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Abstract
Multi-sensor image fusion is always an important and opening problem, which can enhance visual quality and benefit
some social security applications. In this article, we use contrast pyramid to decompose visible and infrared images,
respectively, and the directional filter banks are applied to obtain multiple directional sub-band image features. Then, we
compute the decomposition coefficients of visible and infrared images using a low-pass filter on the decomposed data;
and finally, we introduce the whale optimization algorithm to search optimal coefficients to reconstruct the final fusion
image. The experiments are conducted on multiple datasets with subjective and objective comparisons, in which the qua-
litative and quantitative analyses indicate the validity of the proposed method.
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Introduction

Traditional imaging device can only capture a limited
spectral emission or radiation of lights of the target
scene, in which exist unpredictable objects or materials.
Compound imaging and advanced signal processing
are widely studied to enhance imaging capability and
adjustability. Heterogeneous image fusion is a typical
image-enhancing technique that combines at least two
distinct source or sensor images into a single composite
image. The fused image will be more informative, which
may be deteriorated and limited by low signal-to-noise
ratio condition. Hence, many applications are benefited
from computational theory of multi-source image
fusion, especially for the social security surveillance,
network security monitoring, network video analysis,
and military observation.1–3

According to the heat radiation emitted by the
object, infrared rays can be used to detect hidden heat
sources in complex environments. To capture the heat
radiation of specific targets, the infrared image sensor is

designed in such a way that it is only sensitive to light
wavelength between 780 and 2000 nm, but at the cost
to lose the information of visible light parts. On the
contrary, visible images contain more rich texture of
surrounding environment, which may also be important
to effective target observation.4,5 In this article, we dis-
cuss the visible and infrared image fusion problem by
contrast and directional features optimization (CDFO).

The image fusion can usually be divided into three
levels: pixel level, feature level, and decision level.
Traditional feature-level fusion method includes
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weight-averaging method, Bayesian estimation method,
and cluster analysis method.6 These methods combine
the features extracted from multi-source information
on different sensors (including shape, edge, region, con-
tour, texture, and horn). The feature extraction and
comprehensive analysis can be well processed even with
number of different sensor images. However, the hier-
archical information fusion at different resolutions is
still an open problem. Decision-level fusion method7

could find feature correspondence via classification and
identification of each image, and then further fusion
process will be carried out by global optimization. The
non-uniform resolution problem cannot produce a
good fusion result due to simple decision-level fusion
with multi-resolution images. In recent years, pixel
level–based fusion methods8,9 show more advantages
on those cases with complex images. For example,
Kannan and Perumal10 proposed a pixel-level image
fusion method based on discrete wavelet transform
(DWT), in which an image can be decomposed into a
sequence of different spatial resolution images. Then,
the fusion process can be applied on different image
scales. Li and Dong11 and He et al.12 presented a con-
trast pyramid (CP) fusion method. The original image
is resolved into a series of decomposing layers with dif-
ferent resolution and frequencies. The fusion process is
carried out separately on the components of each spa-
tial frequency layer. In order to get better direction
information, Jin et al.13,14 suggested fusing the satellite
infrared image with visible image by introducing direc-
tional filter banks. This method can extract the direc-
tional sub-graph of infrared image, so that the
directional information can be well preserved during
the fusion process.

The signal processing by human visual system is per-
formed on different channels of different scales,15 so we
introduced CP to pre-processing. Considering the direc-
tion information in full and the edge feature of high-
frequency information, directional filter banks are used
to get more direction features. First, the CP is used to
decompose the image and adjust the contrast in differ-
ent scales. The input multi-channel images are
decomposed on different frequency bands, and the
multi-resolution CP sequences form a pyramid-like
structure. Each scale of CP corresponds to different
spatial frequency characteristics. Second, we use direc-
tional filter banks to process the decomposition image
on the basis of CP. Filter group provides an efficient
analysis and synthesis of discrete signal structure.
Specific structure of filter bank can obtain continuous
multi-resolution base. Hence, we can obtain the abun-
dant direction information and multi-scale informa-
tion. During the fusion process, traditional methods
determine the fusion coefficient weights according to
the experience of human, but we cannot get a good
fusion effect. Therefore, whale optimization algorithm
(WOA) is introduced to search the optimal fusion coef-
ficients adaptively. Compared to majority of the tradi-
tional methods, the proposed method based on CDFO
provides an accurate image fusion result for getting the
most significant features from the multiple sensor
images. In this article, the overall technical route of
image fusion based on CDFO is shown in Figure 1.

Related work

Simple pixel-level fusion can be treated as a linear sum-
mation of pixels from the distinct source images,16 as
shown in equation (1)

Figure 1. Overall technical route of CDFO image fusion.
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g(x, y)= a1f1(x, y)+ a2f2(x, y)+ � � � + anfn(x, y) ð1Þ

where a1 + a2 + � � � + an = 1 represents the total
contributions of different sources that should be nor-
malized for the fusion image result g(x, y). The mechan-
ism of pixel-level image fusion is shown in Figure 2.
For two original images, pre-treatment is done first:
inverted histogram matching and histogram equaliza-
tion are performed; feature extraction and image regis-
tration are processed on it; next, fusion rule is applied
to fuse image; finally, the corresponding coefficients are
selected through the fusion rules to get the final fused
image.

CP decomposition

In order to obtain multi-resolution-level image informa-
tion, the original visible and infrared image should be
pre-processed. The principles of CP decomposition are
as follows.

Establishing Gaussian decomposition. CP is based on
Gaussian pyramid. First, we use I(i, j) to represent the
original image. Second, Gaussian pyramid17,18 is used
to get the decomposition image Gl. Finally, interpola-
tion method is used to enlarge the Gl, so that we can
get the image Gl

�. The size of Gl
� is the same as Gl21.

The equation is as follows

Gl
�(i, j)= 4

X2

m=�2

X2

n=�2

w(m, n)G0l
i+m

2
,

i+ n

2

� �
ð2Þ

where 0 \ l ł N, 0 \ i ł u, and 0 \ j ł v; and u
and v are the number of rows and columns, respec-
tively. In the l layer, w(m, n) is a window function and
is actually a low-pass filter that satisfies the following
constraints

1. Separability: w(m, n) = w(m)�w(n), m 2 ½�2, 2�,
n 2 ½�2, 2�

2. Normalization:
P2

n=�2

w(n)= 1

3. Symmetry: w(n) = w(2n)

The limitation of the above constraint is to ensure
the low-pass property and the smoothness of the image
after the image is reduced and expanded, and no seam
effect occurs. Thus, we construct w(0) = 3/8, w(1) =
w(21) = 1/4, and w(2) = w(22) = 1/16 and use the
common window width of 5 3 5.

Building the CP. In equation (2), we can calculate G0l as
follows

G0l
i+m

2
,

i+n

2

� �

=
Gl

i+m

2
,

i+n

2

� �
,

i+m

2
,

i+n

2
is integer

0, others

8<
:

ð3Þ

The window function has low-pass filter properties,
thus Gl

� can be seen as the background of Gl.
Therefore, the definition of CP can be decomposed as
equation (4)

Figure 2. Pixel-level image fusion mechanism.
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C1 =
G1

G� l+ 1
= Gl

Expand(Gl + 1)
� I , 0 ł l\N

CN =GN , l=N
ð4Þ

where Cl is the lth layer of CP decomposition; Gl is the
lth layer of Gaussian decomposition; and
Expand(Gl + 1) is the interpolation magnification of
Gl + 1, and its size is same as Gl.

Rebuilding the original image from the CP. Transforming
equation (4), we can get a reconstruction equation of
CP

GN =CN , l=N

Gl =(Cl + I)Expand(Gl + 1), 0 ł l\N
ð5Þ

According to equation (5), we can iteratively start
from the top layer, CN, of CP (CN, CN21, ., C0) and
make l = N, N21, ., 0 at the same time. Each layer
of the Gaussian pyramid can be obtained. Finally, the
precise reconstruction of the original image, G0, can be
recovered exactly by reversing the above steps.

Construction of directional features

Considering the multi-sensor image characteristics, we
use directional filter banks19,20 to capture the direc-
tional features. The traditional directional filter banks
lack multi-scale analysis capabilities, so in this article,
we design a new directional filter bank to make it suit-
able for multi-sensor visible and infrared image.

It consists of two-channel diamond filter bank and
parallelogram filter bank that cascade through the tree
structure and through the L-level binary tree decompo-
sition; the spectrum plane [2p, p) is decomposed into
2l sub-bands and the band is divided into wedges, where
each wedge spectral sub-band extracts image informa-
tion that is perpendicular to its direction, where l is the
cascade series as shown in Figure 3.

In Figure 3(b), Q1, D0, D1, D2, and D3 are the inse-
parable sampling matrices, as shown in equation (6)

Q1 =
1 1

�1 1

� �
, D0 =

0 2

�1 1

� �
,

D1 =
2 0

�1 1

� �
, D2 =

1 1

0 2

� �
, D3 =

1 1

�2 0

� �

ð6Þ

Figure 3(b) shows the three-stage cascaded decom-
position of the directional filter bank (the reconstructed
part is the inverse of the decomposed part). The wedge-
shaped directional spectrum partitioning makes it
suitable for extracting the edge contours with spatial
localization in the image.

The WOA

Traditional fusion uses the maximum fusion rule or
experience to determine the fusion coefficients, thus the
fusion effect can be greatly deteriorated by unreason-
able coefficient selection. In this article, we adopt a
heuristic intelligent optimization algorithm to deter-
mine the optimal fusion coefficients.

Some brain regions of the whale are similar to the
brain structure of human beings.21 Prey is one of the
most characteristic behaviors of the whale. By studying
the hunting behaviors of whales’ group in the nature
environment, researchers have proposed a meta-
heuristic optimization algorithm which is called WOA.
In 2015, Mirjalili and Lewis22 proposed this method by
simulating the hierarchy of the whale population and
their hunting behaviors.

The proposed CDFO method

Contrast and directional features

The traditional CP decomposition has good physical
meaning but ignores the direction information and
affects the fusion effect. The directional filter bank
adds direction based on the CP decomposition, which
not only maintains the physical meaning of contrast
but also detects the direction information well and can
provide more feature information for the fused image.

In directional filter banks, we define a sampling of
multi-dimensional space Zd in the grid, and the grid is
expressed by a non-singular integer matrix M. The size
of M is d3 d. The equation of M is as follows

LAT(M)= fMn, n 2 Zdg ð7Þ

First, we give a proposition: LAT(A) = LAT(B), if
and only if A = BE, among them, E is an unimodular
integer matrix.

In this article, we use the decomposition of two-
dimensional, two-channel ladder structure filter and
quincunx sampling network. Two matrices are used to
represent the quincunx sub-network

Q0 =
1 �1

1 1

� �
, Q1 =

1 1

�1 1

� �
ð8Þ

In directional filter banks, the following four basic
unimodular matrices are used to achieve the invariance
of rotation operation

R0 =
1 1

0 1

� �
, R1 =

1 �1

0 1

� �
,

R2 =
1 0

1 1

� �
, R3 =

1 0

�1 1

� � ð9Þ
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here, we use Smith’s decomposition which can diagona-
lize any integer matrix M into a product form of UDV.
In this form, U and V are the unimodular integer
matrices and D is an integer diagonal matrix.23 Thus,
the quincunx matrix in equation (8) can be represented
by Smith’s form as follows

Q0 =R1D0R2 =R2D1R1

Q1 =R0D0R3 =R3D1R0
ð10Þ

where D0 =
2 0

0 1

� �
and D1 =

1 0

0 2

� �
. D0 and D1

are the two-dimensional diagonal matrix and each
dimension corresponds to a binary sampling.

In the first two layers of directional filter banks,
quincunx filter banks (QFBs) will be used on each

layer. Q0 is the sampling matrix on the first layer and
Q1 on the second layer. From the third layer, the rest
of the tree structure begins to extend. To obtain better
frequency division, we use the QFB for resampling.
The first half of the channel uses R0 and R1 resampling
and gets a sub-band based on the direction of the basic
level: +45� and 45�. The second half of the channel is
resampled with R2 and R3 to produce the remaining
sub-bands.

We can simplify the total sampling matrix of the
QFB with the quincunx matrix of Smith’s form. We
can calculate the sampling matrix using the following
equation

p0 =R0Q0 =D0R2

p1 =R1Q1 =D0R3
ð11Þ

Figure 3. Directional filter bank spectral segmentation: (a) spectrum division diagram and (b) decomposition part.
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According to the proposition presented above, we
can get the following equation

LAT(p0)= LAT(p1)+ LAT (D0) ð12Þ

The above equation shows the sampling network of
QFB, which uses the R0 and R1 resampling and is
equivalent to the down-sampling that is along the n0-
dimensional space. Although CP with directional filter
banks has some excellent features of multi-scale and
multi-directional geometric analysis, for image fusion
algorithms, the choice of fusion coefficients is also very
important. WOA has attracted much more attention
due to its excellent performance and powerful search
capability.

Fusion coefficient optimization with the WOA

The traditional fusion coefficient is selected through
human experience. In this article, WOA is introduced
to optimize the adaptive fusion coefficient, so that the
image contrast information and direction information
can be maximally retained and the fusion effect is obvi-
ously improved.

The WOA builds a global search mechanism by
simulating the hunting behavior of whale, which can
simulate the attacking mechanism of humpback whales
(bubble-net hunting). The details of the WOA algo-
rithm are described as follows.

Encircling prey. Before hunting, humpback whales iden-
tify the location of prey and then encircle their prey. In
search space, the optimal position of the target prey is
unknown at the beginning of time, thus WOA assumes
that the current optimal solution is the target prey or
close to the optimal position. When we ascertain the
optimal search agent, other searches will update their
own position based on this agent. Mirjalili and Lewis22

described this behavior in a mathematical model as
follows

~D= j~C � ~X �(t)� ~X (t)j
~X (t + 1)=~X

�
(t)�~A � ~D

ð13Þ

where t indicates the current iteration, ~A and ~C are the
coefficient vectors, X � is the position vector of the tar-
get, and ~X is the optimal position vector of the hump-
back whales. We can calculate ~A and ~C using the
following equation

~A= 2~a �~r �~a
~C = 2 �~r ð14Þ

here, the value of~a is linearly decreased from 2 to 0 and
~r is the random vector in the interval [0, 1].

The two-dimensional feedback behavior is shown in
Figure 4. In Figure 4, X* is the best position we have
got so far, and we can update the current position (X,
Y) by (X*, Y*). The mathematical model to describe the
hunting behavior of bubble-net is mentioned in equa-
tion (13).

Bubble-net searching mechanism has two patterns:
the first is shrinking encircling pattern and the second
is spiral updating position.

1. Shrinking encircling pattern. Like a quadrangle,
we updated the location of the optimal search
agent by changing the value of ~a in equation
(14), thus the fluctuation range of ~A decreased.
When the value of ~a decreased from 2 to 0, ~A
becomes a random value between 2a and a;
When the value of ~A falls between 21 and 1, the
next position of humpback whales can be any
position between their current position and the
prey. In Figure 5, we can observe this relation-
ship clearly.

2. Spiral updating position. In this mathematical
model, we use a spiral equation to calculate the
distance between whale (X, Y) and prey (X*, Y*)
as follows

~X (t+ 1)=~X 0 � ebl � cos (2pl)+~X �(t) ð15Þ

where ~D0= j~X �(t)� ~X (t)j, in which ~D0 indicates the dis-
tance between the ith whale and the prey; b is a constant
for defining the shape of the spiral equation; and l is a
random number in the interval [21,1].

In the process of optimization, we assume that if p
\ 0.5, we use the mechanism of shrinking encircling
pattern; and if p ø 0.5, the spiral updating position is
applied. The mathematical model is as follows

~X (t+ 1)=
~X
�
(t)�~A � ~D, if p\0:5

~D0 � ebl � cos (2pl)+~X
�
(t), if p ø 0:5

�
ð16Þ

Figure 4. Predicted possible locations of position vectors in
2D space.
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where p is a random number in the interval [0, 1].
Figure 6 shows the spiral structure clearly.

Search for prey (exploration phase). Unlike the exploitation
phase, the search agent updates its location according
to the random selection during the exploration phase,
thus the random value of ~A is used to force the search
agent to stay away from the reference whale, and in this
situation, the value of ~A is greater than 1 or less than
21. The mathematical model is as follows

~D= j~C � ~X rand � ~X j
~X (t + 1)=~X rand �~A � ~D

ð17Þ

where pi, p = {p1, p2, ., pn}, is a random position vec-
tor chosen from the current population.

On the whole, WOA algorithm is a global optimiza-
tion, because it has the capabilities of exploration and
exploitation. Pseudo code of WOA is given as follows.

To generalize the proposed algorithm, our fusion
can be summarized by the following steps:

1. Initialize parameters. We adopt window function,
w, to decompose, and the decomposition level is
set as 3. The ‘‘Phoong, Kim, Vaidyanathan and
Ansari’’ directional filter banks of the trapezoidal
structure are used, and the maximum decomposi-
tion layer is 4.

2. Decompose CP on each original image sepa-
rately and obtain the decomposition images M1

and M2 with the size of 1/23 of the original
image.

3. Use the directional filter banks built according
to section ‘‘Fusion coefficient optimization with
the WOA,’’ and decompose M1 and M2 to get
the filtering images M 01 and M 02 and figures D1

and D2 carried by directions at this layer.
4. Take the filtering images M 01 and M 02 obtained

in equation (3) as inputs and iterate and imple-
ment step 3 until the completion of the set
decomposition layer.

5. In each final obtained image, add information
D1 and D2 carried by directions into separate

Figure 5. Shrinking encircling mechanism.

Figure 6. Mechanism of bubble-net searching with spiral
pattern.

Algorithm 1. Whale optimization algorithm

1. Initialize the whale population, Xi (i = 1, 2, ., n);
2. Calculate the fitness of each search agent;
3. X*= the best search agent;
4. while (t \ maximum number of iterations)
5. for each search agent
6. Update a, A, C, l, and p;
7. if (p \ 0.5)
8. if (|A|\ 1)
9. Update the position of the current search agent by

equation (13);
10. else
11. Select a random search agent (Xrand);
12. Update the position of the current search agent by

equation (17);
13. end if
14. else
15. Update the position of the current search agent by

the equation (15);
16. end if
17. end for
18. Check if any search agent goes beyond the search space

and amend it;
19. Calculate the fitness of each search agent;
20. Update X* if there is a better solution;
21. t = t + 1;
22. end while
23. Return X*;

Jin et al. 7



decomposition results y1 and y2 as the row
vectors.

6. Conduct the low-pass filtering of decomposition
results y1 and y2 separately and obtain two
groups of decomposition coefficients C1 and C2.

7. Use the WOA proposed in this article to opti-
mize the coefficients C1 and C2 to obtain the
new fusion coefficient C.

8. Consider C as the input coefficient of directional
filter banks for reconstitution to obtain reconsti-
tution result y.

9. Conduct contrast reconstruction and obtain the
final fusion result Y.

Computational complexity analysis

The computational complexity of the algorithm in this
article consists of two parts: the computational com-
plexity of the algorithm in section ‘‘Contrast and direc-
tional features’’ and that of the algorithm in section
‘‘Fusion coefficient optimization with the WOA.’’

In section ‘‘Contrast and directional features,’’ CP
decomposes the original images first before entering the
directional filter bank. After down-sampling and filter-
ing, the amount of data is reduced greatly, thereby
improving the efficiency. Suppose the size of both
images to be fused is N3N, and the number of levels
to be CP decomposed is l, then after down-sampling
and filtering, the size of images is (N/2l) 3 (N/2l).
Hence, the size of the images to enter the directional fil-
ter bank is (N/2l) 3 (N/2l). The element number con-
tained in two groups of coefficients, C1 and C2, can be
calculated by formula (18)

M =
5

4
(N=2l)2 =

5N2

4l + 1
ð18Þ

where N is the size of the images to be fused, l is the
number of levels to be CP decomposed, and M is the
element number contained in two groups of coeffi-
cients, ‘‘C1’’ and ‘‘C2.’’ The complexity of comparison
operation for finding the maximal absolute value is
O(M), that is, O(5N2=4l + 1), which is the computa-
tional complexity of the algorithm in section ‘‘Contrast
and directional features.’’

In the optimization of the fusion coefficient in sec-
tion ‘‘Fusion coefficient optimization with the WOA,’’
if the maximum number of iterations is k and the size
of the whale population is N, then the time complexity
of the optimization coefficient of the WOA optimiza-
tion algorithm is O(kN ).

As a whole, the computational complexity of the

algorithm in this article is O 5N2

4l+ 1

� �
+O(kN ), which can

be regarded as O(5N 2=4l + 1).

Experiment and analysis

Numerical indexes

At present, there is no unified standard to evaluate the
fusion effect for all kinds of images. In this article, we
adopt some evaluation metrics presented in relevant
references to evaluate the fusion results objectively,
such as information entropy (IE), average grads, stan-
dard deviation, and spatial frequency. For example, the
IE of the image reflects the amount of information of
the image, where the larger the value, the more infor-
mation the image contains. The average gradient (AG)
of the image reflects the ability of the image to express
contrast to the tiny details. The standard deviation
(SD) of the image is a measure of the degree of disper-
sion of the pixel values of the image compared to the
pixel average, which is the contrast information of the
image, where the larger the value, the greater the con-
trast of the image. The spatial frequency (SF) effec-
tively reflects the details of the image, where the larger
the value, the clearer the image. The edge strength (ES)
value of the image is an evaluation index that describes
the visually important edge intensity information and
direction information of the fusion result. The execu-
tion time (ET) reflects the efficiency of different fusion
methods.

Experimental analysis

In order to verify the advantages of the proposed algo-
rithm, we choose several fusion algorithms to compare,
such as fast filtering image fusion (FFIF) method,24

CP-based fusion method,11,12 DWT-based fusion
method,10 and principal component analysis (PCA)-
based fusion method.25 As shown in Figure 7, the first
dataset represents a section (256 3 256 pixels) of visi-
ble and infrared images without smoke shielding
acquired by a Sony Camcorder and a long-wave infra-
red (LWIR) sensor. The second group of visible and
infrared images is near the street signs and a man in the
doorway. The third group of images (256 3 256 pixels)
is crossroads at night. The fourth group of images (256
3 256 pixels) is three soldiers and a jeep, and the last
group of images (256 3 256 pixels) is two men in front
of a house. The fusion results are shown in Figure 8.

In the experiments, fusion performance is evaluated
by qualitative analysis and objective indicator (as
shown in Tables 1–5). Qualitative analysis is adopted
by the visual effect and spectral fidelity, including spa-
tial resolution, clarity, and sophisticated details, which
indicate the extent of preserving original spectral signal
or characteristics.

From the visual effects (Figure 8), the overall profile
of the FFIF fusion result is very rough and the satura-
tion is distorted, especially in the second group of
experiments; CP-based fusion results have higher
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contrast, but the edge contour is not clear enough;
DWT-based fusion results lack spectral characteristics,
and the sharpness is not enough; PCA-based fusion
images have excessive brightness, rough edge contours,
loss of a large amount of detail information, and severe
distortion of saturation; the proposed CDFO method
has better fusion results than the previous four groups
of experiments. Rich-structure features and clear-edge
contours can better highlight the target area of interest.

By the numerical results (Tables 1–5), the evaluation
indexes of the proposed CDFO method are mainly the
highest, which indicate that the fusion images have the
highest sharpness and the most abundant details.
However, in terms of the SD indicators, the SD values
of the CP-based fusion results in the second, fourth,
and fifth groups are higher. The reason is that the con-
trast of the fusion results based on the CP is too large,
and its visual effect is particularly poor. Also, the time

cost of the CDFO method is almost lower, which is
very important in practical applications.

The convergence curve of the fusion coefficient opti-
mization of the WOA in five different groups of images
is shown in Figure 9. The second and third groups of
images tend to converge when iterated 4 times, and the
fusion result no longer changes. The first and fifth sets
of images also reached a steady state when iterated 6
times, and the fourth set of images also converge when
the number of iterations reached 8. Therefore, the fig-
ure shows that the image fusion method based on
WOA for coefficient optimization has a fast conver-
gence speed and good convergence stability, which can
effectively save the optimization time of the fusion
coefficient.

In summary, the above five sets of simulation experi-
ments have proved that both on the subjective vision
and the quantitative numerical indicators, also taking

Figure 7. Five pairs of visible and infrared images: (a) building images without smoke shielding, (b) man in the doorway, (c)
crossroads at night, (d) soldiers with jeep, and (e) two men in front of a house.
Left column: visible image; middle column: infrared image; right column: partial enlargement image.

Jin et al. 9



Figure 8. Fusion results by different methods: (a) FFIF-based, (b) CP-based, (c) DWT-based, (d) PCA-based, and (e) CDFO-based.
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Table 1. Numerical results of the first line of Figure 8.

Methods IE AG SD SF ES ET

IR 6.3274 2.0478 23.0849 5.4848 2.1069 –
VS 7.0887 4.1367 61.0146 10.5986 4.5757 –
FFIF 6.9156 4.5399 36.7987 10.6207 4.9612 0.7513
CP 6.4694 4.7274 27.4743 10.5398 5.1311 0.7643
DWT 6.248 2.4895 15.5729 6.5587 2.5496 1.0064
PCA 7.1936 5.0315 70.3889 12.5029 5.6660 0.4939
CDFO 7.2640 11.2167 49.1775 25.5808 12.3569 0.5086

IE: information entropy; AG: average gradient; SD: standard deviation; SF: spatial frequency; ES: edge strength; ET: execution time; IR: original infrared

image; FFIF: fast filtering image fusion; CP: contrast pyramid; DWT: discrete wavelet transform; PCA: principal component analysis; CDFO: contrast

and directional features optimization; VS: original visible image.

Significant of bold values represents the optimal numerical value gained from different fusion methods using the corresponding evaluation index.

Table 2. Numerical results of the second line of Figure 8.

Methods IE AG SD SF ES ET

IR 7.1771 6.7654 31.3187 13.3196 8.4907 –
VS 7.2515 10.7926 58.4513 23.6716 10.6270 –
FFIF 7.484 10.3536 44.9276 21.2707 10.4554 0.8217
CP 7.0869 13.0236 34.0332 26.0642 15.2924 0.7701
DWT 6.7888 7.0359 27.167 13.7803 7.6928 0.9890
PCA 6.6373 14.4227 85.9935 33.9517 9.6831 0.5097
CDFO 7.2640 11.2167 49.1775 25.5808 12.3569 0.4322

IE: information entropy; AG: average gradient; SD: standard deviation; SF: spatial frequency; ES: edge strength; ET: execution time; IR: original infrared

image; FFIF: fast filtering image fusion; CP: contrast pyramid; DWT: discrete wavelet transform; PCA: principal component analysis; CDFO: contrast

and directional features optimization; VS: original visible image.

Significant of bold values represents the optimal numerical value gained from different fusion methods using the corresponding evaluation index.

Table 3. Numerical results of the third line of Figure 8.

Methods IE AG SD SF ES ET

IR 6.7243 5.3714 32.785 12.2326 6.0719 –
VS 5.0389 3.521 27.009 13.8142 6.9118 –
FFIF 6.7468 6.0716 34.7583 14.7239 8.7572 0.8790
CP 6.0738 7.8986 25.1093 20.9657 12.3687 0.7634
DWT 6.1205 4.075 23.0953 10.0464 5.5955 0.9884
PCA 6.9782 6.4662 38.7415 14.5102 7.6706 0.4948
CDFO 6.9771 16.1316 42.3714 37.2714 22.7072 0.4870

IE: information entropy; AG: average gradient; SD: standard deviation; SF: spatial frequency; ES: edge strength; ET: execution time; IR: original infrared

image; FFIF: fast filtering image fusion; CP: contrast pyramid; DWT: discrete wavelet transform; PCA: principal component analysis; CDFO: contrast

and directional features optimization; VS: original visible image.

Significant of bold values represents the optimal numerical value gained from different fusion methods using the corresponding evaluation index.

Table 4. Numerical results of the fourth line of Figure 8.

Methods IE AG SD SF ES ET

IR 7.528 4.9375 57.8926 12.6010 3.6485 –
VS 6.753 2.1102 38.7895 4.9764 2.4612 –
FFIF 7.2801 4.2296 44.2637 10.6284 2.5793 0.7977
CP 6.5778 6.1498 28.0864 14.5947 6.5410 0.7591
DWT 6.6672 3.2526 25.8714 7.6963 2.5991 0.9833
PCA 4.7511 5.1154 110.5146 17.6021 5.1737 0.5181
CDFO 7.6542 15.4464 58.4816 32.7404 12.2877 0.5005

IE: information entropy; AG: average gradient; SD: standard deviation; SF: spatial frequency; ES: edge strength; ET: execution time; IR: original infrared

image; FFIF: fast filtering image fusion; CP: contrast pyramid; DWT: discrete wavelet transform; PCA: principal component analysis; CDFO: contrast

and directional features optimization; VS: original visible image.

Significant of bold values represents the optimal numerical value gained from different fusion methods using the corresponding evaluation index.
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into account the time cost, the proposed CDFO method
has obvious advantages.

Conclusion

In this article, a CDFO image fusion algorithm is pro-
posed to take advantages of both infrared images and
visible images, which can better reconstruct the target
scene using CDFO. The method can preserve more
structural features and color spectrum information. At
the same time, considering the high-frequency informa-
tion with different scales, we construct directional filter
banks to capture directional features. Finally, the WOA
is applied to optimize the fusion coefficient. The pro-
posed method has great advantages in both image qual-
ity and quantity. By testing on real visible and infrared
image datasets, the proposed algorithm can preserve
more scene details and information, which is more valu-
able for video monitoring and security surveillance in
low visible environment.
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