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ABSTRACT
Reservoir flood control operation (RFCO) is a challenging optimization
problem with interdependent decision variables and multiple conflicting
criteria. By considering safety both upstreamanddownstreamof thedam, a
multi-objective optimizationmodel is built for RFCO. To solve this problem,
a multi-objective optimizer, the multi-objective evolutionary algorithm
basedondecomposition–differential evolution (MOEA/D-DE), is developed
by introducing a differential evolution-inspired recombination into the
algorithmic framework of the decomposition-based multi-objective opti-
mization algorithm, which has been proven to be effective for solving
complex multi-objective optimization problems. Experimental results on
four typical floods at the Ankang reservoir illustrated that the suggested
algorithm outperforms or performs as well as the comparison algorithms. It
can significantly reduce the floodpeak and also guarantee the dam’s safety.
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1. Introduction

Reservoir flood control operation (RFCO) is a scheduling problem which aims to minimize flood
peaks, reduce flood damage and prevent floods by providing appropriate scheduling plans for the
dams’ water release sequences. Since a flood is a damaging natural disaster with a high frequency
and devastating force, RFCO is a problem worth investigating which has attracted a large amount of
research effort. During floods, the most important target of RFCO is to ensure safety both upstream
and downstream of the dam. Given a determined inflow flood sequence, these two optimization
goals can be conflict with each other. Therefore, the RFCO problem is a challenging multi-objective
optimization problem (MOP) which involves interdependent decision variables (Reddy and Kumar
2007).

In contrast to single-objective RFCO approaches, such as linear programming (Needham et al.
2000), dynamic programming (Yakowitz 1982) and nonlinear programming (Unver andMays 1990),
multi-objective RFCO algorithms can optimize multiple conflicting optimization goals simultane-
ously and thus provide the decision makers with a set of Pareto-optimal scheduling schemes (Qi
et al. 2012). With the rapid development of multi-objective optimization techniques, more and more
research has been conducted onmulti-objective water resource planning andmanagement (Liu 2009;
Malekmohammadi, Zahraie, and Kerachian 2011; Xu et al. 2012), of which themulti-objective RFCO
problem is one of the most important branches (Hajkowicz and Collins 2007).

In recent years,many newly developed approaches have been proposed to solve themulti-objective
RFCO problem. Hou and Chen (2004) investigated existing decision-making problems withmultiple
optimization goals, and summarized the theory and applications of multi-criteria decision making
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for RFCO. Using optimum models based on fuzzy theory, some fuzzy decision-making methods
concerning multiple objectives were developed for the RFCO problem (Fu 2008; Hou and Chen
2004; Yu et al. 2004; Zhou, Zhang, and Wang 2007). Qin and colleagues suggested a bi-objective
optimization model for the RFCO problem, and developed two optimizers, based on differential
evolution (DE) (Qin et al. 2009) and cultured DE (Qin et al. 2010), to solve it. Multi-objective evo-
lutionary algorithms (MOEAs), which have been recognized as efficient optimizers for MOPs, were
also applied to solve multi-objective RFCO problems. Using the outstanding non-dominated sorting
genetic algorithm II (NSGA-II), Kim, Heo, and Jeong (2006) solved a four interconnected reservoir
operation problem with two conflicting optimization goals. To optimize the rule curves of a multi-
purpose reservoir, Chen,McPhee, andYeh (2007) developed a specially designedmacro-evolutionary
multi-objective genetic algorithm. Considering a three-objective multi-reservoir system, Hakimi-
Asiabar, Ghodsypour, and Kerachian (2010) designed a self-learning genetic algorithm by improving
the self-organizing map-based multi-objective genetic algorithm. By combining NSGA-II with the
multi-layer perception neural network, Shokri, Bozorg, and Mariño (2014) developed an efficient
multi-objective optimizer to extract the best set of reservoir operation decisions.

In addition toMOEAs, other multi-objective optimization techniques, such as the multi-objective
particle swarm optimization algorithm (Baltar and Fontane 2008), multi-objective ant colony
optimization algorithm (Afshar, Sharifi, and Jalali 2009), multi-objective frog leaping algorithm
(Dumedah et al. 2010), multi-objective electromagnetism-like mechanism algorithm (Ouyang et al.
2014) and multi-objective immune algorithm with preference-based selection (Luo, Chen, and Xie
2015), have been applied to solve the RFCO problem. In these studies, MOEAs have played a role in
solving multi-objective RFCO problems.

MOEAs, which are inspired by Darwin’s theory of evolution, have achieved significant success in
solving MOPs (Zhou et al. 2011). By evolving a population of solutions, MOEAs are able to obtain a
set of best trade-off solutions to MOPs in a single run. Zhang and Li (2007) developed an excellent
algorithmic framework for solvingMOPs by combining traditional decomposition-basedmethods in
mathematics with evolutionary computation. This multi-objective evolutionary algorithm based on
decomposition (MOEA/D) decomposes the target MOPs into a set of scalar optimization problems
and then optimizes them simultaneously using an evolutionary algorithm. Many studies have been
carried out on enhancing the performance of MOEA/D (Ishibuchi et al. 2010; Li and Landa-Silva
2011; Qi et al. 2014). Owing to its simplicity and outstanding performance,MOEA/D has beenwidely
investigated and successfully applied to various challenging MOPs (Pal et al. 2010; Qi, Hou, Li, et al.
2015; Waldock and Corne 2011).

A previous study indicated that the RFCO is a challenging MOP which is complex both in the
objective space and in the decision space (Qi et al. 2016). In the RFCO problem, an improvement in
one objective is usually accompanied by an unstable degradation in another. As a result, the RFCO
problem usually has an irregularly shaped Pareto front. The complexity of the Pareto front’s shape in
the objective space is a great challenge to most multi-objective optimization algorithms. The RFCO
problem takes a sequence of water release volumes as the decision variables, which have a chain-like
interdependence with each other. The complexity of interdependence between decision variables is
the major source of complexity in many optimization problem, and it also presents major challenges
to multi-objective optimization algorithms.

Considering the complexity of the RFCO problem in both the objective space and the decision
space, a powerful multi-objective optimizer is proposed by introducing a DE-inspired recombina-
tion (Qi, Hou, Yin, et al. 2015) into the algorithmic framework of the MOEA/D. Owing to the
good diversity of the decomposition weights in MOEA/D, the MOEA/D algorithm can provide a set
of Pareto-optimal solutions with satisfactory coverage and uniformity over the target Pareto front.
Therefore, to cope with the complexity of the RFCO problem in the objective space, this work follows
the algorithmic framework of the MOEA/D. However, the complexity of the RFCO problem in the
decision space prevents the population of the MOEA/D algorithm from converging on to the target
Pareto front quickly. To develop an efficient searchmechanism in the decision space, the DE-inspired
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recombination (Qi, Hou, Yin, et al. 2015) is employed to generate new offspring with better qualities
based on the individuals in the evolving population, giving rise to the proposed multi-objective evo-
lutionary algorithm based on decomposition–differential evolution (MOEA/D-DE) for solving the
RFCO problem.

The rest of this article is organized as follows. Section 2 describes the investigated bi-objective
optimizationmodel for RFCO, after introducing some related terms onmulti-objective optimization.
Section 3 presents details of the proposedMOEA/D-DE for solving multi-objective RFCO problems.
Section 4 briefly presents and analyses the experimental results of MOEA/D-DE and the compared
algorithms on four investigated floods. Section 5 concludes the article.

2. RFCOwithmultiple conflicting criteria

The RFCO problem is a challengingMOP. In this section, some terms related toMOPs are first intro-
duced, and then the multi-objective optimization model for the RFCO problem is mathematically
described.

2.1. MOP and related terms

Many real-world optimization problems, such as the RFCO problem, involve more than one conflict-
ing optimization goal. Such problems are known as MOPs. AnMOP, taking a minimization problem
for example, can be formally defined as:

Minimize F(x) = {f1(x), f2(x), . . . , fm(x)}
Subject to x ∈ � ∈ Rn (1)

where � ∈ Rn is the n-dimensional decision space; x is the decision vector, which represents a solu-
tion to the target optimization problem; and F : � → Rn consist ofm conflicting objective functions.
Owing to the conflicts between optimization goals, there is usually no unique solution that optimizes
all the objectives. Instead, an MOP usually has a set of optimal trade-off solutions which are known
as the Pareto-optimal solutions.

Supposing xA, xB ∈ � are two decision vectors in the decision space, xA is said to dominate the
other one xB (written as xA ≺ xB) if and only if fi(xA) ≤ fi(xB) for all the objective functions, and
there exists an object j = 1, 2, . . . ,mwhich makes fj(xA) < fj(xB). A given solution x∗ ∈ � is termed
a Pareto-optimal solution if there is no other solution in the decision space that dominates x∗. All
the Pareto-optimal solutions from the Pareto-optimal set and the collection of the corresponding
objective vectors of all the Pareto-optimal solutions is termed the Pareto-optimal front.

Usually, it is time consuming or even impossible for the multi-objective optimizer to obtain all the
Pareto-optimal solutions. Instead, multi-objective optimization algorithms aim to find a finite set of
Pareto-optimal solutions which are evenly scattered over the whole Pareto front.

2.2. Bi-objective optimizationmodel for RFCO

Considering the safety both upstream and downstream of the damduring floods, the followingmulti-
objective optimization model is built and investigated for the RFCO problem (Luo, Chen, and Xie
2015; Qi et al. 2012; Qin et al. 2010):

min F(Q) = {f1(Q), f2(Q)} (2)

where f1(Q) and f2(Q) are the twooptimization goals; andQ = (Q1,Q2, . . . ,QT) is the decision vector
which represents the dams’ discharge volume sequence duringT scheduling periods. As the safety of a
dam’s upstream side depends on the flood water volume stored in the reservoir, the first optimization
goal f1(Q) can be defined as themaximumupstreamwater level of the dam.Regarding the safety of the
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dam’s downstream side, the discharge volume is the critical issue. Therefore, the second optimization
goal f2(Q) is modelled as themaximumdischarge volume of the dam. Both optimization goals should
be minimized to guarantee the safety of the dam during floods. The objectives are expressed as:

min f1(Q) = min{max(Zt)} t = 1, 2, · · · ,T (3)

min f2(Q) = min{max(Qt)} t = 1, 2, · · · ,T (4)

where Zt denotes the upstream water level of the tth scheduling period; and Qt represents the dis-
charge volume of the tth scheduling period. According to the water balance equation, the upstream
water level Zt can be obtained.

The optimization model includes four constraints: the upstream water level constraint, discharge
volume constraint, water balance constraint and final reservoir water level constraint, which can be
described as:

Zmin
t ≤ Zt ≤ Zmax

t (5)

Qmin
t ≤ Qt ≤ Qmax

t (6)

Vt = Vt−1 + (It − Qt)�t (7)

where Zmin
t , Zmax

t are the minimum and maximum limit of the reservoir upstream water level of the
tth period; Qmin

t , Qmax
t are the minimum and maximum limit of the reservoir discharge volume of

the tth period; Vt , Vt−1 are the reservoir storage of the tth and (t – 1)th periods; and It , Qt are the
reservoir inflow and discharge volume of the tth period.

3. Decomposition-basedMOEA for RFCO

In this work, a DE-inspired recombination operator which performs well on continuous MOPs is
introduced into the algorithmic framework ofMOEA/D to form the proposedMOEA/D-DE for solv-
ing the above-definedmulti-objective RFCO problem. In this section, the basic idea ofMOEA/D and
the DE-inspired recombination operator are first introduced. Then, the workflow of the proposed
MOEA/D-DE is described in detail.

3.1. Decomposition-basedMOEA

The MOEA/D suggested by Zhang and Li (2007) is a efficient algorithmic framework of a popula-
tion evolving-based multi-objective optimizer. Many studies have confirmed the effectiveness of this
algorithm, especially in solving complex MOPs. MOEA/D transforms the target MOPs into a set of
single-objective optimization subproblems using decomposition techniques.

In this work, the Tchebycheff decomposition approach is used to decompose MOPs into subprob-
lems using a set of weight vectors. Given a weight vector λ = (λ1, λ2, · · · , λm), where

∑m
i=1 λi = 1,

λi ≥ 0, i = 1, · · · ,m, and the reference point z∗ = (z∗1 , . . . , z∗m)T , where z∗i = min{fi(x)|x ∈ �}, i =
1, · · · ,m, a single-objective optimization subproblem can be determined as:

min
x∈�

gtc(x|λ, z∗) = min
x∈�

max
1≤i≤m

{λi × |fi(x) − z∗i |} (8)

After decomposition, MOEA/D optimizes all the decomposed single-objective optimization sub-
problems simultaneously using an evolutionary algorithm. At each generation, MOEA/D keeps the
optimal solution obtained for each subproblem to form the current population. MOEA/D also main-
tains a neighbourhood relationship between subproblems. Each subproblem has a neighbourhood
list, and it is optimized by collaborations between its neighbouring subproblems.

In this work, the collaborations between subproblems are performed by the DE-inspired recom-
bination operator, which is expected to be able to enhance the performance of MOEA/D in
multi-objective RFCO problems.
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3.2. DE-inspired recombination

In the original MOEA/D, the recombination operator, which is designed for single-objective opti-
mization problems, is directly employed. Moreover, each single-objective optimization subproblem
in the original MOEA/D is optimized using information from its neighbouring subproblems only,
which ignores information from its current best solution. Therefore, the performance of MOEA/D
could be expected to be enhanced by replacing its recombination operator with one that is specially
designed according to the characteristics of the MOP. The current best solution of each subproblem
should also be taken into consideration to enhance the efficiency of optimization.

Qi, Hou, Yin, et al. (2015) developed a DE-inspired recombination operator which utilizes the reg-
ularity of continuousMOPs and provides two types of candidate searching directions by taking three
recombination parents. These two types of candidate searching directions are designed to comple-
ment each other: one of them guides the search to find new solutions along the current Pareto set,
while the other redirects the search from the current Pareto set to another one.

Given the operated solution x and its two neighbours x1 and x2, the workflow of the DE-inspired
recombination operator can be summarized by Algorithm 1.

Algorithm 1: The differential evolution-inspired recombination operator

Input: The operated solution x, other two neighbouring solutions x1 and x2.
Output: The newly generated solution x′ .

Step 1 Reproducing: Generate a random number r between 0 and 1, if r < 0.5, then

x′ =
{
x + 0.5 × (x1 − x2) with probability 0.9
x with probability 0.1

(9)

Otherwise, generate two random numbers rand1 and rand2

x′ =
{
x + rand1 × (x − x1) + rand2 × (x − x2) with probability 0.9
x with probability 0.1

(10)

Step 2 Repair: If any dimension of x′ is outside the boundary of the feasible region, its value is reset to be a randomly selected
value inside the boundary.

Step 3 Output: Output x′ as the offspring solution.

In Algorithm 1, three recombination parents are taken into account; they are the operated solution
x and its two neighbours x1 and x2. If x is the current solution of the optimized subproblem and x1,
x2 are the current solutions of its two neighbouring subproblems, the DE-inspired recombination
operator will take x into consideration when optimizing its corresponding subproblem. It can be seen
that Algorithm 1 provides two candidate searching directions in the reproducing step described by
Equations (9) and (10). Usually, the two neighbouring solutions of x locate along the current Pareto
set; therefore, Equation (9) will guide the search along the current Pareto set from x. Equation (10)
provides a candidate searching direction apart from the current Pareto set, helping to explore new
search areas and to escape from local optima.

3.3. The proposed algorithm:MOEA/D-DE

As described in Equation (2), the decision vector of the multi-objective RFCO problem is Q =
(Q1,Q2, . . . ,QT), which represents the dams’ water release sequence during the T scheduling peri-
ods. In other words, hereQ corresponds to x in Equation (1) and T corresponds to n in Equation (1),
which is the dimension of the decision space. The details of the proposedMOEA/D-DE are described
in Algorithm 2. At each iteration, MOEA/D-DE maintains the following items:

• an evolving population withN solutionsQ1,Q2, · · · ,QN , in whichQi(i = 1, · · · ,N) is the current
solution to the ith subproblem generated by the Tchebycheff decomposition approach described
in Equation (9)
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• the objective function values FV1, FV2, · · · , FVN , in which FVi(i = 1, · · · ,N) is the objective
function value of solution Qi in the evolving population

• a reference point z∗ = (z1∗, z2∗), in which z1∗ and z2∗ are less than the best values obtained so
far for the two optimization goals in Equations (3) and (4)

• an external population (EP) for the storage of non-dominated solutions during the search.

Algorithm 2: The proposed MOEA/D-DE

Input: The evolving population size N, a uniformly scattered set of Nweight vectors λ1, λ2, · · · , λN , the neighbourhood size T
and a stopping criterion.

Output: The external population EP.

Step 1 Initialization: Generate an initial population Q1,Q2, · · · ,QN at random and set FVi = F(Qi)(i = 1, · · · ,N) in which
function F is the objective function defined in Equation (2). Determine the neighbourhood list with size T for each
subproblem. For the ith subproblem with weight vector λi(i = 1, 2, · · · ,N), select its T closest weight vectors under the
Euclidean distance to form the neighbourhood list B(i) = {i1, i2, · · · , iT }, where λi1 , · · · , λiT are the T closest weight vectors
to λi . Initialize z∗ = (z∗1 , z

∗
2 ), where z1∗ and z2∗ are less than the smallest values of all the FVi . Set the external population

EP as an empty set.
Step 2 Evolution:
For i = 1, · · · ,N do
Step 2.1 Recombination: Select two indices j and k from B(i) at random, generate recombination offspring Qinew using
three parent solutions Qi , Qj and Qk , as follows. Generate a random number r between 0 and 1, if r < 0.5, then produce
Qinew using the simulated binary crossover (SBX) operator (Zhang and Li 2007) taking Qj and Qk as recombination parents,
as in the original MOEA/D. Otherwise, generate Qinew by the previously described Algorithm 1, taking Qi , Qj and Qk as the
inputs.
Step 2.2 Mutation: Apply the polynomial mutation operator (Zhang and Li 2007) on Qinew, giving rise to the mutation
offspring Qinew′ .
Step 2.3 Repair: If any dimension of Qinew′ is outside the boundary of the feasible region, its value is reset to be a randomly
selected value inside the boundary. Notate the repaired solution as Qi

new′′ .
Step 2.4 Update reference point: For the two optimization goals defined in Equations (3) and (4), if f1(Qi

new′′ ) < z1∗
satisfies, then let z1∗ = f1(Qi

new′′ ) − 10−7. Likewise, if f2(Qi
new′′ ) < z2∗, then set z2∗ = f2(Qi

new′′ ) − 10−7.
Step 2.5 Update neighbouring solutions: For each subproblem index s ∈ B(i), if gtc(Qi

new′′ |λs , z∗) ≤ gtc(Qs|λs , z∗), then
set Qs = Qinew′′ and FVs = F(Qinew′′ ).
Step2.6UpdateEP:Remove all the vectorswhich are dominatedby F(Qi

new′′ ) fromEP. If no vectors in EPdominateF(Qi
new′′ ),

then addF(Qi
new′′ ) to EP.

Step 3 Stopping criterion: If the stopping criterion is met, then stop and output EP. Otherwise, go to Step 2.

The proposed MOEA/D-DE follows the main framework of MOEA/D and differs in Step 2.1. In
Step 2.1, the SBX operator performs a local search combined with a random search near the recom-
bination parents. On the other hand, the DE-inspired recombination operator uses the regularity
of continuous MOPs; it provides candidate search directions along the current Pareto-optimal set
and towards the ideal Pareto-optimal set to maintain diversity and accelerate the convergence rate,
respectively.

4. Experimental studies

In this section, four benchmark problemswith irregularly shaped Pareto fronts and four typical floods
of different types at the Ankang reservoir in Shaanxi Province, China, are investigated. The perfor-
mances of the proposed MOEA/D-DE on the investigated floods are compared with the original
MOEA/D to illustrate the efficiency of the enhancement made by this work.

4.1. Benchmark problems and RFCO study cases

The following four benchmark problemswith irregularly shapedPareto fronts (Gu, Liu, andTan 2012)
and the UF suite of benchmark problems in the 2009 IEEE Congress on Evolutionary Computation
(CEC 2009) competition are investigated in this work to compare the performance of the proposed
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Table 1. Definitions of the four investigated benchmark problems.

Problem Description Notes

F1 f1(x) = (1 + g(x))x1 x ∈ [0, 1] × [−1, 1]n−1n = 10
f2(x) = (1 + g(x))(2 − x1 − sign (cos (2πx1)) bi-objective problem

g(x) =
n∑
i=2

(
xi − cos

(
2πx1 + iπ

n

))2

F2 f1(x) = (1 + g(x))
(
1 − cos

( x1π
2

))
x ∈ [0, 1] × [−1, 1]n−1n = 10

f2(x) = (1 + g(x))
(
10 − 10sin

( x1π
2

))
bi-objective problem

g(x) =
n∑
i=2

(
xi − cos

(
2πx1 + iπ

n

))2

F3 f1(x) = (1 + g(x))x1 x ∈ [0, 1] × [−1, 1]n−1n = 10

f2(x) =
⎧⎨
⎩

(1 + g(x))(1 − 19x1), f1 ≤ 0.05

(1 + g(x))
(

1

19
− x1

19

)
, f1 > 0.05

bi-objective problem

g(x) =
n∑
i=2

(
xi − cos

(
2πx1 + iπ

n

))2

F4 f1(x) = (1 + g(x))x1 x ∈ [0, 1] × [−1, 1]n−1n = 10
f2(x) = (1 + g(x))(2 − 2x10.5cos2(2πx10.5) bi-objective problem

g(x) =
n∑
i=2

(
xi − cos

(
2πx1 + iπ

n

))2

MOEA/D-DE with the original MOEA/D, an improved version of MOEA/D, called dynamic multi-
objective evolutionary algorithm based on decomposition (DMOEA/D) (Gu, Liu, and Tan 2012) and
the well-knownmulti-objective optimization algorithmNSGA-II (Deb et al. 2002). Definitions of the
investigated benchmark problems with irregularly shaped Pareto fronts in Gu, Liu, and Tan (2012)
are listed in Table 1.

Ankang reservoir, located on the upper reach of Hanjiang river, is the largest hydro-junction
project in Shaanxi Province. It plays important roles in flood control, power generation, shipping
and other aspects, among which flood control is the most important task. Ankang reservoir has a
maximum storage of 2.3× 109 m3 and a dam height of 128 m. Its designed flood water level is 333 m,
check flood water level 337.05 m, normal water level 330 m, flood limit water level 325 m and dead
water level 300 m. The designed flood peak discharge of the dam at Ankang reservoir is 36,700m3/s,
the check flood peak discharge is 45,000m3/s and the maximum discharge is 37,474m3/s.

To validate the effectiveness of the suggested algorithm, four typical floods of different types are
chosen as study cases. These floods occurred at Ankang reservoir on 12 October 2000, 28 August
2003, 1 October 2005 and 15 July 2010. Figure 1 illustrates the inflow volumes of the four investigated
floods. It can be seen that three of the four floods (the floods on 12 October 2000, 1 October 2005 and
15 July 2010) have one flood peak, and they have different peak values, curve shapes and total inflow
water volumes. The flood on 28 August 2003 has two flood peaks, with relatively low peak values.

4.2. Performancemetric

In these experimental studies, two comprehensive performance metrics, the inverted generational
distance (IGD)metric and the hyper-volume (HV)metric (Zitzler and Thiele 1998), are used to eval-
uate the performances of the compared algorithms. For benchmark problems for which the ideal
Pareto fronts are available, the IGD metric is used, whereas for RFCO problems for which the ideal
Pareto fronts are unknown, the HV metric is used.

The IGD is a commonly used comprehensive metric, which can be formally defined as follows.
Let P∗ = {p∗

1, p
∗
2, · · · , p∗

|P∗|} be a set of evenly distributed solutions on the entire Pareto front. Given
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Figure 1. Inflow volumes of the four investigated floods at Ankang reservoir.

a solution set P = {p1, p2, · · · , p|P|} approximating the Pareto front, the IGD value of P can be
calculated by:

IGD(P∗,P) = 1
|P∗|

|P∗|∑
i=1

|P|
min
j=1

d(p∗
i , pj) (11)

where d(p∗
i , pj) denotes the Euclidean distance measured from each point in P∗ to its closest point in

P in the objective space.
The HVmetric, which is a comprehensive index of convergence, coverage and uniformity, is used

to evaluate the performances of the compared algorithms on RFCO problems. The HV metric has
been recognized as an objective performance metric for multi-objective optimization algorithms
when the ideal Pareto front of the target problem is unknown.

For the minimization multi-objective RFCO problem defined in Equation (2), letQ1,Q2, · · · ,QN

be an approximation to the problem’s ideal Pareto front. TheHVmetric is ameasure of the region that
is simultaneously dominated byQ1,Q2, · · · ,QN and bounded above by a reference pointR = (r1, r2),
in which r1 > max{f1(Qi)} and r2 > max{f2(Qi)}, i = 1, 2, · · · ,N.

Figure 2 is an illustration of the HVmetric. The HV value ofQ1,Q2, · · · ,QN with reference point
R corresponds to the set of objective vectors within the hatched area in Figure 2, which is dominated
by Q1,Q2, · · · ,QN and enclosed by the reference point R. The larger the HV metric value, the better
the algorithm performs.
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Figure 2. Illustration of the hyper-volume (HV) metric.

4.3. Experimental results and discussion

In the following experimental studies, the parameters of MOEA/D-DE and MOEA/D are consistent
with those in Zhang and Li (2007) to enable fair comparison. All algorithms in this study use the
same population size of 100 and the same simulated binary crossover (SBX) operator and polynomial
mutation operators. In the SBX operator, the crossover probability (pc) is set to 1.0 and the distribu-
tion index (ηc) is set to 20. In the polynomial mutation operator, the mutation probability (pm) is set
to 1/n, where n is the number of decision variables. The distribution index (ηm) is set to 20. Themax-
imum number of function evaluations is set to 100,000 for problems F1–F4 and 300,000 for problems
UF1–UF4. All the experimental results are averaged over 30 independent runs and the figures in the
experimental studies indicate the best result among the 30 runs.

By investigating the four representative floods, the performance of the proposed MOEA/D-DE is
compared with MOEA/D (Zhang and Li 2007), DMOEA/D (Gu, Liu, and Tan 2012) and NSGA-II
(Deb et al. 2002) with the aim of validating the effectiveness of the suggested improvements made in
MOEA/D-DE. In the following experimental studies, the parameters of MOEA/D-DE andMOEA/D
are consistent with those in Zhang and Li (2007). The parameter settings of the DMOEA/D and
NSGA-II algorithms are the same as reported in Gu, Liu, and Tan (2012) and Deb et al. (2002),
respectively.

4.3.1. Experimental studies on benchmark problemswith complex Pareto fronts
Experimental studies on the four investigated benchmark problems with complex Pareto fronts were
conducted to make comparisons between the proposed MOEA/D-DE and the other three baseline
algorithms, MOEA/D, DMOEA/D and NSGA-II. Figure 3 illustrates the distribution of the best
approximation of Pareto sets with the lowest IGD values obtained by the four compared algorithms.
It can be seen thatMOEA/D-DE obtains solution sets with better convergence than those obtained by
MOEA/D andNSGA-II on problemF1.On the other hand,MOEA/D-DEoutperformsMOEA/D and
NSGA-II on problems F2, F3 and F4 in terms of uniformity. Compared with DMOEA/D, MOEA/D-
DE performs as well as DMOEA/D on problems F1, F2 and F4. For problem F3, MOEA/D-DE
performs better in terms of uniformity.

Table 2 compares the performance of MOEA/D-DE, MOEA/D, DMOEA/D and NSGA-II on the
four benchmark problems in terms of the IGD metric. The mean and standard deviation of IGD
values are presented, in which the best results among the compared algorithms are highlighted in
bold.
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Figure 3. Best approximation of Pareto fronts (PFs) obtained by the compared algorithms on the four benchmark problems
with complex Pareto fronts.MOEA/D-DE = multi-objective evolutionary algorithmbased ondecomposition–differential evolution;
MOEA/D = multi-objective evolutionary algorithm based on decomposition; DMOEA/D = dynamic multi-objective evolutionary
algorithm based on decomposition; NSGA-II = non-dominated sorting genetic algorithm II.
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Figure 3. Continued.
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Table 2. Comparison of benchmark problems with complex Pareto fronts in terms of the inverted generational distance metric.

Problem

Algorithm F1 F2 F3 F4

MOEA/D-DE 1.3798e-04 2.5587e-04 3.5193e-04 2.0152e-04
(3.5339e-04) (4.1209e-05) (5.9543e-07) (1.2564e-08)

MOEA/D 6.3369e-04+ 6.200e-03+ 4.600e-03+ 4.6662e-04+
(7.2098e-03) (6.1539e-04) (6.4295e-07) (6.2187e-07)

DMOEA/D 1.3845e-04+ 2.5599e-04= 8.4087e-04+ 2.0171e-04=
(4.1353e-04) (6.2297e-05) (3.23673e-06) (6.7544e-08)

NSGA-II 1.5124e-04+ 2.5691e-04= 3.5728e-04+ 5.800e-03+
NSGA-II (2.3741e-03) (4.3519e-05) (8.0343e-06) (8.1568e-07)

Note: Data are shown as mean (standard deviation).
MOEA/D-DE = multi-objective evolutionary algorithm based on decomposition–differential evolution; MOEA/D = multi-
objective evolutionary algorithm based on decomposition; DMOEA/D = dynamic multi-objective evolutionary algorithm based
on decomposition; NSGA-II = non-dominated sorting genetic algorithm II.

TheWilcoxon rank-sum test (Wilcoxon 1945) with a confidence level of 0.95 was conducted based
on the IGD values to assess the statistical significance of the results. In Table 2, the symbols ‘+’,
‘= ’ and ‘–’, respectively, indicate that the performance of MOEA/D-DE is statistically better than,
equivalent to and not as good as the compared algorithm.

As shown in Table 2, the proposed MOEA/D-DE has smaller average IGD values than the orig-
inal MOEA/D, DMOEA/D and NSGA-II, which illustrates the superiority of MOEA/D-DE over
MOEA/D, DMOEA/D and NSGA-II. In addition, MOEA/D-DE has smaller standard deviations of
IGD values, which demonstrates that MOEA/D-DE performs more stably.

4.3.2. Experimental studies on benchmark problemswith complex Pareto sets
The performances of the four compared algorithms on the suite of UF test instances in the CEC 2009
competitionwere also investigated to illustrate the superiority of the proposedMOEA/D-DE. Figure 4
illustrates the solution sets with the lowest IGD values obtained by the four compared algorithms. As
shown in this figure, MOEA/D-DE performs significantly better than the other three algorithms on
all four investigated UF problems in terms of coverage and uniformity. MOEA/D-DE outperforms
DMOEA/D on problems UF1, UF2 and UF4 in terms of uniformity. For problem UF3, DMOEA/D
fails to achieve as good convergence as the proposed MOEA/D-DE.

Table 3 compares the performance of MOEA/D-DE, MOEA/D, DMOEA/D and NSGA-II on the
four UF problems in terms of the IGDmetric. It can be seen that MOEA/D-DE has lower mean IGD
values thanDMOEA/D andNSGA-II, which indicates that the proposedMOEA/D-DE performs bet-
ter than DMOEA/D and NSGA-II on multi-objective problems with complex Pareto sets. Compared
with MOEA/D, the proposed MOEA/D-DE also has lower mean IGD values on three out of the four
UF problems, the exception being the UF4 problem. It can be seen from Figure 4 that MOEA/D per-
forms better in terms of convergence; however, MOEA/D-DE has better uniformity over the whole
Pareto front.

4.3.3. Experimental results on RFCO problems
The ideal Pareto fronts of the four investigated floods are the non-dominated solutions found by
running the original MOEA/D with 5,000,000 function evaluations over 30 independent runs. The
total dispatching times of the floods on 12 October 2000, 28 August 2003, 1 October 2005 and 15
July 2010 are 97 h, 44 h, 73 h and 145 h, respectively. To control the number of decision variables, the
dispatching time intervals of the above four floods are set as 6 h, 3 h, 4 h and 6 h, respectively.

Figure 5 illustrates the best approximation of the Pareto sets obtained byMOEA/D-DE, MOEA/D
and NSGA-II for the four investigated floods. These data are the Pareto-optimal sets with the largest
HV metric values obtained by the two comparison algorithms over 30 independent runs. It can be
seen that the proposed MOEA/D-DE can obtain Pareto-optimal sets with better uniformity and
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Figure 4. Best approximation of Pareto fronts (PFs) obtained by the compared algorithms on the UF suite of problems with
complex Pareto sets. MOEA/D-DE = multi-objective evolutionary algorithm based on decomposition–differential evolution;
MOEA/D = multi-objective evolutionary algorithm based on decomposition; DMOEA/D = dynamic multi-objective evolutionary
algorithm based on decomposition; NSGA-II = non-dominated sorting genetic algorithm II.
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Figure 4. Continued.
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Table 3. Comparison of the UF suite of problems with complex Pareto sets in terms of the inverted generational distance metric.

Problem

Algorithm UF1 UF2 UF3 UF4

MOEA/D-DE 7.7177e-05 1.4980e-04 3.8395e-04 1.9762e-03
(1.2312e-04) (2.1487e-05) (9.2168e-06) (4.1879e-06)

MOEA/D 3.3284e-03+ 5.2721e-04+ 6.5489e-03+ 1.5146e-03–
(5.1681e-04) (1.2485e-05) (1.4780e-06) (4.1584e-06)

DMOEA/D 6.6047e-04+ 2.3558e-04+ 6.8419e-03+ 2.2268e-03+
(5.8619e-05) (5.2196e-05) (3.1468e-06) (7.2159e-07)

NSGA-II 3.6216e-03+ 2.2864e-03+ 6.4293e-04+ 2.7652e-03+
(1.6518e-04) (7.1543e-05) (7.1586e-06) (8.3549e-06)

Note: Data are shown as mean (standard deviation).
MOEA/D-DE = multi-objective evolutionary algorithm based on decomposition–differential evolution; MOEA/D = multi-
objective evolutionary algorithm based on decomposition; DMOEA/D = dynamic multi-objective evolutionary algorithm based
on decomposition; NSGA-II = non-dominated sorting genetic algorithm II.

coverage over the ideal Pareto front. This significant improvement results from the DE-inspired
recombination operator.

As previously been validated by Qi, Hou, Yin, et al. (2015), the DE-inspired recombination oper-
ator provides two types of candidate search directions. One of them will guide the search to find new
points along the current Pareto set and thus result in the solutions being evenly scattered along the
current Pareto set. The other one will lead the algorithm to obtain new points apart from the current
Pareto set and explore further search regions to make the Pareto set wider. This is the reason why the
proposed MOEA/D-DE has superior performance to the original MOEA/D for the four investigated
floods.

Figure 6 shows the discharge volumes and the upstream water levels of the best Pareto-optimal
sets obtained by MOEA/D-DE. As shown in this figure, most of the obtained dispatching schemes
can significantly reduce the inflow flood peaks and provide stable discharging flows. With regard
to the curves of the upstream water level, MOEA/D-DE successfully guarantees the safety of the
dam by ensuring that the upstream water levels never get so high that they threaten the dam. In
addition, MOEA/D-DE can provide Pareto-optimal solutions with good diversity. Taking the flood
on 28 August 2003 as an example, most of the obtained solutions have stable discharge volumes
and upstream water levels; however, there are also solutions with relatively high discharge volumes
and thus extremely low upstream water levels. These irregular solutions could be selected to be put
into practice at the beginning of the flood season, especially when an extraordinarily big flood is
anticipated.

Table 4 shows themeans and standard deviations of theHVmetric values of the solutions obtained
by MOEA/D-DE andMOEA/D over 30 independent runs for the four investigated floods. The refer-
ence points for calculating the HV values are set as follows: (330, 10,000) for the flood on 12 October
2000, (328, 5000) for the flood on 28 August 2003, (328, 14,000) for the flood on 1 October 2005 and
(329, 7000) for the flood on 15 July 2010. It can be seen that the proposed MOEA/D-DE has larger
average HV values than the original MOEA/D, DMOEA/D and NSGA-II, which illustrates the supe-
riority of MOEA/D-DE over MOEA/D, DMOEA/D and NSGA-II. In addition, MOEA/D-DE has
smaller standard deviations of HV values, which demonstrates that MOEA/D-DE performs more
stably.

4.3.4. Experimental results on the running time of all algorithms
The UF suite of problems is taken as an example to compare the running time of the proposed
MOEA/D-DE with the other baseline algorithms. The results are reported in Table 5.

It can be seen that NSGA-II, with time complexity of O(N2), is the most time-consuming
algorithm, and MOEA/D, with time complexity of O(TN), requires the least running time (N is
the population size and T is the neighbourhood size of the decomposition subproblems). The two
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Figure 5. Comparison of the best approximation of Pareto sets obtained by the compared algorithms on the four investigated
floods. MOEA/D-DE = multi-objective evolutionary algorithm based on decomposition–differential evolution; MOEA/D = multi-
objective evolutionary algorithmbased on decomposition; DMOEA/D = dynamicmulti-objective evolutionary algorithmbased on
decomposition; NSGA-II = non-dominated sorting genetic algorithm II.
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Figure 5. Continued.



ENGINEERING OPTIMIZATION 59

0 5 10 15
0

2000

4000

6000

8000

10000

12000

14000
Flood on October 12, 2000

Dispatching Periods (Time Interval: 6 Hours)

D
is

ch
ar

ge
 V

ol
um

e 
(m

3 /s
)

MOEA/D-DE

0 2 4 6 8 10 12 14 16
310

315

320

325

330

335
Flood on October 12, 2000

Dispatching Periods (Time Interval: 6 Hours)

U
ps

tr
ea

m
 W

at
er

 L
ev

el
 (

m
) MOEA/D-DE

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Flood on August 28, 2003

Dispatching Periods (Time Interval: 3 Hours)

D
is

ch
ar

ge
 V

ol
um

e 
(m

3 /s
)

MOEA/D-DE

0 5 10 15
300

305

310

315

320

325

330

335
Flood on August 28, 2003

Dispatching Periods (Time Interval: 3 Hours)

U
ps

tr
ea

m
 W

at
er

 L
ev

el
 (

m
) MOEA/D-DE

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Flood on October 1, 2005

Dispatching Periods (Time Interval: 4 Hours)

D
is

ch
ar

ge
 V

ol
um

e 
(m

3 /s
)

MOEA/D-DE

0 5 10 15
300

305

310

315

320

325

330

335
Flood on October 1, 2005

Dispatching Periods (Time Interval: 4 Hours)

U
ps

tr
ea

m
 W

at
er

 L
ev

el
 (

m
) MOEA/D-DE

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Flood on July 15, 2010

Dispatching Periods (Time Interval: 6 Hours)

D
is

ch
ar

ge
 V

ol
um

e 
(m

3 /s
)

MOEA/D-DE

0 5 10 15 20 25
300

305

310

315

320

325

330

335

Flood on July 15, 2010

Dispatching Periods (Time Interval: 6 Hours)

U
ps

tr
ea

m
 W

at
er

 L
ev

el
 (

m
) MOEA/D-DE

Figure 6. Details of the discharge volumes and upstream water levels of the best Pareto-optimal sets obtained by the multi-
objective evolutionary algorithm based on decomposition–differential evolution (MOEA/D-DE).
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Table 4. Statistical hyper-volume values of the solutions found by the compared algorithms for the four investigated floods.

Investigated flood

Algorithm 12 October 2000 28 August 2003 1 October 2005 15 July 2010

MOEA/D-DE 1.112e+ 09 1.236e+ 09 9.522e+ 09 1.211e+ 09
(1.754e+ 07) (4.133e+ 06) (6.635e+ 05) (8.726e+ 07)

MOEA/D 1.001e+ 09= 1.103e+ 09+ 8.065e+ 08+ 1.051e+ 09+
(7.131e+ 07) (4.249e+ 07) (2.621e+ 07) (3.313e+ 08)

DMOEA/D 9.876e+ 08+ 1.232e+ 09= 9.176e+ 09= 1.117e+ 09+
(3.542e+ 07) (8.249e+ 06) (7.364e+ 08) (5.168e+ 08)

NSGA-II 8.621e+ 08+ 1.229e+ 09= 9.194e+ 08+ 1.108e+ 09+
(2.479e+ 07) (5.534e+ 08) (7.249e+ 07) (1.572e+ 08)

Note: Data are shown as mean (standard deviation). The best results are shown in bold.
MOEA/D-DE = multi-objective evolutionary algorithm based on decomposition–differential evolution; MOEA/D = multi-
objective evolutionary algorithm based on decomposition; DMOEA/D = dynamic multi-objective evolutionary algorithm based
on decomposition; NSGA-II = non-dominated sorting genetic algorithm II.

Table 5. Running time (in seconds) of the compared algorithms.

Algorithm

Problem MOEA/D-DE DMOEA/D MOEA/D NSGA-II

UF1 10.653 8.259 4.979 27.237
UF2 11.784 10.148 6.05 26.002
UF3 11.215 9.843 5.683 28.931
UF4 10.695 9.416 5.844 24.958

Note: MOEA/D-DE = multi-objective evolutionary algorithm based on decomposition–differential evolution; MOEA/D = multi-
objective evolutionary algorithm based on decomposition; DMOEA/D = dynamic multi-objective evolutionary algorithm based
on decomposition; NSGA-II = non-dominated sorting genetic algorithm II.

enhanced MOEA/D algorithms, MOEA/D-DE and DMOEA/D, spend twice as much running time
as the original MOEA/D algorithm on the four investigated problems; however, both of them run
faster than NSGA-II. MOEA/D-DE runs slightly slower than DMOEA/D, owing to the execution of
the DE-inspired recombination operator in this algorithm.

5. Conclusions

In this work, a DE-inspired recombination operator, which is specially designed for continu-
ous MOPs, is introduced into the algorithmic framework of the MOEA/D to form the proposed
MOEA/D-DE for solving multi-objective RFCO problems. By considering the regularity of con-
tinuous MOPs, the DE-inspired recombination operator provides two types of candidate searching
directions which are designed to complement each other. One of them guides the search to find new
points along the current Pareto set, resulting in the solutions being evenly scattered along current
Pareto set. The other leads the algorithm to obtain new points apart from the current Pareto set and
explore further search regions to make the Pareto set wider.

Experimental results on benchmark problems and four typical floods at the Ankang reservoir have
illustrated that, with the help of the DE-inspired recombination operator, the proposedMOEA/D-DE
has superior performance to the original MOEA/D, obtaining Pareto-optimal sets with better unifor-
mity and coverage. Moreover, the dispatching schemes obtained by MOEA/D-DE can significantly
reduce the inflow flood peak and guarantee safety both upstream and downstream of the dam.

The proposed algorithm can be combined with existing selection techniques in the objective space
to further improve the algorithm’s performance, which will be the subject of future work.
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