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A B S T R A C T

In this study, reference evapotranspiration (ET0) forecasting models are developed for the least economically
developed regions subject to meteorological data scarcity. Firstly, the partial mutual information (PMI) capable
of capturing the linear and nonlinear dependence is investigated regarding its utility to identify relevant pre-
dictors and exclude those that are redundant through the comparison with partial linear correlation. An efficient
input selection technique is crucial for decreasing model data requirements. Then, the interconnection between
global climate indices and regional ET0 is identified. Relevant climatic indices are introduced as additional
predictors to comprise information regarding ET0, which ought to be provided by meteorological data un-
available. The case study in the Jing River and Beiluo River basins, China, reveals that PMI outperforms the
partial linear correlation in excluding the redundant information, favouring the yield of smaller predictor sets.
The teleconnection analysis identifies the correlation between Nino 1+ 2 and regional ET0, indicating influ-
ences of ENSO events on the evapotranspiration process in the study area. Furthermore, introducing Nino 1+2
as predictors helps to yield more accurate ET0 forecasts. A model performance comparison also shows that non-
linear stochastic models (SVR or RF with input selection through PMI) do not always outperform linear models
(MLR with inputs screen by linear correlation). However, the former can offer quite comparable performance
depending on smaller predictor sets. Therefore, efforts such as screening model inputs through PMI and in-
corporating global climatic indices interconnected with ET0 can benefit the development of ET0 forecasting
models suitable for data-scarce regions.

1. Introduction

Evapotranspiration is a crucial component in the hydrological cycle,
simultaneously transferring water from land, oceans and plants to the
atmosphere through evaporation and transpiration (Tabari et al.,
2013). Estimating the reference evapotranspiration (ET0) is essential for
engineering applications like the irrigation scheduling as well as sci-
entific research like the hydrological modelling. The FAO-56 Penman-
Monteith (FAO-PM) equation (Allen et al., 1998) is recommended by
the Food and Agriculture Organization (FAO) to be a standard model
for estimating ET0. Benefiting from a solid physical foundation, the
FAO-PM equation with related adjustments can be used as a good es-
timator (Jato-Espino et al., 2016). Its main drawback, however, lies in
its relatively high data requirement, which limits its application in
many regions, especially in the least economically developed countries,
where sufficient meteorological stations and reliable observations are
often unavailable (Droogers and Allen, 2002). Therefore, it is of im-
portant significance to develop alternative models with lower data

burden and computationally suitable for forecasting ET0 in data-scarce
regions.

The aforementioned limitation of the FAO-PM equation has led re-
searchers to turn to numerous empirical models with reduced data re-
quirements. Empirical models mainly include temperature-based
(Hargreaves, Blaney-Criddle and Thornthwaite) equations and radia-
tion-based (Priestley-Taylor, Makkink and Jensen-Haise) equations,
some of which the FAO-PM equation evolved from. As no universal
consensus has been achieved on their global applicability, additional
parameter estimation is an indispensable step in applying empirical
models to different climatic conditions (Droogers and Allen, 2002;
Nandagiri and Kovoor, 2006). The other category of alternative models
manages to capture the mapping relationship between selected inputs
and ET0 by means of statistical methods or artificial intelligence ap-
proaches covering from multiple linear regression, autoregressive
moving average and support vector regression (Jato-Espino et al., 2016;
Psilovikos and Elhag, 2013; Tabari et al., 2012; Cheng et al., 2016) to
various neural networks and evolutionary algorithms (Falamarzi et al.,
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2014; Shiri et al., 2014; Traore et al., 2016; Fang et al., 2017). For all
these models, identifying the optimal input is a fundamental task and is
a necessity to reduce the model data requirements. The conventional
solution is to test several input combinations comprising only a portion
of the meteorological variables available and then derive the optimal
input set according to predetermined evaluation criteria (Parasuraman
et al., 2007; Partal, 2016; Traore et al., 2016). Though a computa-
tionally efficient searching strategy, examining a fraction of all possible
combinations instead of an exhaustive search still leaves doubt as to
whether there are some combinations with lower data requirements
outperforming the ‘optimal’ input set selected. The other strategy for
screening model inputs is based on calculating the linear correlation
coefficient, which statistically quantifies the linear dependence be-
tween each meteorological variable and ET0 (Jain et al., 2008; Kişi,
2006). Meteorological variables with strong linear correlation with ET0

are included in the model input set. This strategy, however, is argued to
likely select redundant inputs that provide the same amount of in-
formation regarding ET0. Afterward, the partial linear correlation is
introduced to further eliminate the redundant information from the
input set (Mallikarjuna et al., 2012). On the other hand, evapo-
transpiration is universally considered a nonlinear process dependent
on interacting climatological variables. As a result, the nonlinear dy-
namics of the evapotranspiration process may not be well captured by
only examining the linear correlation.

To this end, entropy and mutual information (MI), two important
notions in information theory, are introduced to quantify more general
(both linear and nonlinear) dependence. Entropy is known to be a
measure of uncertainty for given variables and it is through the notion
of entropy that MI is derived (Quilty et al., 2016). MI, also termed
transinformation, is defined as the information content of one variable
that is also contained by another variable and is formulated as the
difference between total entropy of the two random variables and their
joint entropy (Ahmadi et al., 2009; Yang et al., 2000). Ahmadi et al.
(2009) and Nourani et al. (2015) have applied these two information-
content-based criteria (namely, entropy and MI) to input selection for
solar radiation estimation and rainfall-runoff modelling, respectively.
Evaluating entropy and MI makes it possible for input selection to
consider both linear and nonlinear dependence between input candi-
dates and model output. However, as in the case of selecting input
through the linear correlation coefficient, there is a disadvantage when
using entropy and MI to screen meaningful inputs. This is, an input
strongly correlated with the model output might provide redundant
information that has been explained by previously selected inputs. To
overcome this shortcoming, Sharma (2000) proposed partial mutual
information (PMI) for evaluating the additional mutual information
attained by adding a potential input to the model input set. In this
study, the utility of the partial mutual information to identify relevant
predictors for ET0 is investigated and is compared with that of the
partial linear correlation.

The past two decades have witnessed an increasing number of stu-
dies on the interconnections between hydrological variables and global
climate patterns at multiple timescales. For precipitation, streamflow
and groundwater levels, numerous research has identified their delayed
response to variability in climatic indices, such as the North Atlantic
Oscillation (NAO), Southern Oscillation Index (SOI) and Pacific-North
American pattern (PNA) (Cai et al., 2010; Coleman and Budikova,
2013; Tremblay et al., 2011, Huang et al., 2018, Liu et al., 2018). Wang
et al. (2006) revealed the strong influence of El Niño–Southern Oscil-
lation (ENSO) events on regional precipitation in the Yellow River
Basin, China, which resulted in a 51% decrease in runoff to the sea.
Zhang et al. (2007) reported the spatially changing (in-phase or anti-
phase) interconnection between ENSO and the annual maximum
streamflow from the upper to the lower Yangtze River Basin, China. It
was found by Xu et al. (2007) that approximately 20% of 481 gauging
stations in China showed a significant correlation between precipitation
and SOI, and a more negative correlation than positive was observed.

Such interconnections have been exploited by forecast practices invol-
ving these hydrological variables successfully (Fan et al., 2015; Schepen
et al., 2012; Yang et al., 2017). With respect to ET0, Meza (2005) found
that ET0 variation in the Maipo River Basin, Chile, was influenced by
phases of ENSO, concluding that during the winter and spring, there
was up to a 30% difference in ET0 between the El Niño and La Niña
years. Sabziparvar et al. (2011) analysed the ET0-SOI interconnection at
13 meteorological station sites in Iran. At most of the studied sites,
winter and spring ENSO events influenced the ET0 values of the fol-
lowing summer and autumn. Spatially, more significant impacts of
ENSO forcing on ET0 variability were observed at warm arid sites than
at humid sites. Tabari et al. (2014) examined the ET0-NAO inter-
connection during winter at 41 Iranian meteorological stations. The
results disclosed the negative correlation between winter ET0 and NOA
index, and a negative phase of NAO led to a 3% increase in ET0 values
relative to those during a positive phase. In spite of studies reporting
the apparent interconnection between regional ET0 and global climate
patterns, little attention has been paid to incorporating influential cli-
matic indices into ET0 forecasting practices. Therefore, this study em-
ploys global climatic indices as additional potential inputs of fore-
casting models to analyse their correlation with ET0 in the study area
and investigate their role in yielding a higher forecasting accuracy. The
merit lies in that these climatic indices can be easily acquired from
related research institutions and do not increase the data collection
burden, and they can be universally applied to regions with meteor-
ological data scarcity.

This study aims to (1) investigate the utility of partial mutual in-
formation to identify meaningful predictors for ET0 through a com-
parison with the partial linear correlation, which merely measures the
linear dependence; (2) recognize the interconnection between global
climate indices and regional ET0; and (3) recommend the optimal ET0

forecasting models having both favourable performance and lower data
requirements for regions subject to data scarcity. An appropriate input
variable selection (IVS) technique benefits models through effectively
decreasing the data requirements. In addition, introducing climatic
indices may favour the explanation of variability in ET0, which ought to
be interpreted by the missing meteorological variables. Therefore, the
study could have important implications for developing ET0 forecasting
models suitable for the least economically developed countries.

2. Model developments

2.1. An overview of ET0 forecasting models

The procedure for developing ET0 forecasting models is organized
into four parts, which are depicted in Fig. 1.

2.1.1. Input candidate pools
Scenario 1 is utilized to compare the utility of the partial mutual

information and partial linear correlation to screen predictors for ET0.
Under Scenario 1, the input candidate pool comprises all local me-
teorological variables characterizing variations in air temperature, air
pressure, precipitation, humidity, solar radiation and wind speed. It is a
prevailing means of composing the input candidate pool and has been
used in many previous studies (Chatzithomas and Alexandris, 2015;
Kumar et al., 2002; Tabari et al., 2012). Scenario 2 further comprises
global climatic indices, in addition to the meteorological variables of
Scenario 1, and can provide a comparison with Scenario 1 for in-
vestigating the effectiveness of climatic indices in enhancing model
performance. Scenario 3 is used for developing ET0 forecasting models
suitable for the least economically developed regions. With considera-
tion of the meteorological data scarcity in many such regions, the input
candidate pool under the latter scenario only includes routinely mea-
sured meteorological variables (air temperature and sunshine dura-
tion), which are available at nearly all meteorological stations. Global
climatic indices are further introduced as potential model inputs to
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make up the information regarding ET0, which ought to be provided by
meteorological variables unavailable, such as the humidity, wind speed
and solar radiation.

2.1.2. Input identification
Variables relevant to ET0 are identified from the candidate pool by

means of partial-correlation-based or partial-mutual-information-based
IVS methods, which can measure the linear or nonlinear dependence
between random variables. Then, the relevant variables selected con-
stitute the predictor set for the predictand, ET0.

2.1.3. Fitting process
Predictors of ET0 serve as inputs of the fitting methods adopted,

including multiple linear regression, support vector regression and
random forecast. Three methods compete to capture the mapping re-
lationship between predictors and the predictand in linear or nonlinear
manners.

2.1.4. Post analysis
Performance of ET0 forecasting models combining different IVS

methods and fitting methods is quantified according to evaluation cri-
teria. Then, the optimal model is recommended that has both favour-
able forecasting skills and low data requirements to predict ET0 in data-
scarce regions.

2.2. Input variable selection techniques

IVS is the fundamental consideration during the development of
accurate and cost-effective statistical models, whose task is to identify
the fewest input variables required to interpret the behaviour of model
output (May et al., 2011). ‘Fewest’ implies that both irrelevant and
redundant variables need to be excluded from the resulting predictor
set. In this study, the partial-correlation and partial-mutual-informa-
tion-based IVS techniques are adopted.

2.2.1. Partial-correlation-based input selection (PCIS)
The Pearson correlation coefficient, measuring the linear depen-

dence between two random variables, is defined as follows:
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where Y and X are a predictand and a potential input variable, re-
spectively; (xi, yi) represents the i-th bivariate sample; and n denotes the
sample size.

In an extensively used IVS algorithm, Pearson correlation coeffi-
cients between the predictand and each potential input variable are
calculated and arranged in a descending order. Afterwards, a forward
selection is performed, in which potential input variables whose cor-
relation coefficients rank the top k or significantly differ from zero are
selected as relevant variables or predictors of the predictand.
Obviously, the Pearson-correlation-coefficient-based IVS algorithm
follows the screening criterion of maximum relevance; however,
without considering the redundancy between selected predictors.
Redundancy means that two or more predictors can provide the same
amount of information regarding the predictand. As a result, the pre-
dictor identification based on Pearson correlation coefficients ignoring
the other crucial filtering criterion – the minimum redundancy – tends
to choose some redundant predictors from the input candidate pool.

To further exclude redundant variables, this algorithm is modified
by replacing the Pearson correlation coefficient with the partial corre-
lation. The partial correlation coefficient quantifies the additional de-
pendence between each input candidate and the predictand Y that
cannot be accounted for by the predictors having been selected
(Sharma, 2000). In detail, if the first predictor (Z1) is identified, the
partial correlation between Y and each potential input X in the candi-
date pool is expressed as follows:
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If the second predictor (Z2) is subsequently identified, the partial
correlation, conditional on two predictors selected (Z1 and Z2), is
computed as (De La Fuente et al., 2004) follows:

Input candidate pool
Meteorological variables

Scenario 1
Meteorological variables & 

Climatic indices

Scenario 2

Input identification
Linear selection method

Partial correlation based input selction

Nonlinear selection method

Partial mutual information based input selction

Fitting Process
Linear fitting method

Multiple linear regression

Nonlinear fitting method

Support vector regression

Nonlinear fitting method

Random forest

Post anlysis
Model recommendation

Air temperature, Sunshine 
duration & Climatic indices

Scenario 3

Fig. 1. Schematic description of developing ET0 forecasting models.
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Similarly, a higher-order partial correlation coefficient can be cal-
culated as more predictors are progressively screened out.

In the partial-correlation-based input variable selection (PCIS) al-
gorithm, the modified correlation measurement and the forward se-
lection guarantee the effective implementation of the minimum-re-
dundancy – maximum-relevance (mRMR) criterion. The selection
process will terminate if the maximum partial correlation regarding the
remaining potential input variables no longer significantly differs from
zero at the 95% confidence level.

2.2.2. Partial-mutual-information-based input selection (PMIS)
The PCIS algorithm, despite having been used extensively, is criti-

cized for its fundamental assumption of a linearly structured depen-
dence between predictors and predictands within the system to be
modelled, as well as its sensitivity to the noise carried by samples (May
et al., 2008). As a crucial component in the hydrological cycle, eva-
potranspiration is a highly complicated and nonlinear process driven by
interacting climatological factors, such as precipitation, temperature,
and wind speed (Kim and Kim, 2008; Kumar et al., 2002). Therefore, a
PCIS algorithm capable of evaluating linear dependence in the system
studied may not be suitable for addressing the nonlinear relationships
of the evapotranspiration process.

An alternative to the PCIS algorithm is the partial-mutual-in-
formation-based input variable selection (PMIS) algorithm without an
assumption of the dependence structure. It provides an emerging ap-
proach for detecting both linear and nonlinear dependence in a multi-
variate system, based on mutual information (MI) rooted in the in-
formation theory (Fraser and Swinney, 1986). MI between the
predictand Y and a potential input variable X is given as follows:
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where pX(x) and pY(y) signify marginal probability density functions
(PDFs) of X and Y, respectively, and pX,Y(x, y) denotes the joint PDF. IXY
is often interpreted as the reduction in the uncertainty regarding Y
owing to the observation of X. Evidently, no dependence between X and
Y will lead to an IXY equal to 0, and a higher IXY value shows a stronger
correlation between two random variables.

In a practical context, IXY is estimated using a set of bivariate
samples as follows:
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where (xi, yi) is the i-th sample point; n represents the sample size; fX(x),
and fY(y) and fX,Y(x, y) denote the estimation of the corresponding
marginal and joint PDFs, respectively.

Estimating the marginal and joint PDFs can be performed using
either a crude histogram or a kernel density estimator (KDE). Here,
owing to its favourable accuracy and robustness, the latter coupled with
the Gaussian kernel is employed to derive the following estimation of
PDF:
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where fU(u) is the multivariate PDF estimation of d-dimensional vari-
able set U; S denotes the sample covariance matrix of U; det () sym-
bolizes the determinant operation; and λ represents the kernel band-
width that largely determines the estimation accuracy of PDF and is
empirically recommended by Sharma (2000) as Eq. (7):
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As in the case of the Pearson correlation coefficient, the forward
selection scheme choosing the top-k values of MI between the pre-
dictand and each potential input variable serves as an effective means
of excluding irrelevant variables, but it is likely to include those that are
redundant. Hence, there is a need to introduce the partial mutual in-
formation (PMI) analogous to the partial relation. It quantifies how
much remaining uncertainty regarding Y that has not yet been ex-
plained by the selected predictors can be further interpreted by the
observation of X. PMI between X and Y, conditional on a predictor set Z
with m members, is formulated as follows:
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where X′ and Y′ represent the residual information contained in vari-
ables X and Y, which cannot be accounted for by Z.

Sample-based estimation of PMI is expressed as follows:
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where ′′f x( )X ′′f y( )Y and ′ ′′ ′f x y( , )X Y, are marginal and joint PDFs that
can be estimated by following Eq. (6), respectively, and n is the number
of samples.
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in which E [] denotes the expectation operation. The conditional
expectation E x z[ | ] is the mean of the conditional PDF
( =p x p x pz z z( | ) ( , )/ ( )X XZ Z Z| , ); therefore, it can be estimated via the KDE
according to Eq. (11) as follows:
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where SXZ signifies the cross-covariance of X and Z, and SZZ denotes the
covariance of Z. E y z[ | ] can be obtained in a similar manner.

In this study, the predictor-identification process based on the PIMS
algorithm adopts Akaike information criterion (AIC) as the termination
criterion and is detailed as follows:

(a) Construct an input candidate pool C based on prior knowledge re-
garding the system to be modelled. Initialize a null set X to place
selected predictors. Assume X and the predictand to be the system
input and output, respectively.

(b) To identify the first predictor, calculate the MI between the pre-
dictand and each potential input by following Eqs. (5)–(7). Add that
with the maximum MI score to the predictor set X and remove it
from the candidate pool C.

(c) Use a general regression neural network (GRNN) to fit the re-
lationship between the model input X and output. Calculate the AIC
of the system and mark it by AICX.
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(d) As for recognizing more predictors, follow Eqs. (9)–(11) to evaluate
the PMI between the predictand and each remaining input candi-
date in C.

(e) Identify the input candidate cj having the maximum PMI score.
Assume X ∩ cj to be the new predictor set. Use GRNN to fit the re-
lationship between the predictand and X ∩ cj. Calculate the corre-
sponding AIC, ∩AIC cX j. If ∩AIC cX j is smaller than AICX, add cj to the
predictor set X and remove it from the candidate pool C.

(f) Repeat steps (c)–(e). Once ∩AIC cX j becomes larger than AICX, the
input selection is terminated.

Note that the termination criterion, AIC, can provide a tradeoff
between the goodness-of-fit and the model complexity and is for-
mulated as follows:
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where n denotes the number of samples, ui represents the model output
residual resulting from the regression of ET0 on the predictor set X
through GRNN, and p is the Vapnik–Chernovenkis (VC) dimension
characterizing the model complexity.

2.3. Fitting techniques

Three fitting techniques (multiple linear regression, support vector
regression and random forest) compete to capture the mapping re-
lationship between ET0 and the screened predictor set. Such efforts aim
at reducing the model uncertainties arising from selecting appropriate
fitting techniques.

2.3.1. Multiple linear regression
Assume that the predictor set X of the predictand Y is composed of k

variables, i.e., X1, …, Xk. Multiple linear regression (MLR) approximates
the input–output relationship of a multivariable system in the following
manner (Grégoire, 2014):

= + + …+ +y β β x β x εk k0 1 1 (13)

where = …β β β[ , , ]k1 are coefficients to be estimated; ɛ is the noise with
the mean equal to zero and unknown variance. Usually, the core task,
estimating coefficients β, is accomplished using the least square method
(Chatterjee and Hadi, 1986).

2.3.2. Support vector regression (SVR)
Support vector regression (SVR) first maps the predictor set into a

higher dimensional feature space where the predictand can be linearly
described and then subtly converts the linear expression in the feature
space back to the original predictor space with the help of a Mercer
kernel. The linear relationship in the higher feature space can be for-
mulated as follows:

= 〈 〉 +f x φ bw x( ) · ( ) (14)

where w and b are the weight vector and offset coefficient, respectively;
〈 〉· represents the dot product; and φ() is the transformation function
used for mapping x from the original predictor space into the a higher
feature space.

w and b are estimated by minimizing the regression risk expressed
as Eq. (15):

= +R w R1
2

‖ ‖SVR emp
2

(15)

where ‖w‖2 measures the flatness of the regression model, which in-
dicates the model complexity; and Remp is the empirical risk.

Usually, the regression risk is minimized by addressing it with a
convex optimization. Important details regarding the algorithm can be
found in Chang and Lin (2011), Cortes and Vapnik (1995), and Smola

and Schölkopf (2004). Finally, the derived linear equation in the higher
feature space is converted to a nonlinear form in the original predictor
space by the kernel function k().

Commonly used kernel functions include linear, polynomial, sig-
moid and radial basis function (RBF) types. In this study, the RBF kernel
presented in Eq. (16) is adopted:

= − −k γx x x x( , ) exp( ‖ ‖ )i i
2 (16)

where γ denotes the kernel width.
The performance of SVR is largely dependent on appropriately se-

lecting the parameter combination of C, γ and ɛ. Therefore, there is a
need to carefully tune these parameters.

2.3.3. Random forest (RF)
In 2001, Breiman (2001) developed the random forest (RF) for the

purpose of enhancing the performance of classification and regression
trees (CARTs) and reducing the risk of overfitting. Hereafter, the RF has
been widely applied to streamflow and electricity price forecasting (Mei
et al., 2014; Yang et al., 2017), as well as land cover and gene classi-
fication (Díaz-Uriarte and De Andres, 2006; Gislason et al., 2006). In
the regression analysis, the RF is an ensemble of regression trees, and
the algorithm is detailed as follows (Liaw and Wiener, 2002):

(a) Draw a bootstrap sample from the training set.
(b) Grow an unpruned regression tree to fit the bootstrap sample. At

each node, select m variables from all predictors randomly. Pick the
best split among the selected m variables to divide the node into
two child nodes. The best split is defined as the one capable of
minimizing the mean square error. Recursively repeat the split
process until the predetermined termination criterion, such as the
minimum members in child nodes or the maximum tree size, is met.

(c) Repeat steps (a) and (b) and aggregate B trees as an RF.
(d) Produce the final prediction by averaging the outputs of all the

trees.

The performance of RF is sensitive to the selection of the maximum
number of variables used to grow a regression tree m and the number of
regression trees B in the forest. Therefore, these two parameters need to
be carefully tuned.

2.4. Model calibration

As previously stated, there are several parameters largely governing
the performance of the fitting methods. The model calibration aims at
searching for the optimal combination of these parameters for SVR and
RF. The calibration mechanism adopted by this study combines a two-
stage calibration strategy and the well-known shuffled complex evolu-
tion (SCE-UA) algorithm (Duan et al., 1993, 1992).

Firstly, to prevent the model from overfitting, the calibration period
is divided into a calibration subperiod and a test subperiod. SVR or RF
with each parameter combination candidate is trained by samples in the
calibration subperiod. Note that the calibrated models are evaluated in
the test subperiod prior to being directly applied to the validation
period. The fitness of each parameter combination is characterized by
the smaller value of the Nash-Sutcliffe efficiency (NSE) coefficients
during the calibration and test subperiods, which is given by Eq. (17):

=fitness min(NSE ,NSE )cal tes (17)

Then, the SCE-UA algorithm is responsible for evolutionally and
iteratively generating a number of parameter combination candidates
within a predetermined parameter space. Eventually, the parameter
combination with the maximum fitness is identified to be the optimal
for SVR or RF.

Previous model calibration is accustomed to determining fitness of
parameter combinations only based on model performance during the
calibration period. However, the two-stage calibration strategy
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provides a more conservative but safer alternative, which could effec-
tively restrain the overfitting risk and therefore benefit models in
maintaining consistent in-sample and out-of-sample performance.

2.5. Evaluation criteria

The goodness-of-fit of ET0 forecasting models is evaluated by three
statistical measures, namely NSE, percent bias (PBIAS) and RMSE-ob-
servation standard deviation ratio (RSR).

NSE is computed using Eq. (18) as follows:
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where Ei
obs and Ei

fore denote the i-th observed and forecasted values of
ET0, respectively; E obs represents the mean of the observed ET0; and n is
the total number of observations. NSE varies from negative infinity to 1,
with 1 suggesting a perfect match between forecasts and observations,
and a value less than 0 indicating that E obs outperforms Ei

fore in

providing the better prediction.
The PBIAS shown in Eq. (19) measures the average tendency of the

forecasted ET0 relative to observations. A positive or negative value of
PBIAS indicates the overestimation or underestimation bias. A PBIAS
nearer to zero corresponds to a more accurate prediction.
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RMSE is a statistic used extensively in evaluating model perfor-
mance. In RSR, RMSE is standardized by the standard deviation of
observations. The merit of applying RSR is that Singh et al. (2005) have
proposed a guideline to quantify which RMSE is eligible to be identified
at a low level based on a comparison with the standard deviation of
observations as follows:

)b()a(

Fig. 2. Location of (a) the Jing River Basin and (b) Beiluo River Basin.
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In addition, the hit rate and the fraction of the predictions within a
factor of two of the observations (FAC2) are also calculated for the
validation period. They are formulated as follows (Tominaga et al.,
2015):
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3. Study area and data

Two basins, namely, the Jing River basin (JRB) and the Beiluo River
basin (BRB) in China, were taken as a case study.

3.1. Overview of the Jing River and Beiluo River

The Jing River and Beiluo River, which are depicted in Fig. 2, are
second-order tributaries of the Yellow River, China (Huang et al.,
2014). The Jing River flows 455 km from its headwaters in the Ningxia
Hui Autonomous Region, draining an area of 45,400 km2. The mean
annual discharge of the Jing River is 1.832 billion m3. The Beiluo River,
with a main channel length of 680 km, is the longest river in Shaanxi
Province. Annually, approximately 0.997 billion m3 of runoff flows
within its drainage area, estimated to be 26,900 km2. The two rivers
mainly travel across the Loess Plateau, which is known as one of China’s
most ecologically fragile regions having suffered from severe soil ero-
sion and desertification for centuries (Li et al., 2017). Over 350 million
tons of highly erodible loess are annually delivered from surface runoff
to the Yellow River.

The JRB and BRB have a continental monsoonal climate featuring
intensive precipitation and high temperatures during the summer and
rare precipitation and low temperatures during the winter (Liu et al.,
2017). Annual precipitation and reference evapotranspiration are ap-
proximately 550mm and 1100mm in the JRB, respectively. They are
520mm and 1100mm in the BRB, respectively. The reference evapo-
transpiration is much higher than precipitation in both basins and may
be largely attributed to the sparse vegetative cover as a result of ex-
tensive human interventions, such as deforestation, over-cultivation
and over-grazing.

Fig. 3. Input candidate pools under three scenarios.
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3.2. Data collection

Monthly meteorological data gauged at 13 meteorological stations
situated within or adjacent to the JRB and BRB are retrieved from the
China Meteorological Data Service Center (CMDC) (http://www.cma.-
gov.cn/2011qxfw/2011qsjgx/). These data covering a period from
1966 to 2010 have observations of 12 variables, including the mean
temperature (T ), mean of daily maximum temperature (Tmax), mean of
daily minimum temperature (Tmin), extreme high temperature (Text+),
extreme low temperature (Text-), sunshine duration (SH), percentage of
sunshine (SP), mean relative humidity (RH), mean wind speed (U),
precipitation (P), mean vapor pressure (VP) and mean air pressure (AP).
Observations obtained at one station site are not competent to describe
meteorological conditions of the whole basin. Therefore, the weight
regarding each meteorological station is computed using the Thiessen
polygon method, and then area-weighted observations of corresponding
meteorological variables were yielded for the two studied basins (the
JRB and BRB). As is indicated in Fig. 3, observations of the 12 me-
teorological variables during the current month constitute the input
candidate pool in Scenario 1.

In addition to local meteorological information, the 24 global cli-
matic indices listed in Table 1 are also employed to analyse whether
they can contribute to a more accurate prediction of ET0. Selected cli-
matic indices are mainly associated with oceanic and atmospheric
phenomena, such as the El Niño–Southern Oscillation (ENSO) and
many teleconnection patterns. Their monthly values from 1965 to 2010
were retrieved from the Earth System Research Laboratory of the Na-
tional Oceanic and Atmospheric Administration (https://www.esrl.-
noaa.gov/psd/data/climateindices/list/). As has been noted in Sub-
section 2.1, both the 12 meteorological variables and the 24 climatic
indices are employed under Scenario 2 as potential model inputs. Under
Scenario 3, the 24 climatic indices and routinely measured meteor-
ological variables (air temperature and sunshine duration) available at
nearly all meteorological stations are both introduced into the input
candidate pool. Particularly, potential input variables related to the 24
climatic indices cover their monthly observations at the current time
step and those lagging from 1month to 12months, due to the con-
sideration of the propagation speed and transport paths of water vapor
on a global scale. Input candidate pools under Scenarios 2 and 3 are
depicted in Fig. 3.

As for the modelling target, the reference evapotranspiration is
calculated using the FAO-PM equation (Allen et al., 1998) as follows:

=
− + −
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in which Δ is the slope of the vapor pressure curve; Rn represents the
net radiation reaching the crop surface; G denotes the soil heat flux
density; γ signifies the psychrometric constant; T represents the average
air temperature at 2m height; U2 represents the wind speed at 2m; and

es and ea represent the saturation and actual vapor pressure, respec-
tively. The preparation of all the data needed for the ET0 calculation
follows the procedure presented in Chapter 3 of the FAO Irrigation and
Drainage Paper 56 (Allen et al., 1998).

4. Results analysis and discussion

Under Scenario 1, the utility of PMIS to identify the relevant pre-
dictors for ET0 and eliminate the redundant predictors is investigated
through a comparison with PCIS. Under Scenario 2, whether global
climatic indices contribute to a more accurate ET0 forecast is in-
vestigated. ET0 forecasting models suitable for the least economically
developed regions subject to data scarcity are eventually recommended
under Scenario 3.

4.1. Scenario 1: ET0 forecasting based on local meteorological information

Monthly data employed for the development of models cover a time
period from 1966 to 2010. According to the model calibration me-
chanism formulated in Subsection 2.4, the dataset is divided into two
parts. The first part (1966–2001), accounting for 80% of the whole
studied period, is used for model calibration, and the second part
(2002–2010), comprising the remaining 20%, is used for validation
purposes. Subsequently, the calibration period is further split into a
calibration subperiod (1966–1993) and a test subperiod (1994–2001)
to effectively prevent models from overfitting. The other key issue in
the model development involves initializing the parameter space for the
fitting techniques. As for SVR, three parameters to be tuned (namely C,
γ and ɛ) are set to vary from 2−10, 2−10 and 2−8 to 210, 210 and 2−1,
respectively. With respect to RF, the maximum number of input vari-
ables used to grow regression trees is set to equal the total number of
employed predictors. On the basis of findings regarding RF presented
by Yang et al. (2016), the number of regression trees is set at 100. This
dataset division and parameter configuration are adopted by all three
scenarios.

As shown in Fig. 3, the input candidate pool in Scenario 1 comprises
observations of 12 meteorological variables at the current time step.
Table 2 presents the predictor set screened by PCIS from the input
candidate pool for the JRB. The predictors are listed in the sequence in
which they have been chosen. The first selected predictor is ‾Tmax.t,
which has the largest Pearson correlation coefficient (0.932) among the
12 potential inputs. The corresponding p-value is far less than 0.05
indicating that the positive linear correlation between ‾Tmax.t and ET0 is
significant at the 95% confidence level. Then, the linear dependence of
ET0 on the remaining potential inputs that cannot be accounted for by
‾Tmax.t is quantified by calculating the partial correlation. RHt is found
to own the maximum absolute value of partial correlation (0.682)
among the remaining 11 potential inputs and therefore is chosen to be
the second predictor. Unlike ‾Tmax.t, RHt is negatively related to ET0.
Subsequently, Tt with a partial correlation value of 0.408 is considered

Table 1
Description of 24 climate indices.

Index name Description Index name Description

AO First leading mode from the EOF analysis of monthly mean height anomalies Nino 4 Central Tropical Pacific SST (5N-5S, 160E-150W)
AMM Atlantic Meridional Mode NOA North Atlantic Oscillation
AMO Atlantic multidecadal Oscillation NTA North Tropical Atlantic SST Index
CAR Caribbean Sea surface temperature (SST) Index NP North Pacific pattern
EA/WR East Atlantic/ West Russia pattern ONI Oceanic Nino Index
EP/NP East Pacific/North Pacific Oscillation PDO Pacific Decadal Oscillation
GMT Global Mean Lan/Ocean Temperature Index PNA Pacific North American Index
GIAM Globally Integrated Angular Momentum QBO Quasi-Biennial Oscillation
MEI Multivariate ENSO Index SOI Southern Oscillation Index
Nino 1+ 2 Extreme Eastern Tropical Pacific SST (0-10S, 90W-80W) SF Solar Flux
Nino 3.4 East Central Tropical Pacific SST (5N-5S, 170–120W) TNI Indices of El Niño evolution
Nino 3 Eastern Tropical Pacific SST (5N-5S,150W-90W) TPI Tripole Index for the Interdecadal Pacific Oscillation
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to reveal the most amount of additional dependence regarding ET0

compared with the other nine potential inputs. As a result, ‾Tt joins the
predictor set as the third member, followed by ‾Tmin.t, SHt, SPt,
VPt,‾Text+.t being progressively selected in a similar manner. Potential
inputs not included into the predictor set are those with partial corre-
lation values not significantly different form zero at the 95% confidence
level. By measuring the linear dependence between meteorological
variables and ET0, PCIS identifies a total of eight predictors for ET0 in
the JBR. Table 2 presents the predictor set screened by PMIS for JRB.
Predictors are also ranked in the sequence in which they were selected.
In PMIS, the PMI between each of the potential inputs and ET0 is cal-
culated, conditional on predictors having been selected. ‾Tmax.t has the
highest PMI score of 1.144 among the 12 potential inputs and is iden-
tified as the first predictor. The inclusion of RHt, whose PMI score of
0.435 exceeds its 10 counterparts, in the predictor set yields a de-
creasing AIC value from -705 to -972; therefore, it is selected to be the
second predictor. A downward trend in AIC is maintained when ‾Tt,
having the highest PMI score (0.292) relative to the other nine potential
inputs, is included. Similarly, ‾Tmin.t, SHt, SPt, ‾Text+.t are progressively
identified as predictors until the AIC value starts to increase. By mea-
suring both linear and nonlinear dependence between meteorological
variables and ET0, PMIS chooses seven predictors for ET0 in the BRB. It
is noticeable that PCIS and PMIS select the same first six predictors,
indicating that their strong correlation with ET0 has been captured
using the two IVS methods. The only difference is that PMIS excluding
VPt yields a smaller predictor set relative to PCIS.

The utility of the predictor sets obtained by PCIS and PMIS for the
JRB is examined by fitting their relationship with ET0 over the cali-
bration period (1966–2001) and then testing it over the calibration
period (2002–2010). Three fitting methods (namely, MLR, SVR and RF)
are employed to reduce the model uncertainties arising from the ap-
propriate selection of fitting techniques. Table 3 presents the perfor-
mance evaluation of ET0 forecasting models combining diverse IVS
techniques and fitting techniques. A predictor set consisting of all 12
potential inputs is denoted by ‘M12′, and the corresponding models are
used as benchmarks for comparison purposes. For all models, the con-
sistent performance during the calibration, test and validation periods
suggests that the overfitting risk has been addressed well. In the JRB, it

was observed that for a given predictor set, SVR invariably outperforms
the other fitting methods in terms of two out of the three evaluation
statistics, namely, NSE and RSR, while, MLR yields a better PBIAS than
that of SVR and RF. As a result, SVR performs better against its two
counterparts in capturing the relationship between predictors and ET0

in the JRB. With respect to different predictor sets, the M12-SVR model
presents the best performance with NSE, PBIS and RSR equal to 0.997,
−1.407 and 0.058, respectively. However, quite comparable perfor-
mance was found in the PCIS-SVR and PMIS-SVR models, signifying
that both PCIS and PMIS are effective means to select relevant variables
for ET0 in JRB. With lower data requirements, the PCIS-SVR and PMIS-
SVR models provide more economical alternatives compared with the
M12-SVR model. In addition, the PMIS-SVR model with a smaller pre-
dictor set achieved nearly the same model performance as the PCIS-SVR
model, also suggesting that PCIS identifies a redundant predictor, VPt.

In the BRB, PCIS as shown in Table 4 selects as many as 11 pre-
dictors to interpret the variability of ET0. The first predictor chosen is
‾Tmax.t with a Pearson correlation coefficient of 0.926. RHt is found to
have the maximum absolute value of partial correlation (0.697) among
the remaining 11 potential inputs and is selected to be the second
predictor. Subsequently, ‾Tt, SHt, SPt, ‾Tmin.t, VPt, Ut,‾Text+.t, Pt,‾Text-.t,
whose partial correlation values are significantly different from zero at
the 95% confidence level, are identified. Compared with that of PCIS,
PMIS yields a smaller predictor set composed of nine components by
measuring both linear and nonlinear dependence. Table 4 shows
that‾Tmax.t has the highest PMI score of 1.099 among all 12 potential
inputs and is the first to enter the predictor set. Then, RHt is selected to
be the second predictor owing to its highest PMI score of 0.458 com-
pared with the other 10 potential inputs and a decreased AIC value
from -667 to -956. A descending trend in AIC value continues to be
observed, as ‾Tt, ‾Tmin.t, Ut, SHt, SPt,‾Text+.t,‾Text-.t are included in the
predictor set. It is noted that all predictors obtained through PMIS are
also identified by PCIS. Meanwhile, excluding VPt and Pt results in PMIS
yielding a smaller predictor set than that of PCIS.

The utility of predictor sets obtained using the two IVS techniques
for the BRB is examined. As listed in Table 5, the consistent perfor-
mance during the calibration, test and validation periods indicates that
all models have been prevented from overfitting. For a given predictor

Table 2
Input variables selected from input candidate pool under Scenario 1 for the JRB.

IVS Variable name Partial correlation P-value IVS Variable name PMI AIC

PCIS ‾Tmax.t 0.932 3.334×10−149 PMIS ‾Tmax.t 1.144 -705
RHt -0.682 4.252×10−47 RHt 0.435 -972
‾Tt 0.408 7.821×10−15 ‾Tt 0.292 -1045
‾Tmin.t -0.622 4.603×10−37 ‾Tmin.t 0.147 -1059
SHt 0.443 2.001×10−17 SHt 0.147 -1082
SPt -0.825 1.398×10−83 SPt 0.316 -1181
VPt 0.393 1.243×10−13 Text+.t 0.136 -1205
Text+.t 0.286 1.342×10−7 / / /

Table 3
Performance of ET0 forecasting models developed for the JRB under Scenario 1.

Model Input number Calibration Test Validation

NSE PBIAS RSR NSE PBIAS RSR NSE PBIAS RSR Hit rate FAC2

M12-MLR 12 0.993 −0.165 0.084 / / / 0.994 0.636 0.081 0.972 1.000
M12-SVR 0.999 −0.108 0.029 0.998 −1.194 0.045 0.997 −1.407 0.058 1.000 1.000
M12-RF 0.994 0.036 0.079 0.982 0.460 0.133 0.980 −0.763 0.141 0.981 1.000
PCIS-MLR 8 0.993 −0.165 0.085 / / / 0.993 0.636 0.082 0.972 1.000
PCIS-SVR 0.997 0.148 0.053 0.997 −1.278 0.056 0.995 −2.956 0.069 1.000 1.000
PCIS-RF 0.989 0.030 0.103 0.964 −2.019 0.189 0.964 −5.070 0.188 0.935 1.000
PMIS-MLR 7 0.991 0.082 0.095 / / / 0.991 −0.315 0.095 0.972 1.000
PMIS -SVR 0.997 0.141 0.054 0.997 −1.238 0.056 0.995 −2.764 0.070 1.000 1.000
PMIS-RF 0.990 0.183 0.101 0.966 −1.552 0.183 0.965 −5.054 0.188 0.926 1.000
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set, SVR presents the best NSE and RSR among the three fitting
methods. MLR is observed to have better PBIAS than that of both SVR
and RF. Therefore, SVR is more capable of capturing the relationship
between ET0 and its predictors in the BRB. With regard to different
predictor sets, the M12-SVR model employing all 12 potential inputs
yields the best performance. However, fairly comparable performance
is presented by the PCIS-SVR and PMIS-SVR models with their
equivalent NSE values of 0.995, PBIS values of −2.956 and −2.764,
and RSR values of 0.069 and 0.070, suggesting that PCIS and PMIS can
serve as effective approaches for identifying variables relevant to ET0 in
the BRB. Decreased data requirements together with a similar perfor-
mance make the PCIS-SVR and PMIS-SVR models more economical
alternatives to the M12-SVR model. In addition, the PMIS-SVR model
using a smaller predictor set achieves nearly the same performance as
the PCIS-SVR model. It is suggested that PCIS includes two redundant
predictors, Ut and Pt.

The results under Scenario 1 reveal that PCIS and PMIS are capable
of identifying meaningful predictors for ET0 in the JRB and BRB from
numerous meteorological variables available. Thus, they are in favour
of deriving foresting models with lower data requirements.
Additionally, PCIS tends to include some redundant predictors.
However, PMIS effectively excludes the redundant information by si-
multaneously measuring linear and nonlinear dependence. It should be
noted that though ET0 can be predicted quite well at the basin scale
with numerous meteorological variables alone, models developed
under Scenario 1 are not suitable for regions where usually there are
not adequate observations of meteorological variables available.

4.2. Scenario 2: ET0 forecasting based on meteorological information and
climatic indices

Compared with Scenario 1, Scenario 2 further includes 24 climatic
indices as potential inputs so as to investigate their correlation to ET0

and whether they can contribute to more accurate forecasts.
In the JRB, PCIS identifies as many as 32 meteorological variables

and climatic indices as predictors for ET0, among which the first nine
are listed in Table 6. PMIS yields a much smaller predictor set con-
taining eight members. In the BRB, a total of 28 input variables are
selected by PCIS to explain the variability of ET0, while 11 predictors
are selected through PMIS as shown in Table 7. Note that Nino 1+2,
one of the eastern Pacific SST indices used for characterizing ENSO
events, is identified by both PMIS and PCIS to be predictors and ranks
higher in the predictor set, implying that ET0 in the JRB and BRB may
be strongly correlated with ENSO events.

Afterwards, the utility of these predictor sets obtained are examined
by the model performance as presented in Tables 8 and 9. ‘M12C24′
denotes a predictor set composed of all potential inputs under Scenario
1 and 24 climatic indices. For the JRB, a comparison between Tables 3
and 8 shows a general improvement in model performance due to the
further inclusion of relevant climatic indices in predictor sets. Similar
performance enhancement is also observed in Tables 5 and 9 for the
BRB.

Results under Scenario 2 are a reminder that climatic indices are
likely to carry additional information regarding ET0, and introducing
those that are relevant through the appropriate IVS techniques can fa-
vour the yield of more accurate ET0 forecasts.

4.3. Scenario 3: ET0 forecasting models recommended for data-scarce
regions

Under Scenario 3, ET0 forecasting models are developed for data-
scarce regions. Only routinely measured meteorological variables, such
as air temperatures (Tt, ‾Tmax.t, ‾Tmin.t, Text+.t and Text-.t) and sunshine
duration (SHt), are employed. In comparison with other meteorological
variables such as solar radiation, vapor pressure, relative humidity and
wind speed, measuring air temperature and solar duration requires
quite simple instruments, which supports the global availability of these
observations. Meanwhile, 24 climatic indices are introduced into the
input candidate pool. Potential inputs related to climatic indices cover
their monthly values at the current time step and those lagging from

Table 4
Input variables selected from input candidate pool under Scenario 1 for BRB.

IVS Variable name Partial correlation P-value IVS Variable name PMI AIC

PCIS ‾Tmax.t 0.926 1.298× 10−143 PMIS ‾Tmax.t 1.099 −667
RHt −0.697 5.103× 10−50 RHt 0.458 −956
‾Tt 0.467 1.640× 10−19 ‾Tt 0.335 −1035
SHt 0.584 8.134× 10−32 ‾Tmin.t 0.181 −1051
SPt −0.826 2.716× 10−84 Ut 0.163 −1054
‾Tmin.t −0.337 3.118× 10−10 SHt 0.124 −1063
VPt 0.329 8.674× 10−10 SPt 0.307 −1187
Ut 0.369 4.514× 10−12 Text+.t 0.125 −1209
‾Text+.t 0.167 2.434× 10−3 Text-.t 0.112 −1225
Pt −0.140 1.126× 10−2 / / /
Text-.t 0.114 4.013× 10−2 / / /

Table 5
Performance of ET0 forecasting models developed for BRB under Scenario 1.

Model Input number Calibration Test Validation

NSE PBIAS RSR NSE PBIAS RSR NSE PBIAS RSR Hit rate FAC2

M12-MLR 12 0.992 −0.186 0.088 / / / 0.993 0.719 0.086 0.954 1.000
M12-SVR 0.997 0.248 0.052 0.996 −2.160 0.063 0.996 −1.226 0.065 1.000 1.000
M12-RF 0.993 0.057 0.082 0.967 1.151 0.180 0.951 3.971 0.220 0.972 1.000

PCIS-MLR 11 0.992 −0.118 0.089 / / / 0.992 0.456 0.089 0.963 1.000
PCIS-SVR 0.998 0.145 0.050 0.995 −2.177 0.070 0.994 −2.572 0.079 1.000 1.000
PCIS-RF 0.990 0.116 0.099 0.966 −0.956 0.184 0.953 −5.316 0.215 0.954 1.000

PMIS-MLR 9 0.989 0.173 0.103 / / / 0.988 −0.668 0.107 0.954 1.000
PMIS -SVR 0.997 −0.060 0.056 0.995 −2.392 0.069 0.994 −2.734 0.074 1.000 1.000
PMIS-RF 0.990 0.049 0.101 0.965 −0.742 0.101 0.961 −4.042 0.197 0.954 1.000
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1month to 12months. Therefore, there are in total 318 potential inputs
under Scenario 3.

In the JRB, PMIS identifies seven predictors as listed in Table 10 to
interpret the variability of ET0. In detail, the predictor set screened by
PMIS comprises all meteorological variables except Text-.t, and Nino
1+ 2, with lag lengths of two and six months. Nino 1+2 is utilized to
characterize the evolution of ENSO events. As these predictors pro-
gressively join in the predictor set, a decreasing trend in AIC values is
continuously observed. Compared with PMIS, PCIS selects as many as
32 predictors, among which the first nine predictors are listed in
Table 10. The other 23 are climatic indices of different lag months.
Similar to PMIS, PCIS is found to choose all meteorological variables
except Text-.t. Predictors related to Nino 1+2 are ranked at higher
positions in the predictor set, indicating their strong correlation with
ET0 in the JRB. However, it is noted that PCIS and PMIS identify Nino
1+ 2 with slightly different lag lengths.

Subsequently, the utility of predictor sets obtained by PCIS and
PMIS for the JRB is examined. For comparison purposes, two predictor
sets are adopted as benchmarks. One denoted by ‘T5’ contains five
temperature variables, and for the other, symbolized by ‘T5S’, sunshine
duration is further added. The performances of the ET0 forecasting

models with the four predictor sets are presented in Table 11. For T5,
T5S and the predictor set acquired by PMIS, SVR is generally found to
outperform MLR and RF. MLR offers the best performance compared
with that of SVR and RF when fitting the relationship between ET0 and
the predictor set obtained through PCIS. With respect to different pre-
dictor sets, a comparison between the T5-SVR and T5S-SVR models
exhibits that adding the solar duration contributes to enhanced model
performance. More importantly, introducing climatic indices into pre-
dictor sets favours yielding a distinct improvement in model perfor-
mance relative to T5 and T5S, which is intuitively shown by the more
compact concentration of forecasts around their targets in Fig. 4. A
comparison of two predictor sets containing both meteorological vari-
ables and climatic indices shows that the PMIS-SVR model with seven
predictors had superior performance compared with that of the PCIS-
MLR model with as many as 32 predictors, due to a 0.02 increase in NSE
value, a 0.009 decrease in RSR value and a 0.009 increase in hit rate. It
is suggested that some redundant predictors are selected by PCIS.
Therefore, with lower data requirements and superior performance, the
PMIS-SVR model is recommended to forecast ET0 in the JRB.

In the BRB, PMIS identifies seven predictors as listed in Table 12,
including all temperature variables (except Text-.t) and Nino 1+ 2 with

Table 6
Input variables selected from input candidate pool under Scenario 2 for the JRB.

IVS Variable name Partial correlation P-value IVS Variable name PMI AIC

PCIS ‾Tmax.t 0.932 3.334× 10−149 PMIS ‾Tmax.t 1.144 −704.6
Nino 1+ 2 t-7 −0.726 4.042× 10−56 Nino 1+ 2 t-6 0.451 −974.7
SHt 0.687 6.073× 10−48 SHt 0.316 −1096
SPt −0.737 2.799× 10−58 ‾Tt 0.3243 −1259
RHt −0.478 2.475× 10−20 Nino 1+ 2 t-8 0.169 −1252
EP/NPt-3 0.492 1.268× 10−21 ‾Tmin.t 0.3438 −1348
EP/NPt-10 0.522 1.791× 10−24 Text+.t 0.1389 −1351
EP/NPt-2 −0.384 5.591× 10−13 RHt 0.1183 −1393
‾Tt 0.319 3.572× 10−9 / / /

/ / /

Table 7
Input variables selected from input candidate pool under Scenario 2 for BRB.

IVS Variable name Partial correlation P-value IVS Variable name PMI AIC

PCIS ‾Tmax.t 0.926 1.298× 10−143 PMIS ‾Tmax.t 1.099 −667.3
Nino 1+ 2 t-7 −0.752 2.591× 10−62 Nino 1+ 2 t-6 0.4729 −988.2
SHt 0.683 3.872× 10−47 SHt 0.3139 −1106
SPt −0.686 1.262× 10−47 ‾Tt 0.3241 −1225
RHt −0.481 1.291× 10−20 Nino 1+ 2 t-3 0.1874 −1235
EP/NPt-3 0.529 2.822× 10−25 RHt 0.1904 −1236
EP/NPt-10 0.497 5.091× 10−22 ‾Tmin.t 0.375 −1249
‾Tt 0.366 7.488× 10−12 Ut 0.1559 −1252
EP/NPt-6 −0.355 3.640× 10−11 Text+.t 0.124 −1264
Ut 0.302 2.655× 10−08 Text-.t 0.1174 −1284

SPt 0.1202 −1292

Table 8
Performance of ET0 forecasting models developed for the JRB under Scenario 2.

Model Input number Calibration Test Validation

NSE PBIAS RSR NSE PBIAS RSR NSE PBIAS RSR Hit rate FAC2

M12C24-MLR 324 0.995 0.102 0.067 / / / 0.994 0.314 0.076 0.976 1.000
M12C24-SVR 0.999 0.046 0.016 0.999 −0.718 0.030 0.998 1.569 0.048 1.000 1.000
M12C24-RF 0.995 −0.152 0.072 0.976 2.066 0.155 0.977 5.150 0.152 0.968 1.000

PCIS-MLR 32 0.995 1.141 0.070 / / / 0.994 0.516 0.071 0.975 1.000
PCIS-SVR 0.997 0.109 0.038 0.997 0.283 0.052 0.997 −1.240 0.060 1.000 1.000
PCIS-RF 0.994 0.196 0.075 0.979 0.590 0.144 0.972 −2.299 0.165 0.955 1.000

PMIS-MLR 8 0.994 0.155 0.093 / / / 0.993 −0.209 0.094 0.975 1.000
PMIS -SVR 0.998 0.124 0.047 0.998 0.111 0.048 0.997 −1.009 0.057 1.000 1.000
PMIS-RF 0.993 0.033 0.082 0.978 −0.843 0.148 0.976 −5.560 0.153 0.942 1.000

W. Fang et al. Journal of Hydrology 561 (2018) 764–779

774



lag lengths of three and six months. In comparison, PCIS yields a much
larger predictor set containing 32 elements. The first nine of these are
listed in Table 12 and show that Nino 1+2 with the lag lengths of four
and seven months are ranked at higher positions in the predictor set,
indicating their strong linear correlation with ET0 in the BRB. It is
noticeable that the Nino 1+2 selected by PMIS and PCIS are of dif-
ferent time lags.

The utility of predictor sets obtained using the two IVS techniques
are further evaluated by model performance as shown in Table 13. For
T5, T5S and the predictor set acquired through PMIS, SVR invariably
offers superior model performance compared with that of MLR and RF
in terms of NSE and RSR. However, the mapping relationship between
the predictor set obtained by PCIS and ET0 in the BRB is more accu-
rately fitted by MLR. With respect to different predictor sets, the
comparison between the T5-SVR and T5S-SVR models exhibits an im-
proved model performance due to the employment of solar duration as
an additional predictor. More importantly, introducing climatic indices

into predictor sets favours achieving a distinct improvement in model
performance relative to T5 and T5S, which is intuitively presented in
Fig. 5. In detail, compared with the T5S-SVR model, the PMIS-SVR
model is observed to have a 0.012 increase in NSE, a 0.037 decrease in
RSR and a 0.019 increase in hit rate. The PCIS-MLR model offers a
0.019 increase in NSE; a decrease of 3.167% and 0.066 in the PBIAS
and RSR, respectively; and a 0.009 increase in the hit rate.

Under Scenario 3, the similar performance of the PCIS and PMIS
models suggests that PCIS tends to include some redundant predictors.
Meanwhile, it is found that introducing climatic indices favours
yielding a more accurate ET0 forecast in terms of NSE, RSR and hit rate.
Nino 1+ 2, one of the ENSO indices, is selected by both PCIS and PMIS
as a predictor and ranks higher in the predictor set, revealing that the
evapotranspiration process in the JRB and BRB is strongly influenced by
ENSO events.

Compared with the predictors under Scenario 1, those under
Scenario 3 are all routinely measured meteorological variables and

Table 9
Performance of ET0 forecasting models developed for the BRB under Scenario 2.

Model Input number Calibration Test Validation

NSE PBIAS RSR NSE PBIAS RSR NSE PBIAS RSR Hit rate FAC2

M12C24-MLR 324 0.995 −0.101 0.073 / / / 0.996 0.648 0.073 0.965 1.000
M12C24-SVR 0.999 0.107 0.036 0.998 1.081 0.054 0.998 −1.721 0.061 1.000 1.000
M12C24-RF 0.995 −0.084 0.072 0.961 2.519 0.196 0.956 3.731 0.210 0.979 1.000

PCIS-MLR 28 0.996 0.044 0.057 / / / 0.995 0.581 0.056 0.973 1.000
PCIS-SVR 0.998 0.209 0.049 0.996 −1.605 0.066 0.996 −1.168 0.070 1.000 1.000
PCIS-RF 0.994 0.057 0.075 0.975 −0.024 0.158 0.971 −3.842 0.171 0.965 1.000

PMIS-MLR 11 0.990 0.293 0.098 / / / 0.990 −0.934 0.102 0.969 1.000
PMIS -SVR 0.998 0.046 0.046 0.994 −2.857 0.074 0.996 −3.791 0.068 1.000 1.000
PMIS-RF 0.994 −0.240 0.080 0.976 −1.288 0.155 0.971 −4.567 0.169 0.967 1.000

Table 10
Input variables selected from input candidate pool under Scenario 3 for the JRB.

IVS Variable name Partial correlation P-value IVS Variable name PMI AIC

PCIS ‾Tmax.t 0.932 3.334×10−149 PMIS ‾Tmax.t 1.099 −667.3
Nino 1+ 2 t-7 −0.726 4.042×10−56 Nino 1+ 2 t-6 0.473 −988.2
SHt 0.687 6.073×10−48 SHt 0.314 −1106
Nino 1+ 2 t-4 0.528 2.406×10−25 ‾Tt 0.324 −1235
‾Tt 0.361 1.157×10−11 Nino 1+ 2 t-3 0.187 −1252
‾Tmin.t −0.467 2.603×10−19 ‾Tmin.t 0.158 −1273
Nino 1+ 2 t-11 0.370 3.587×10−12 Text+.t 0.101 −1284
AMOt −0.256 1.342×10−7 / / /
Text+.t 0.183 0.001 / / /

/ / /

Table 11
Performance of ET0 forecasting models developed for the JRB under Scenario 3.

Model Input number Calibration Test Validation

NSE PBIAS RSR NSE PBIAS RSR NSE PBIAS RSR Hit rate FAC2

T5-MLR 5 0.957 −0.952 0.207 / / / 0.960 3.677 0.200 0.889 0.991
T5-SVR 0.977 0.210 0.153 0.977 −1.872 0.151 0.978 0.331 0.146 0.981 1.000
T5-RF 0.976 −0.206 0.156 0.917 −3.405 0.287 0.916 −6.211 0.289 0.907 1.000

T5S-MLR 6 0.967 −0.519 0.182 / / / 0.969 2.003 0.175 0.898 0.991
T5S-SVR 0.979 0.345 0.144 0.979 −0.962 0.145 0.983 1.092 0.131 0.972 1.000
T5S-RF 0.983 −0.061 0.129 0.956 −1.653 0.208 0.950 −5.811 0.223 0.917 1.000

PCIS-MLR 32 0.991 −0.302 0.095 / / / 0.990 1.165 0.098 0.991 1.000
PCIS-SVR 0.995 −0.290 0.068 0.982 4.777 0.133 0.986 4.042 0.119 0.991 1.000
PCIS-RF 0.994 −0.138 0.080 0.975 0.850 0.159 0.976 −2.368 0.155 0.991 1.000

PMIS-MLR 7 0.984 0.101 0.126 / / / 0.980 −0.392 0.140 0.954 0.991
PMIS -SVR 0.994 −0.176 0.079 0.993 −1.278 0.084 0.992 −2.626 0.089 1.000 1.000
PMIS-RF 0.992 −0.011 0.087 0.977 −0.823 0.150 0.980 −3.157 0.142 0.991 1.000
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climatic indices, making the models developed under Scenario 3 more
suitable for forecasting ET0 in the least economically developed regions.
As is shown in Tables 11 and 13, the PMIS-SVR models with seven
predictors offer favourable forecasting skills, and are therefore re-
commended for forecasting ET0 in the JRB and BRB.

5. Conclusions

This study aimed to develop ET0 forecasting models for the least
economically developed regions subject to meteorological data scarcity,
mainly through (1) exploring appropriate input variable selection
techniques to effectively reduce model data requirements and (2) in-
troducing global climatic indices as additional model inputs for creating

information regarding ET0, which ought to be provided by meteor-
ological variables unavailable. First, it was investigated whether PMIS
was capable of identifying relevant predictors and excluding those that
were redundant. A comparison was also made with PCIS. Then, the
interconnection between global climatic indices and regional ET0 was
recognized by PMIS and PCIS, and relevant climatic indices were in-
corporated into the models as additional predictors. Finally, models
with both lower data requirements and favourable performance were
recommended.

ET0 forecasting models were developed for two study areas, namely,
the JRB and BRB in China. The results indicated that PMIS and PCIS
were both effective approaches for identifying the relevant predictors
for regional ET0. However, PCIS only measuring the linear dependence
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Fig. 4. Scatter plots of ET0 forecasted under Scenario 2 versus ET0 calculated by FAO-PM equation during the validation period in the JRB.

Table 12
Input variables selected from input candidate pool under Scenario 3 for the BRB.

IVS Variable name Partial correlation P-value IVS Variable name PMI AIC

PCIS ‾Tmax.t 0.932 3.334×10−149 PMIS ‾Tmax.t 1.099 −667.3
Nino 1+ 2 t-7 −0.726 4.042×10−56 Nino 1+ 2 t-6 0.473 −988.2
SHt 0.687 6.073×10−48 SHt 0.314 −1106
Nino 1+ 2 t-4 0.528 2.406×10−25 ‾Tt 0.324 −1235
‾Tt 0.361 1.157×10−11 Nino 1+ 2 t-3 0.187 −1252
‾Tmin.t −0.467 2.603×10−19 ‾Tmin.t 0.158 −1273
Nino 1+ 2 t-11 0.370 3.587×10−12 Text+.t 0.101 −1284
AMOt −0.256 1.342×10−7 / / /
Text+.t 0.183 0.001 / / /

/ / /
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tended to select redundant predictors. PMIS presented better perfor-
mance in excluding redundant information by simultaneously evalu-
ating the linear and nonlinear correlations. Therefore, smaller predictor
sets were yielded by PMIS relative to PCIS, which is crucial for model
development in data-scarce regions. Furthermore, Nino 1+2 char-
acterizing ENSO evolutions was identified by both PMIS and PCIS to be
correlated with ET0, revealing ENSO influences on the evapo-
transpiration process in the study areas. Introducing Nino 1+2 into

the models yielded more accurate ET0 forecasts. Among the various
models investigated, the non-linear stochastic models (SVR or RF with
inputs selected through PMIS) did not always improve the accuracy of
the linear models (MLR with inputs screened by PCIS). However, the
PMIS-SVR model was able to offer quite comparable performance de-
pending on smaller predictor sets, and was, therefore, recommended to
predict ET0 in the JRB and BRB. These findings suggest that selecting
model inputs through PMIS as well as introducing global climatic

Table 13
Performance of ET0 forecasting models developed for the BRB under Scenario 3.

Model Input number Calibration Test Validation

NSE PBIAS RSR NSE PBIAS RSR NSE PBIAS RSR Hit rate FAC2

T5-MLR 5 0.954 0.189 0.215 / / / 0.950 −0.730 0.222 0.852 0.991
T5-SVR 0.974 0.509 0.162 0.974 −2.187 0.162 0.968 −3.383 0.177 0.944 1.000
T5-RF 0.969 −0.094 0.176 0.905 0.450 0.306 0.905 −4.161 0.307 0.843 1.000

T5S-MLR 6 0.966 0.966 0.184 / / / 0.963 −3.737 0.191 0.898 0.991
T5S-SVR 0.979 0.964 0.145 0.977 −4.394 0.152 0.970 −4.727 0.171 0.972 1.000
T5S-RF 0.981 −0.106 0.138 0.952 −2.594 0.219 0.936 −7.306 0.251 0.889 1.000

PCIS-MLR 32 0.992 −0.239 0.091 / / / 0.989 0.926 0.105 0.981 1.000
PCIS-SVR 0.995 0.052 0.068 0.991 2.499 0.095 0.988 1.559 0.111 0.944 1.000
PCIS-RF 0.994 −0.031 0.078 0.976 0.017 0.153 0.973 −3.903 0.163 0.991 1.000

PMIS-MLR 7 0.984 1.130 0.128 / / / 0.978 −4.372 0.148 0.954 0.991
PMIS -SVR 0.993 0.042 0.083 0.991 −2.197 0.991 0.982 −5.694 0.134 0.991 1.000
PMIS-RF 0.992 −0.026 0.092 0.979 −1.215 0.146 0.973 −5.146 0.164 0.991 1.000
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Fig. 5. Scatter plots of ET0 forecasted under Scenario 2 versus ET0 calculated by FAO-PM equation during the validation period in the BRB.
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indices into input candidate pools favours developing ET0 forecasting
models suitable for the least economically developed regions.

Although PMIS is proven to be a competitive alternative capable of
identifying meaningful predictors for ET0, previous studies on solar
radiation estimation (Ahmadi et al., 2009; Remesan et al., 2008;
Reyhani et al., 2005) have shown the superiority of the Gamma test
(GT) over MI in selecting the best predictor set. Therefore, future work
could be carried out to investigate the applicability of GT in ET0 esti-
mation and a further comparison between GT and PMIS could be made.
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