspect
ratio are given in Figure 4.

As shown in Figure 4, w′,Mx′,My′, FSy′ , σx′ , and σy′ of the
SCSF rectangular thin plate are symmetrically distributed,

which is divided by x′ � 0.5, and Mxy′ , FSx′ , and τxy′ are
antisymmetrically distributed. �e maximum of w′,Mx′, FSy′ ,
and σx′ appears at the point of (0.5,1). FSx′ is shown in four-
quadrant chart, and the extremum of FSx′ is appeared at the
four corners of the SCSF rectangular thin plate. Besides, the
horizontal axis moves upward with the increase of aspect ratio
λ.�e extremumofMy′, σy′ appears at the points of (0.5, 0) and
(0.5, 1), and the positiveMy′ , σy′ gradually disappear with the
increase of aspect ratio λ. �e extremum ofMxy′ , τxy′ appears
at the points of (0, 1) and (1, 1). �e maximums of di-
mensionless de�ection, dimensionless internal force, and di-
mensionless stress of the SCSF rectangular thin plate loaded by
the hydrostatic pressure with di�erent values of aspect ratio are
shown in Table 2.

�e comparison between the analytic solution presented
in this paper and the well-accepted �nite element method
(FEM) via software package ABAQUS for the CCCF rect-
angular thin plate with aspect ratio λ� 2.0 is shown in
Figures 5 and 6. �e �nite element types used in ABAQUS
are C3D8R and 22400 uniform elements. Similar to Figures 2
and 3, Figures 5 and 6 show that there are some errors
between the analytical solutions and the numerical solutions.
�e errors are mainly caused by the values of m and the
selection of the solution method. �e larger the values of m,
the closer the analytical solutions to the exact solutions and
the smaller the error. Moreover, the �exural deformation
function of the CCCF rectangular thin plate loaded by the
hydrostatic pressure is obtained via the Rayleigh–Ritz
method. It is known that the thin plate-bending problems
are solved by the Rayleigh–Ritz method, only the �exural
deformation function is required to meet the displacement
boundary conditions, but not the internal force boundary
conditions (if it can partially or completely meet the internal
force boundary conditions, the accuracy of solutions can be
improved). Equation (14) is the displacement boundary
conditions. �us, the accuracy of the solutions can be im-
proved via the larger values ofm and the selection of the trial
functions that meet the displacement boundary conditions
and internal force boundary conditions.

As shown in Figures 5 and 6, it is obvious that the FEM
computation is almost equivalent to the analytical compu-
tation, which the correctness of the present method for the
CCCF rectangular thin plate is veri�ed. �us, the present
method of this research is viable. �e distribution regu-
larities of the dimensionless de�ection, dimensionless in-
ternal force and dimensionless stress of the CCCF
rectangular thin plate with di�erent values of aspect ratio are
given in Figure 7.

Similarly, as shown in Figure 7, w′,Mx′ ,My′ , FSy′ , σx′ , and
σy′ of the CCCF rectangular thin plate are symmetrically
distributed (divided by x′ � 0.5), and Mxy′ , FSx′ , and τxy′ are
also antisymmetrically distributed (divided by x′ � 0.5). �e
maximum of w′ is appeared at the points of (0.5 1). �e
extremum of Mx′ , My′ , σx′ and σy′ are appeared at the four
corners of the SCSF rectangular thin plate, which is the
points of (0.5, 0) and (0.5, 1). �e extremum of FSx′ is
appeared at the points of (0.25, 0), (0.75, 0), (0.25, 1), and
(0.75, 1).�e extremum of FSy′ is appeared at the points of (0,

Table 1: Physical and mechanical parameters of the SCSF and
CCCF rectangular thin plates.

Height
(m)

�ickness
(m)

Elastic modulus
E (GPa)

Loading
q0 (kN)

Series
item m

2.0 0.1 25.0 20.0 1.0

w′
 (1

0–3
)

SCSF (FEM)
SCSF (present)

0

3

6

9

12

15

18

0 0.2 0.4 0.6 0.8 1 1.2
x′

Figure 2: Relationship between dimensionless de�ection and x′ at
y′ � 1.0 (SCSF).

0
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6

9

12

15

18

0 0.2 0.4 0.6 0.8 1 1.2

w′
 (1

0–3
)

y′

SCSF (FEM)
SCSF (present)

Figure 3: Relationship between dimensionless de�ection and y′ at
x′ � 0.5 (SCSF).
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Figure 4: Dimensionless de�ection, internal force, and stress contour maps of the SCSF at di�erent aspect ratio.
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Figure 7: Continued.
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1), (0.5, 1), and (1, 1). �e extremum ofMxy′ , τxy′ is appeared
at the points of (0.25, 1) and (0.75, 1). It should be noted that
the distribution regularity of the dimensionless internal
force and dimensionless stress are di�erent, except the di-
mensionless de�ection. And the dimensionless de�ection of
CCCF rectangular thin plate is small due to the stronger
boundary constraint condition. �e maximums of di-
mensionless de�ection, dimensionless internal force, and

dimensionless stress of the CCCF rectangular thin plate
loaded by the hydrostatic pressure with di�erent values of
aspect ratio are shown in Table 3.

4.2. In�uence of Poisson’s Ratio υ on the Deformation and
Mechanical Properties of the Rectangular �in Plates. �e
maximums of dimensionless de�ection, internal force, and
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Figure 7: Dimensionless de�ection, internal force, and stress contour maps of the CCCF at di�erent aspect ratio.

Table 2: Dimensionless de�ection, internal force, and stress of the SCSF rectangular thin plate at μ� 0.30.

λ� a/b w′ (0.5, 1)/10−3 Mx′ (0.5, 1) My′ (0.5, 1) Mxy′ (1, 1) FSx′ (0, 1) FSy′ (0.5, 1) σx′ (0.5, 1) σy′ (0.5, 1) τxy′ (1, 1)

0.5 0.2839 −0.0028 0.0007 0.0006 0.0084 0.0028 −0.0171 0.0042 0.0037
1.0 2.7953 −0.0293 0.0027 0.0123 0.0691 0.0552 −0.1756 0.0161 0.0738
1.5 7.4293 −0.0834 −0.0114 0.0490 0.1253 0.2200 −0.5001 −0.0685 0.2941
2.0 12.0074 −0.1473 −0.0605 0.1056 0.0705 0.4740 −0.8840 −0.3630 0.6337
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stress of the SCSF rectangular thin plate and the CCCF
rectangular thin plate loaded by the hydrostatic pressure
with different values of Poisson’s ratio are given in Tables 4
and 5.

As shown in Tables 4 and 5, the dimensionless de-
flections, internal forces, and stresses of SCSF and CCCF
rectangular thin plates loaded by hydrostatic pressure are
increased linearly with the values of Poisson’s ratio υ
increased.

5. Conclusions

*edeflection, internal force, and stress functions of the SCSF
and CCCF rectangular thin plates loaded by the hydrostatic
pressure are obtained via the Rayleigh–Ritz method. *e
method presented in this paper is correct and viable validated
by FEM. Moreover, the dimensionless deflection, di-
mensionless internal force, and dimensionless stress functions
of two types of the rectangular thin plates loaded by the
hydrostatic pressure are established, which makes this re-
search more general. *e dimensionless deflection of the
CCCF rectangular thin plate is smaller than the dimensionless
deflection of the SCSF rectangular thin plate. *e values of
dimensionless deflection, dimensionless internal force, and
dimensionless stress of the SCSF and CCCF rectangular thin
plates are increased with the increasing values of aspect ratio λ
and Poisson’s ratio μ. *e results obtained by this paper can
provide the references for the similar thin plates and plane
gates in hydraulic engineering.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Additional Points

Highlights. (i) *e deflection, internal force, and stress
functions of the SCSF and CCCF rectangular thin plates
loaded by hydrostatic pressure are established and solved.
(ii) *e dimensionless deflection, dimensionless internal
force, and dimensionless stress functions of the rectangular
thin plates with two boundary conditions are obtained. (iii)
*e influence of aspect ratio λ and Poisson’s ratio μ on the
deformations andmechanical behaviors of the rectangle thin
plate is analyzed.
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