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Abstract

Accurate and reliable runoff forecasting plays an increasingly important role in the optimal
management of water resources. To improve the prediction accuracy, a hybrid model based on
variational mode decomposition (VMD) and deep neural networks (DNN), referred to as VMD-
DNN, is proposed to perform daily runoff forecasting. First, VMD is applied to decompose the
original runoff series into multiple intrinsic mode functions (IMFs), each with a relatively local
frequency range. Second, predicted models of decomposed IMFs are established by learning the
deep feature values of the DNN. Finally, the ensemble forecasting result is formulated by summing
the prediction sub-results of the modelled IMFs. The proposed model is demonstrated using daily
runoff series data from the Zhangjiashan Hydrological Station in Jing River, China. To fully illustrate
the feasibility and superiority of this approach, the VMD-DNN hybrid model was compared with
EMD-DNN, EEMD-DNN, and multi-scale feature extraction -based VMD-DNN, EMD-DNN and
EEMD-DNN. The results reveal that the proposed hybrid VMD-DNN model produces the best
performance based on the Nash-Sutcliffe efficiency (NSE = 0.95), root mean square error (RMSE =
9.92) and mean absolute error (MAE = 3.82) values. Thus the proposed hybrid VMD-DNN model
is a promising new method for daily runoff forecasting.
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neural networks

P4 Jungang Luo
jgluo@xaut.edu.cn

Xinxin He
xinxinhe89 @ foxmail.com

Ganggang Zuo
zuoganggang @163.com

Jiancang Xie
jexie@xaut.edu.cn

State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology,
Xi’an 710048 Shaanxi, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11269-019-2183-x&domain=pdf
mailto:jgluo@xaut.edu.cn

He X. et al.

1 Introduction

Runoft forecasting, especially daily runoff forecasting is of great significance for water
resource planning and management. Therefore, this topic has attracted the attention of many
researchers, and several forecasting models have been developed over the past few decades.

Data-driven models, which have been widely used in runoff forecasting by construction of a
“black-box”, include two main categories: time-series models and artificial intelligence (AI)
models. Time-series models (Box et al. 2015) such as the auto-regressive (AR), moving
average (MA), auto-regressive moving average (ARMA), and auto-regressive integrated
moving average (ARIMA) have supplied good forecasting accuracy for runoff time series
(Toth et al. 2000), especially under the condition that the series are stationary or near-linear.
However, these models encounter difficulty in capturing the nonlinear characteristics hidden in
hydrological time series. Stationarity is a necessary condition for establishing a time-series
model. In contrast, Al models, including artificial neural networks (ANNs) (Citakoglu et al.
2014), adaptive neural-fuzzy inference systems (ANFIS) (Moghaddamnia et al. 2009), genetic
programming (GP) (Koza 1992), and support vector machine (SVM) (Lin et al. 2009), are able
to address the non-stationarity of the runoff time series. Zhang et al. (2009) combined QPF into
ANNs model for daily reservoir inflow prediction. Sattari et al. (2012) investigated the
potential of time lag recurrent ANN for modelling of daily inflow into the Eleviyan Reservoir
in Iran. Cheng et al. (2015) developed an ANN-QPSO model for daily runoff forecasting to
enhance the generalization performance of the forecasting model. Nayak et al. (2004) present-
ed the application of an adaptive NFIS (ANFIS) model used to forecast daily streamflow at the
Baitarani River in India. Wang et al. (2009) conducted a comparative study of ARMA, ANN,
ANFIS, GP and SVR for forecasting the monthly discharge time series, and the results
indicated that ANFIS, GP, and SVM obtained the best performance during the training and
validation phases.

With advances in research, the recent trend of data-driven runoff forecasting involves
hybridizing the Al models with data pre-processing techniques for the purpose of further
improving the forecasting accuracy. Various decomposition technique-based hybrid models
were developed and widely used to address the nonlinear and nonstationarity present in runoff
series. Three mainstream algorithms, i.e., wavelet transform (WT) (Dabuechies 1990), empir-
ical mode decomposition (EMD) (Huang et al. 1998), and ensemble empirical mode decom-
position (EEMD) (Wu and Huang 2009), are combined with various forecasting methods to
form a hybrid forecasting model. Kisi and Cimen (2012) proposed a WA-SVM model for daily
precipitation forecast in Turkey. Bai et al. (2016) introduced a multiscale deep feature learning
method with hybrid models to address daily reservoir inflow forecasting in the TGD. Wang
et al. (2018) developed a hybrid EMD/EEMD-ARIMA model for forecasting the daily
streamflow time series for six years at Tangnaihai Station. Huang et al. (2014) proposed a
modified EMD-SVM model for monthly streamflow prediction in the Wei River Basin. Wang
et al. (2013) proposed an EEMD-based particle swarm optimization (PSO) and SVM for
rainfall-runoff forecasting. Di et al. (2014) designed an EEMD-based RBF neural network for
hydrologic time series forecasting. All of these applications indicate that data pre-processing
techniques coupled with AI models outperform the conventional single models and the hybrid
models without denoising or decomposition.

However, the complex nonlinearity, high irregularity, and multi-scale variability present in
the daily runoff series are always challenging aspects in forecasting, and the models that work
on the original runoff series cannot handle these situations appropriately. In general, (1) Al
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models mostly belong to the “shallow” learning category in which the distinct information is
represented insufficiently (Bai et al. 2016), e.g., ANNs are often subject to slow learning
speed, convergence to local minima (Okkan and Serbes 2012), and over-fitting, and SVMs are
usually sensitive to parameter selection (Di et al. 2014); (2) data pre-processing techniques
suffer from the drawbacks with different aspects in actual signal decomposition, e.g., the
effectiveness of WT depends heavily on the choice of wavelet basis function (Chellali et al.
2010), the application of EMD is limited by the lack of an exact mathematical model, the
frequent appearance of mode mixing, and sensitivity to both noise and sampling (Naik et al.
2018), and EEMD lacks a strict mathematical theory (Liu et al. 2018). To address the
aforementioned challenges, deep learning techniques, which can produce better forecasting
performance depending on “deeper” performances, are introduced to effectively overcome
these drawbacks (Li et al. 2016). The deep neural network (DNN), one of the deep learning
methods, has been proposed (Hinton et al. 2006; Bengio et al. 2007) and can capture highly
abstracted features from the original runoff series and address the limitations of shallow-
structured architectures. In recent years, DNN has facilitated great progress in analysis in fields
such as speech recognition (Hinton et al. 2012), computer vision (Krizhevsky et al. 2017), text
processing (Ciresan et al. 2010), and natural language processing (Collobert and Weston
2008). In addition, several new data pre-processing approaches have been proposed. Specif-
ically, variational mode decomposition (VMD) has attracted much attention due to its sound
mathematical framework, and it showed better noise robustness and more precise component
separation (Ali et al. 2018). As a new multi-resolution technique, VMD has recently been
applied in many research fields, such as biomedical signal processing (Lahmiri and
Boukadoum 2015), international stock market analysis (Lahmiri 2015), and wind speed
prediction (Liu et al. 2018).

In this paper, a novel hybrid VMD-DNN model is proposed to improve the accuracy of daily
runoff forecasting. VMD is used to decompose the original daily runoff series into multiple intrinsic
narrow-band components to facilitate their forecasting. For each sub-sequence, DNN is applied as a
forecasting tool to establish the prediction models. The effectiveness of the proposed hybrid model is
evaluated using daily runoff data from the Zhangjiashan Hydrological Station in Jing River, China,
and is compared with five other models.

2 Methodology
2.1 Variational Mode Decomposition

Variational mode decomposition, a new non-recursive signal processing technique proposed by
Dragomiretskiy and Zosso (Dragomiretskiy and Zosso 2014), is used to adaptively decompose a
complicated signal into a number of band-limited intrinsic mode functions (BLIMFs).

An original signalf(f)(t=1, 2, ...,n) can be decomposed into a set of IMFs that are band
limited. An IMFu(?)is considered as an amplitude-modulated-frequency-modulated (AM-FM)
signal, which is expressed as follows:

up(t) = Ax(t)cos (¢, (1)) (1)
whereA (9)is the instantaneous amplitude,¢;(f)denotes the instantaneous phase, and the instan-

taneous frequencywy (1) = ¢, (1) = d¢; (¢)/dtis nonnegative and varies much slower than the
phasegy(?).
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To acquire the bandwidth of each modeu,(?), the constrained variational optimization
problem can be solved by the following:

) K
min ¢ Y
Ui | k=1

wherew,is the centre frequency of the correspondingkth mode of the signal, #is the
time script, kis the number of modes, andd(f)is the Dirac function. In addition, the

2 K
}S-t Y up = f(t) (2)

2 k=1

0y [<6(r) + %) ®Mk(t)} ot

expression (6(7) —}—%) ®uy (1) is the Hilbert transform ofuy(z), which can transformau(r)
into the analytical signal to form a one-side frequency spectrum with only positive
frequencies. In this manner, using the index termse /", the spectrum of each mode
can be shifted to a baseband.

Two parameters, the quadratic penalty factorcand Lagrange multipliers), are both
considered to transform the above optimization problem into an unconstrained opti-
mization problem. The expression of the augmented Lagrange function is given by the
following:

2
+

L(uk7wk7)‘) =« §
= ? (3)

o [(5(0 + é) ®uk(t)} et
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2

is a quadratic penalty term to accelerate the convergence
2

10— 3 (o)

k=1

where

velocity.

According to the optimization technique known as alternate direction method of multipliers
(ADMM),uandwycan be updated in two directions to complete the analysis of the VMD.
Therefore, the updated equations are given as follows:

D)= ii:(w ﬂ
o S g+ .
, 1+ 2a(w—wy)’

>

fgjw‘itk(w) ‘zdw

aprt = L (5)
0 itk(w)‘ dw
n+1 N N An+1
@ =V r(ozi @) )
wherenis the number of iterations,7is the iterative factor, andii(w), i/ ™",/ (w), and

X(w)represent the Fourier transform ofui(w),u2+l Slw), and\(w), respectively.
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In general, the VMD algorithm can be summarized as shown in Algorithm 1.

Algorithm 1 Process of VMD

Al Al 2
Imtlahzeuk,a),lc,ﬂl,and n=0

repeat
n=n+l
fork=1:K do

Update i1, (@) for all @ > 0 using Eq.(4)

Update @, using Eq.(5)
end for

Update /{(a)) for all @ > 0 using Eq.(6)
./
2

'(#) by fast Fourier transform of 2" (@) .

2
~n

il <e

K
. ~n+l ~n
until convergence E Huk — Uy 5
k=1

n+

Obtain u;,

return u,’f” ().

2.2 Deep Neural Networks

The deep neural network is a standard multi-layer feed-forward network consisting of one
visible input layer, multiple intermediate hidden layers, and an output layer. The structure of
the DNN is shown in Fig. 1. It can be clearly observed that the hidden layer consists of a deep
belief network (DBN), which is a stack of restricted Boltzmann machines (RBM) (Bengio
et al. 2013). The DNN training stage can be divided into two phases: (a) unsupervised pre-
training and (b) supervised fine-tuning.

2.2.1 Deep Belief Network for Pre-Training

The purpose of pre-training is to obtain a set of initialized weights that can be used in later fine-
tuning. In this stage, a DBN is applied to initialize or pretreat the hidden layer of DNN to lead
the model into a space that is closer to the optimum (Mohamed et al. 2012). In practical
application, a Gaussian-Bernoulli RBM (GRBM) (Cho et al. 2011) was established by
normalizing real data into [0,1] to train the RBMs. The model defines the probability
distribution onv,athrough an energy functionf:
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Output layer Output value

E Layer L,
: Layer Ly
Hidden layer E
: Layer L
: Layer L;
Input layer Input value
Fig. 1 Structure of the DNN
2
V H i \4 (Vi_bi) H
E(v,h|0) ==3% ¥ wih; o 52 > ajh; (7)
i=1 j=1 O; =1 o J=1

wheref) = (w, b, a)is the parameter set,w;is the symmetric interaction weight between the units

of hidden layers/ — 1and/,bandaare their respective bias terms,VandHrepresent the numbers of

visible variablesvand stochastic hidden units/, respectively, andois the standard deviation.
The conditional probability distributionsPare defined as follows:

. q Vi
P(hj = 1|v) = Slgm(Z wl-j;Jr a,) (8)

Jj=1

H
P(vi =v|h) = Z(vb,— + X wyhj, Uf) 9)
=1

whereZ(b, 0)is a Gaussian probability density function.
The contrastive divergence algorithm (Hinton 2002) is used to updatewas follows:

Vi Vi
Aw; = —hi Y= —h; 10
Wij 77<<Ulg j> <U,2 1>) (10)
wherenis the learning rate, and(-)is the expectation of the training data.

In this manner, multiple GRBMS can be integrated into a DBN, and the process of feature
learning continues until the required number of hidden layers has been obtained.
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2.2.2 Fine-Tuning with Back-Propagation

After unsupervised pre-training, the overall DNN model can be fine-tuned using a standard
back-propagation algorithm, i.e., back propagation (BP). BP can realize backwards propaga-
tion of the errors between the outputs and targets when the layers flow forward. Therefore, to
minimize the loss function, a gradient is used in an optimization method to successively update
the weightw/and bias parametersbfof the network. Because the network already knows the
characteristics of the given training data, this fine-tuning is helpful to train DNN.

2.3 Performance Assessment Criteria

To quantitatively assess the prediction performance of the above methods, three commonly criteria
were applied: the Nash-Sutcliffe efficiency (NVSE), root mean square error (RMSE) and mean
absolute error (MAE). The calculation equations of the three criteria are shown in Table 1.

whereX(f)andX (¢)denote the recorded and forecasted runoff series, respectively,X (¢)is the
average values of the records, andNis the number of runoff series.

3 Hybrid VMD-DNN Model for Daily Runoff Forecasting

To improve the prediction accuracy, a novel hybrid VMD-DNN model is proposed for daily
runoff forecasting. The proposed hybrid model includes three important stages: (1) decompo-
sition stage, (2) deep feature learning stage, and (3) forecasting stage. In the first stage, a new
decomposition algorithm known as VMD is used to decompose the original runoff data into
multiple IMFs to make the series stationary. During the second stage, an experimental method
is used to confirm the optimal parameter settings of the DNN model for each decomposed
IMF. In the final stage, the trained DNN model is applied as a forecasting tool to establish the
prediction models. The ensemble prediction result is obtained by summing the predicted sub-
results of the modelled IMFs. The overall framework of the proposed model is shown in Fig. 2.
The model algorithm flow is described as follows:
Step 1: Decomposition. VMD is applied to decompose the original daily runoff
seriesX(#)(t=1, 2, ..., n)into multi-modes,/MF(#)(i=1,2, ..., k). The extracted compo-
nents represent a range from low frequency to high frequency and reveal various
features hidden in the daily runoff. The details of the VMD algorithm are given in
Section 2.1.

Table 1 Definition of assessment criteria

Performance assessment criteria Formula

Nash-Sutcliffe efficiency X(1)-X (r))2

Root mean square error N N 2
RMSE = [+ zl (X(0)=X(1))
=

Mean absolute error
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Fig. 2 Overall framework of the proposed hybrid VMD-DNN model for daily runoff forecasting

Step 2: Deep feature learning. After the decomposition process, each IMF is normalized
by Eq. (11) to convert input data to the range [0,1]. An experimental method that
decreases or increases the number of hidden layers and the number of neurons in each
layer is subsequently used to confirm the optimal parameter settings of the DNN model
for each of the normalized IMFs, and the number of inputs is obtained by analysing the
resulting partial autocorrelation diagram.

(a) Standardization. Because the runoff series are highly nonlinear and time-varying, the
extracted components/MF(f)(i =1, 2, ..., k)must be normalized to avoid large fluctuations
and numerical difficulties during the training process. The formula for normalization is
given as follows:

’ Xi—Xmi
xl _ 1 min (1 1)
Xmax ~Xmin
wherex.xandxpy,denote the minimum and the maximum of the extracted components,
respectively.

(b) Training. During the training process, the numbers of hidden layers and hidden nodes are

two critical parameters in the DNN model. Using the normalized training dataset, the
number of hidden layers is initialized from 1 to 2 (the initialized stopping condition is
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Fig. 3 Location of the Zhangjiashan Hydrological Station in Jing River, China

based on the DNN reaching convergence), and the number of hidden nodes is divided
into 10 levels, ranging from 3 to 12 (interval of 1).

Step 3: Forecasting. The DNN model, trained in Step 2, is used as a forecasting tool to
establish the corresponding prediction models for each decomposed IMF. The ensemble
prediction results are subsequently obtained by summing up the predicted sub-results of
the modelled IMFs.

4 Study Area and Data

The study area is located in the Jing River, which is the primary tributary of the Wei River and
a second-level tributary of the Yellow River. Jing River originates from Liupan Mountain,
flows through the provinces of Ningxia, Gansu, and Shaanxi, and traverses the Loess plateau
of northwest China with a total length of 455.1 km. The basin covers an area of 45,421 km?
and is located in the centre of the Loess Plateau (34°46'-37°19'N, 106°14'-108°42'E). A
digital elevation model (DEM) of the region and the rivers located in the basin is presented in
Fig. 3 (He et al. 2015). The altitude ranges from 515 m to 2908 m, and the southeastern portion
of'the basin is lower in altitude than the northwestern portion. According to the landform types,
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Fig. 4 Daily runoff hydrograph of ZHS ranged from 1/1/1988 to 31/12/2017
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Fig. 5 Decomposition results of daily runoff data in ZHS

the basin can be divided into loess hilly and gully region, gully region of the loess plateau,
earth-rocky mountainous area, loess hilly region and loess tableland region, of which more
than 4.3% is earth-rocky mountainous, 41.7% is loess tableland and broken plateau, and
48.8% is loess hilly and gully regions. The total area of soil erosion reaches nearly 73% of the
total land cover, making the basin one of the most soil-eroded areas of the Loess Plateau and
an important source of coarse sediment delivered to the Yellow River. The soil is predomi-
nantly silt loam with silt content greater than 50%. The climate of the Jing River Basin is
continental monsoonal, with an average annual precipitation that ranges from 400 to 600 mm
and an average annual air temperature ranging from 8.0 to 10.0 °C (Ran et al. 2006). The basin
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Fig. 6 PACF of each normalized IMFs decomposed by VMD

is located within a transition zone between semi-arid and semi-humid climates and exhibits
high intra- and inter-annual variability of climate and runoff.

The data studied in this paper were retrieved from the Zhangjiashan Hydrological Station (ZHS,
34°38'N, 105°26'E), which is the main stream control station of the Jing River, with a total area of
43,216km?, accounting for 95% of the total area of Jing River Basin. The daily runoff hydrograph of
ZHS was measured from 1/1/1988 to 31/12/2017, as shown in Fig. 4. These measured values are
collected from the hydrological information datacenter of Shaanxi Hydrographic and Water Re-
sources Survey Bureau. In particular, the daily runoff value (m3/s/day) was calculated by the
instantaneous value (m?/s) at 8 a.m. that is considered to be the average value in one day.
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Table 2 Optimal input variables of each IMF decomposed by VMD

Decomposed IMFs Input variables Numbers of input Output
IMF, xi(t—1D)(—2)t—3) 3 x1(2)
IMF, X(t—1D(E—2)¢—-3) 3 X(0)
IMF; X(t=D(E=2)(t=3)(t—4) 4 x3(2)
IMF, xy(t—=D)(E—=2)(t—3)t—4) 4 x4(2)
IMF; xs(t=1)(t—=2)(t—=3)(t—4) 4 xs5(1)
IMFg xXe(t— D) =2)t—3)(t—4) 4 X6(2)
IMF; X(t=1D)(t=2)(t—=3)(t—4) 4 x7(2)
IMFg xg(t—= Dt =2)(t=3)(t—4) 4 xg(2)
IMF, xo(t— 1) —2)t—3)(t—4) 4 Xo(2)
IMF o X0t = D=2t = 3)(t—4) 4 x10(2)

5 Results and Discussion

The proposed VMD-DNN model was applied for daily runoff forecasting of the ZHS and was
assessed using three common criteria. The prediction performance of the hybrid model was
compared with that of five other hybrid models.

5.1 Decomposition Result

As introduced in Section 2, the number of modesKis the key parameter that affects the
decomposed results of VMD. In this work, according to multiple pre-experiments, a suitable
value ofKwas determined by analysing the iterative results of the centre frequency based on the
modeKof different numbers. Finally, through extensive experiments, it was found that when
the number ofKincreased to a certain value, an obvious convergence appeared in the iterative
results, a phenomenon described as central frequency aliasing. Therefore, whenK = 10, this
critical point is chosen as the optimal value. Figure 5 shows 10 IMFs decomposed by VMD.

5.2 Learning the Features of the DNN

As described in Section 2, critical parameters such as the numbers of inputs, hidden nodes, and
hidden layers are prerequisites for determining the structure of DNN. As a statistical tool, the
partial autocorrelation function (PACF) (Huang et al. 2014) can be applied to overcome the
limitation of the relationship between the inputs and outputs to obtain the input variables of
DNN. The values of PACF corresponding to the lag length are calculated and presented in
Fig. 6, of which PACF,-PACF, denote the PACF of each normalized IMF. From Fig. 6, under
the condition that the PACF at lag length falls within the confidence interval, the previous

Table 3 Evaluation of a DNN with 1 hidden layer for the IMF, of VMD

Predicted NSE RMSE MAE Predicted NSE RMSE MAE
structure structure

3-3-1 0.9999675 0.1363701 0.0531204 3-8-1 0.9999661 0.1393763 0.0545189
3-4-1 0.9999680 0.1353411 0.0527600 3-9-1 0.9999650 0.1415186 0.0569714
3-5-1 0.9999684 0.1345273 0.0526057 3-10-1 0.9999672  0.1369679 0.0540563
3-6-1 0.9999660 0.1394376 0.0528651 3-11-1 0.9999662 0.1391011 0.0573580
3-7-1 0.9999672 0.1371323 0.0527783 3-12-1 0.9999675 0.1363777 0.0528247
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Table 4 Evaluation results of a DNN with 2 hidden layers for IMF; of VMD

Predicted NSE RMSE MAE Predicted NSE RMSE MAE
structure structure

3-3-7-1 0.9999680 0.1353128 0.0515833 3-8—6-1 0.9999667 0.1381517 0.0532335
3-4-3-1 0.9999679 0.1355256 0.0532438 3-9-3-1 0.9999678 0.1357162 0.0521475
3-5-10-1 0.9999679 0.1356389 0.0519252 3-10-5-1 0.9999667 0.1380241 0.0526726
3-6-6-1 0.9999671 0.1372905 0.0513703 3-11-4-1 0.9999671 0.1371802 0.0539445
3-7-7-1 0.9999669 0.1376938 0.0527946 3-12-7-1 0.9999673 0.1368899 0.0535196

value can be treated as the numbers of inputs. According to analysis of the PACF of the
corresponding lag length in Fig. 6, the optimal input variables of each IMF can be obtained,
and the results are shown in Table 2.

It remains a difficult task to determine the number of hidden nodes and the number of
hidden layers, and no mature theoretical method is available to solve this problem. Instead, an
experimental method that decreases or increases the number of layers and the number of
neurons in each layer, is used to determine the optimal parameter settings. In this work, the
daily runoff series can be divided into two portions: the training dataset (1/1/1988 to 31/12/
2012) and the testing dataset (1/1/2013 to 31/12/2017). The first IMF of VMD, i.e., IMFy, is
used as an example to illustrate the experimental process.

In this experiment, a DNN training structure is initialized with 3 input nodes and 1 hidden
layer, the number of hidden layer nodes is divided into 10 levels from 3 to 12 (interval of 1),
and the number of hidden layers is initialized from 1 to 2 (the stopping condition is based on
the DNN reaching convergence). Table 3 shows the DNN evaluation results with 3 input nodes
and 1 hidden layer based on the three assessment criteria. It is obvious that the optimal learning
performance is obtained, i.e., 3-5-1 (input layer: 3, hidden layer: 5, and output layer: 1).

The initialization of a DNN has 3 input nodes and 2 hidden layers, with 10 hidden nodes in
the first hidden layer, and 100 hidden nodes in the second hidden layer. Table 4 shows the
optimal prediction performance of DNN with the first hidden layer corresponding to the 10
hidden nodes in the second hidden layer.

The above results show that the best values of NSE, RMSE, and MAE appear for the
architecture 3—3—7-1(input layer: 3, hidden layer: first 3, second 7, and output layer: 1).
However, the prediction performance of the DNN with two hidden layers was not as good
as that with one hidden layer, with values of NSE =0.9999684, RMSE =0.1345273, and
MAE =0.0526057. Therefore, it is necessary to prevent the experiment from selecting the
hidden layer. The optimal predicted structure is a DNN with one hidden layer, i.e., 3-5-1.

Table 5 Evaluation results of different DNNs with different hidden layers for the 2nd-10th IMF of VMD

Decomposed IMFs Predicted structure NSE RMSE MAE

IMF, 3-10-6-1 0.9998702 0.1841126 0.0515833
IMF; 4-11-1 0.9986862 0.2694962 0.1269800
IMF, 4-12-5-1 0.9978675 0.4108998 0.1790288
IMF; 4-8-8-1 0.9921593 0.6250176 0.2809470
IMFg 4-9-6-1 0.9870264 1.0773741 0.4591809
IMF, 4-12-12-1 0.9786577 1.2430514 0.6457458
IMFg 4-4-4-1 0.9758000 1.0846822 0.4676694
IMF, 4-4-3-1 0.9812027 0.6358390 0.2868871
IMF 4-10-4-1 0.9987790 0.2897115 0.1248427
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Fig. 7 Predicted and recorded results of IMFs decomposed by VMD

Thus, this analysis reveals that the learning performance of DNN with multiple hidden layers is
not always better than a DNN with one hidden layer. In other words, excess hidden layers of
the DNN might lead to an over-fitting problem.

According to the experimental steps described above, the 2nd-10th IMFs of VMD can be
forecasted by the corresponding trained DNNSs, and the evaluation results are summarized in
Table 5.
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Fig. 8 Final predicted result and the scatters of VMD-DNN
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Fig. 9 Final predicted result and the scatters of EMD-DNN

From Table 5, the best predicted structure for IMF, is 3—10-1 in the first hidden layer.
However, a DNN with 2 hidden layers (hidden nodes in the first and the second hidden layer
set as 10 and 6, respectively) for IMF, showed the best overall performance, with correspond-
ing performance assessment values of NSE =0.9998702, RMSE =0.1841126, and MAE =
0.0773231. Hence, the optimal predicted structure for IMF, is a DNN with two hidden layers,
i.e., 3-10-6-1. Meanwhile, the best prediction results for the 3rd-10th IMF of VMD are
indicated with bold text in Table 5. It can be clearly observed that the best predicted structure is
distributed in one hidden layer or two hidden layers. This result further illustrates that for
feature learning, additional hidden layers do not always correlate to better performance. The
prediction results of IMFs decomposed by VMD were transformed into real data by inverse
normalization and are plotted in Fig. 7, which shows the predicted and recorded results of each
IMFs of the best prediction structure in the testing dataset.

5.3 Forecasting Results

The ensemble prediction results were obtained by summing the predicting sub-results of the
modelled IMFs of the daily runoff data during the period 1/1/2013-31/12/2017. The final
predicted results using the proposed model VMD-DNN are displayed in Fig. 8. In addition to
the predicted and recorded results, scatter plots are presented to analyse the agreement between
the predicted and recorded results.

It can be clearly observed from the data presented in Fig. 8 that the predicted values are
generally consistent with the change trend of the recorded results, although the predicted effect
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Fig. 10 Final predicted result and the scatters of EEMD-DNN
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Fig. 11 Final predicted result and the scatters of MFE-VMD-DNN

is not particularly ideal at each individual peak point. Additionally, in the scatter diagram, the
predicted and recorded values are mostly concentrated near the ideal fit, which shows a higher
consistency. Additionally, the small angle between the linear fit and ideal fit further indicates
that the model adopted in this paper has good prediction ability. The quantitative assessment
results of NSE =0.95, RMSE =9.92, and MAE = 3.82 show good precision.

5.4 Comparison Analysis

To further test the feasibility and superiority of the VMD-DNN hybrid model, this model was
compared with EMD-DNN, EEMD-DNN, and multi-scale feature extraction -based VMD-
DNN, EMD-DNN and EEMD-DNN (MFE-VMD-DNN, MFE-EMD-DNN, MFE-EEMD-
DNN). Specifically, ensemble membersMand the amplitude of the added white noisec are
key parameters that affect the decomposition results of EEMD. In this paper, according to
reference (Wu and Huang 2009) and pre-experiments,Mandewere set to 100 and 0.2,
respectively.

Figures. 9, 10, 11, 12 and 13 display the forecasting results using the other five models.
From Fig. 9, it is clear that the forecasted data exhibits a stronger tracking ability for the
recorded data, indicating that EMD-DNN has better performance. As shown in Fig. 10,
EEMD-DNN presents a positive fitting ability for runoff changes, and the scatters of the
forecasted and recorded data are more concentrated close to the ideal fit. The MFE-VMD-
DNN model is shown in Fig. 11 and reveals that most of the forecasted points are close to the
recorded data, but this model offers only a poor capacity for prediction of peak points. MFE-
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Fig. 12 Final predicted result and the scatters of MFE-EMD-DNN
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Fig. 13 Final predicted result and the scatters of MFE-EEMD-DNN

EMD-DNN and MFE-EEMD-DNN were also tested and the results are shown in Fig. 12 and
13. Limited fitting and tracking ability are displayed, and the scatter plots are more dispersed
than the above three models.

Comparing the results of the above models with the results of Fig. 8, on the one hand, Fig. 8
shows a better ability to fit the trend and periodicity than the other five peer models, especially
during peak inflow, and on the other hand, the scatter plot of Fig. 8 also reveals a higher
correlation between the predicted and recorded results. Therefore, the qualitative comparisons
of the six models indicate that VMD-DNN shows the best prediction performance for both
overall prediction and peak inflow prediction capability.

In addition, quantitative assessment can be performed. The NSE, RMSE, and MAE values
were used to evaluate the prediction performances of the six models, as shown in Table 6. The
following three observations can be concluded from the results: (1) For non-multiscale feature
extraction, VMD-DNN shows better prediction performance for the same prediction method.
The methods fall in the order of VMD-DNN>EEMD-DNN>EMD-DNN; (2) For multiscale
feature extraction, MFE-VMD-DNN showed better prediction performance, based on the same
prediction method. For comparison of this method with the others, the methods fall in the order
of MFE-VMD-DNN>MFE-EEMD-DNN>MFE-EMD-DNN; (3) By comparing the results of
(1) and (2), it is clear that non-multiscale feature extraction has a higher prediction perfor-
mance than multiscale feature extraction, i.c., VMD-DNN>MFE-VMD-DNN.

Via the above comparative analysis, two constructive conclusions can be reached: (1)
Among the three decomposition methods described in this article, i.e., EMD, EEMD, and
VMD, VMD exhibited the best noise reduction performance for the original runoff series; (2)
The final forecasting result obtained by the non-multiscale feature extraction was obviously

Table 6 Comparison of prediction performances using different models

Forecasting Approach Prediction Model Performance assessment criteria
NSE RMSE MAE
Non-multiscale feature extraction EMD-DNN 0.76 22.49 9.21
EEMD-DNN 0.80 20.71 6.99
VMD-DNN 0.95 9.92 3.82
Multiscale feature extraction MFE-EMD-DNN 0.40 44.99 16.59
MFE-EEMD-DNN 0.42 35.12 11.73
MFE-VMD-DNN 0.91 14.08 5.61
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better than that obtained by multiscale feature extraction. To summarize, the comparative
results indicate that the proposed hybrid model VMD-DNN has better forecasting performance
than the other models.

6 Conclusions

In this paper, a proposed model based on variational mode decomposition and deep neural
networks was used to forecast the daily runoff of the Zhangjiashan Hydrological Station in
Jing River, China. The three steps of this model were applied for runoff forecasting: (1)
Decomposition. The runoff original series were decomposed into multiple IMFs by VMD; (2)
Deep feature learning. Using an experimental method, the deep feature values of the DNN
were fully learned for forecasting each decomposed IMF; (3) Forecasting. The trained DNN
model was applied as a forecasting tool to establish the prediction models, and the ensemble
prediction results were obtained by summing the predicting sub-results of the modelled IMFs.
This model was compared with five hybrid models, i.e., EMD-DNN, EEMD-DNN, MFE-
VMD-DNN, MFE-EMD-DNN, and MFE-EEMD-DNN. Of these, VMD-DNN exhibited the
best prediction performance among all comparable methods in terms of both overall prediction
and peak inflow prediction capability.

Overall, in addressing the forecasting of the daily runoff series, this work successfully demon-
strates that the performance of daily runoff forecasting can be significantly enhanced using the
proposed VMD-DNN model. The three stages of decomposition by VMD, deep feature learning
with an experimental method, and forecasting by DNN were established for a hybrid model to solve
the daily runoff forecasting. It should be noted that the proposed hybrid model offers two main
advantages: (1) Reduction of the number of decomposed IMFs, thereby shortening the time required
to build the predictive model and decreasing the forecasting workload; (2) Reduction of accumu-
lative error during multiscale feature extraction. Overall, the results indicate that the proposed VMD-
DNN hybrid model is a useful tool for predicting complex time series data that are complicated by
non-stationary and nonlinearity, making this approach a promising new method for daily runoff
forecasting. Further research should be considered to solve the following two problems: (1) The
decomposed IMFs could be split into high-frequency terms and low-frequency terms, of which the
low-frequency terms can be predicted by time-series models, and the high-frequency terms can be
predicted using more advanced artificial intelligence techniques; (2) The proposed hybrid model can
consider selected factors that affect hydrological time series such as climate change instead of
univariate time series analysis.
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