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a b s t r a c t

Efficient utilization of water resources in hydropower station operation is an important part of mitigating
water and energy scarcity. Exploring efficient multi-objective optimization algorithms and studying the
trade-off between water and energy have become the primary goal of multi-objective hydropower
station optimal operation (MOHSOO). In this paper, a new improved multi-objective cuckoo search
(IMOCS) algorithm is proposed to overcome the shortcomings of MOCS. Specifically, a population
initialization strategy based on constraint transformation and the individual constraints and group
constraints technique (ICGC) and a dynamic adaptive probability (DAP) are used to improve the search
efficiency and the quality of solutions, respectively. A flock search strategy (FSS) is proposed to greatly
speed up the convergence and improve the quality of the non-dominated solutions. In addition, the
MOCS and NSGA-II are presented as a comparison to test the performance of IMOCS as well as three
hybrids of MOCS combined with these strategies. An MOHSOO model of Xiaolangdi and Xixiayuan
cascade hydropower stations in the lower Yellow River is built to verify the effectiveness of these al-
gorithms together with five benchmark problems. The results show that IMOCS performs better than
other algorithms in convergence speed, convergence property, and diversity of solutions. For the Xiao-
langdi hydropower station, there is a strong competitive relationship between power generation and
water supply from September to next February, which severely restricts the power generation of the
hydropower station.

© 2018 Published by Elsevier Ltd.
1. Introduction

The relationship between water and energy is a matter of great
international concern [1]. It is predicted that global water con-
sumption for energy sectors will increase by 85% in 2030 relative to
that in 2012 [2]. The current study suggested that not only
renewable energy potential but also water resources available for
energy use should be considered in the energy development [3]. On
the one hand, rapid economic development has pushed the
continuing growth of energy demands and led to severe pollutant
emissions derived from fossil energy [4]. Exploration of clean and
renewable alternative energy sources has attracted increased
attention [5]. Hydropower is one of the most effective and mature
forms of clean and renewable energy [6]. In power systems, hy-
dropower is usually applied to insure the safe operation of electric
network by means of peak and frequency modulation due to its
convenient start and stop of power generation [7]. However, hy-
dropower plants usually undertake multiple tasks besides power
generation, such as flood control, irrigation, water supply, and
recreation, among others, which generally prevail over the power
generation and prevent the physical flexibility of hydropower [8].
Therefore, the hydropower generation is seriously restrained by the
integrated tasks of hydropower stations [9]. On the other hand,
with the continuous increase inwater demand, the contradiction of
supply and demand is made more severe. The scarcity of high-
quality water even impedes social improvements [10]. UN-Water
(United Nations - Water) [11] calls attention to the fact that water
stress is already high and that improved management is critical to
ensuring sustainable development. Hydropower station operation
plays a great role in positive contribution to the development of
socio-economic sectors and the reduction of the vulnerabilities of
water systems [12].

Therefore, efficient utilization of water resources in hydropower
station operation has become an important part of mitigatingwater
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and energy scarcity. It is necessary and significant to explore the
relationship between water and energy, which can help managers
make reasonable hydropower station operation plans in power and
water systems. These issues motivate the research on multi-
objective hydropower station optimal operation (MOHSOO). Zhou
et al. [13] proposed a multi-objective model solved by non-
dominated sorting genetic algorithm-II (NSGA-II) to improve wa-
ter utilization and hydropower generationwithout increasing flood
risk. However, one of the difficulties is that the optimal hydropower
station operation is a high-dimensional, non-linear, multi-stage
and stringent constraint optimization problem [14]. Another diffi-
culty is that it is time-consuming or even impossible to find all of
the Pareto optimal solutions on the Pareto front [15]. Therefore,
exploring efficient multi-objective optimization algorithms and
obtaining a set of representative solutions with good coverage and
uniformity have become the primary goals for MOHSOO.

With the development of computing technology, numerous
optimization algorithms have been used to solve optimal operation
problems, and such algorithms can be classified as classic or
evolutionary methods. The classic optimization methods may have
poor performance in many complex problems, while evolutionary
algorithms (EAs) can handle any type of objective function [16]. For
hydropower station operation, EAs are recognized as good
decision-making tools due to their flexibility and superiority [17].
Therefore, EAs, such as the genetic algorithm (GA) [18], differential
evolution algorithm (DE) [19], and progressive optimality algorithm
(POA) [20], are being applied more often in optimal hydropower
station operation. However, it is not possible to find a single scheme
that can optimize all objectives simultaneously for MOHSOO. The
decision makers would rather obtain a set of candidate solutions
that can provide more information for decision making. Therefore,
multi-objective evolutionary algorithms (MOEAs) that can obtain a
set of non-dominated solutions from the Pareto optimal front are
more applicable to decision making and recommended for the
solution of many difficult water resources problems [21,22]. In
recent years, a variety of newly developed MOEAs have been
applied to solve MOHSOO, including the non-dominated sorting
genetic algorithm-II (NSGA-II) [13,23], differential evolution algo-
rithm (DE) [24], artificial bee colony algorithm (ABC) [25], gravity
search algorithm (GSA) [16], and so on. Note that NSGA-II is one of
the most popular multi-objective evolutionary algorithms and is
often employed as a comparison method to test the performance of
other multi-objective optimization algorithms due to its fast speed
and good convergence. Furthermore, manyMOEAs are improved by
combining them with other algorithms to overcome their short-
comings. Fang et al. [26] presented a hybrid algorithm by
combining the real-coded genetic algorithm and artificial fish
swarm algorithm (RCGAeAFSA), which takes advantage of their
complementary abilities of global and local search to find an
optimal solution.

Recently, a relatively new meta-heuristic search algorithm
named cuckoo search (CS) was proposed by Yang and Deb [27].
They found that CS is potentially far more efficient than PSO and
GA. Therefore, this algorithm has been used inmany fields due to its
advantages of fewer parameters and good global searching ability
[28e30]. Some studies have even demonstrated that CS can
perform significantly better than other algorithms [31]. Neverthe-
less, there are still some challenging issues that must be resolved.
One is that the parameters will largely influence the performance of
an algorithm. Another issue is that we must improve the algorithm
with a good understanding of the working mechanism [32]. The
challenging issues motivate more research to improve CS. These
improvements can be divided into four types. First, self-adaptive
parameter setting is one of the most widely used approaches and
is designed to enhance the diversity of the solutions with the
dynamic change of parameters [33,34]. Second, some studies have
attempted to improve the properties of exploration and exploita-
tion by inducing a Cauchy operator to generate the step size instead
of L�evy flights or using better search strategies, i.e., the random
long-distance search strategy, stochastic moderate-distance search
strategy and stochastic short-distance search strategy [34,35]. The
third common method is the hybridization of other algorithms.
Recently, numerous new CS variants have been proposed that may
also become a hot topic for further development. For example,
Kanagaraj et al. [36] proposed a new cuckoo search algorithm hy-
bridized with the genetic algorithm, called CSeGA, to solve the
reliability and redundancy allocation problem by embedding the
genetic operators in CS. Conversely, another hybrid algorithm was
developed by incorporating the egg-laying and immigration
mechanisms of the cuckoo optimization algorithm (COA) into the
harmony search (HS) algorithm (HSCOA) [37]. Finally, there is
improving the initial solutions, which also greatly influences the
optimization of EAs. Therefore, an improved cuckoo search (ICS)
algorithm is proposed to rapidly obtain the optimal solutions by
incorporating a constructive heuristic called NEH with the initial
solutions [38].

Moreover, to solve the multi-objective optimization problem,
Yang and Deb [39] proposedmulti-objective cuckoo search (MOCS),
which also has been used in myriads of engineering applications.
More importantly, various researchers have made improvements to
the algorithm to overcome its shortcomings (e.g., slow convergence
speed). Balasubbareddy et al. [40] proposed the non-dominated
sorting-based hybrid cuckoo search algorithm, which introduces
arithmetic crossover operations to the conventional cuckoo search
algorithm to update the newly generated population and thereby
speed up the convergence. In addition, the non-uniform mutation
operator and differential evolution operator are used to improve
the accuracy and rate [41]. However, the research on CS and MOCS
improvement usually uses one or two measures to improve the
algorithm. The quantifiable effect of each improvement measure is
not analyzed separately when more than one measure is included
in the new algorithm. In particular, there is insufficient research on
MOCS improvements.

This paper aims to explore efficient multi-objective optimiza-
tion algorithm for MOHSOO and study the relationship of the
multiple objectives of hydropower stations. For this purpose, we
propose a new improved multi-objective cuckoo search (IMOCS)
algorithm by coupling three improvement strategies to solve
MOHSOO in this paper. Specifically, the population initialization
strategy based on constraint transformation and the individual
constraints and group constraints technique (ICGC) is used to
improve the search efficiency. A flock search strategy (FSS)
including a flock search mechanism and fast non-dominated sort-
ing approach is proposed to greatly speed up the convergence and
improve the quality of the solutions. The dynamic adaptive prob-
ability (DAP) is adopted to converge to the global optimal solution.
In addition, to verify the superiority of the IMOCS, two other al-
gorithms, MOCS and NSGA-II, are presented as comparisons in this
paper. More importantly, the hybrids of MOCS combined with
group constraints and individual constraints (ICGC-MOCS), the
flock search strategy (FSS-MOCS), and dynamic adaptive probabil-
ity (DAP-MOCS) are proposed in this paper to verify the effective-
ness of the improvement strategies. Finally, the Xiaolangdi and
Xixiayuan cascade hydropower stations in the lower Yellow Rive
are taken as a case study to verify the effectiveness of IMOCS for
MOHSOO and study the relationship of power generation and
water supply. This study provides an efficient multi-objective
optimization algorithm for MOHSOO and acts as a reference for
long-term operation of hydropower stations in the lower Yellow
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River.

2. Hydropower station operation model for power generation
and water supply

As we know, there are multiple demands among different
water-using sectors, including flood control, power generation,
irrigation, river ecosystem health, etc., which interact or compete
with each other. This fact causes difficulties for the decision maker
for hydropower station operation and gives rise to the idea that the
traditional single-objective operation cannot provide acceptable
solutions to the various water using sectors. In this paper, a multi-
objective optimal model considering power generation and water
supply is built for the water resources management of hydropower
stations.

2.1. Objective functions

There are two objectives in the model: one is the minimization
of comprehensive water shortage, and the other is the maximiza-
tion of cascade power generation, which can be formulated as
follows,

MinW ¼
XT
t¼1

XM
m¼1

½Dðm;tÞ � Q ðm;tÞ�Dt� (1)

MaxE ¼
XT
t¼1

XM
m¼1

Nðm;tÞ � Dt (2)

where W is the comprehensive water shortage. T is the total
number of periods. Dt is the time interval.m is the serial number of
a hydropower station, and the number of reach between hydro-
power station m and hydropower station mþ 1. Mis the total
number of hydropower stations and reach. Dðm;tÞ is the integrated
water requirement of reach m at period t. Qðm;tÞ and Nðm;tÞ are the
outflow and average output of hydropower station m at period t,
respectively. E is the total cascade power generation.

2.2. Constraints

(1) flow balance constraint

QIðmþ 1; tÞ ¼ QOðm; tÞ þ qðm; tÞ (3)
(2) water balance constraint

Vðm; t þ 1Þ ¼ Vðm; tÞ þ ½QIðm; tÞ � QOðm; tÞ� � Dt (4)
(3) water level constraint

Zminðm; tÞ � Zðm; tÞ � Zmaxðm; tÞ (5)
(4) outflow constraint

QOminðm; tÞ � QOðm; tÞ � QOmaxðm; tÞ (6)
Fig. 1. Distribution of L�evy flights with 1000 consecutive steps.
(5) output constraint

Nminðm; tÞ � Nðm; tÞ � Nmaxðm; tÞ (7)

where QOðm; tÞ, QOmaxðm; tÞ and QOminðm; tÞ represent the outflow
and the maximum and minimum outflow of hydropower stationm
at period t, respectively. Note that QOminðm; tÞ and QOmaxðm; tÞ are
determined by the water requirement and flood control task of
downstream, respectively. QIðm; tÞ and Vðm; tÞ are the inflow and
storage capacity of hydropower station m at period t, respectively.
qðm; tÞ is the local inflow of reach m at period t. Zðm; tÞ, Zminðm; tÞ
and Zmaxðm; tÞ represent the water level and the minimum and
maximum water level of hydropower station m at period t,
respectively. Nðm; tÞ, Nminðm; tÞ and Nmaxðm; tÞ are the output and
the minimum and maximum output of hydropower station m at
period t, respectively.

(6) Non-negativity conditions.

All the variables mentioned above are greater than or equal to
zero.
3. Improved multi-objective cuckoo search

3.1. Multi-objective cuckoo search

3.1.1. Cuckoo search
The cuckoo search is a relatively new meta-heuristic search al-

gorithm, proposed recently by Yang and Deb [27], and has shown
good results compared to other algorithms for optimization prob-
lems. Cuckoo search is inspired by obligate brood parasitism and
L�evy flights behavior. First, brood parasitism is the most special
habit of cuckoos. Some species of cuckoos (e.g., Guira) lay their eggs
in the nests of other host birds. Once the local host bird finds the
alien eggs, it may either remove the eggs or abandon its nest. To
increase the hatching probability of the alien eggs, a cuckoo often
searches for a nest that has similar eggs and replaces the local host's
eggs with their own eggs to keep the total number of eggs in the
host nest unchanged. In this process, the cuckoo looks for new
candidates for its nest with a certain probability. This aggressive
breeding strategy has resulted in the evolution of cuckoos. Second,
the flight behavior of a cuckoo looking for the nest of another host
bird is characterized by L�evy flight. L�evy flight is an optimum
random search pattern and is frequently found in nature. Moreover,
the random step length is dynamic, which obeys the L�evy
distribution.

It is clearly observed from Fig. 1 that short explorations and the
occasional long walk appear alternately. Therefore, L�evy flight is
very efficient for exploring unknown large-scale search space [42].
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L�evy flight can help intelligent optimization algorithms expand the
search scope and increase the population diversity. In this manner,
the algorithms gain the ability to easily escape from local optima
solutions, thereby achieving a balance between global search and
local search.

The behaviors of cuckoos mentioned above have given re-
searchers the idea to propose CS for optimization. The basic prin-
ciples are as follows: (1) each cuckoo lays one egg at each time and
puts it in a nest randomly; (2) the nest with the best eggs or so-
lutions is reserved for the next generation; and (3) the number of
host nets is fixed, and a host bird discovers the egg with a given
probability. If the host bird finds the alien egg, it will discard the egg
or the nest and find a new nest in a new location.

3.1.2. Multi-objective cuckoo search
Cuckoo search is originally designed to cope with single objec-

tive optimization. In order to solve multiple objective optimization
problems, Yang and Deb [39] proposed multi-objective cuckoo
search in 2013. The first and last rules are modified to solve the
multi-objective optimization problems. In particular, for an opti-
mization problem with K objectives, each cuckoo lays K eggs at a
time and puts them in a host nest randomly. Each nest will be
abandonedwith a given probability and a new nest with K eggs will
be built. Note that all of the objectives must be fully considered
when evaluating the quality of nests, and the non-dominated Par-
eto optimal solutions should be sought. Based on the three rules,
the path and position iterative formula of the cuckoo random
search nest is as follows:

xiterþ1
i ¼ xiteri þ a4L�evyðlÞ (8)

a ¼ a0

�
xiteri � xiterbest

�
(9)

L�evyðlÞ � m ¼ t�l;1< l � 3 (10)

where xiteri is the candidate position of generation iter. a is the step
size, which is related to the scales of the problem to be solved. a0 is
a constant. 4 means entry-wise multiplications. L�evyðlÞ is a L�evy
distribution function describing randomly walked steps.

Mathematically speaking, the three rules can be considered as
forms of crossover, elitism, and mutation, respectively. These fea-
tures work in combination, which can ensure the efficiency of the
algorithm [39]. However, there are several shortcomings of MOCS
for multi-objective optimization. The slow convergence speed, and
the poor diversity and stability of the Pareto front limit the appli-
cation of this algorithm. Moreover, the elite selection strategy af-
fects the global search ability of MOCS, which easily leads to local
optima. Therefore, we attempt to propose several improvement
measures in this paper to solve the problems and improve the
quality of the optimization solutions within the acceptable time.

3.2. Population initialization strategy

Optimal hydropower station operation is an optimization
problem with complicated constraints, including equality (i.e., the
water level constraint and outflow and output constraint) and
inequality constraints (i.e., the water balance constraint). Specif-
ically, the penalty function method is an effective approach for the
inequality constraints but not for the equality constraints. However,
the search ability becomes poor with the increase of the number of
penalty functions. A constraint transformation method based on
the water balance equation is one possible way to change some
constraints (the outflow and output constraint) into a water level
constraint. In this manner, the number of penalty functions can be
reduced, and the computing efficiency can be improved by con-
trolling the search space of decision variables. This method has
been employed in hydropower station optimal operation and has
been proven to effectively alleviate the influence of the infeasible
solution space on the population quality [4,43e45]. Therefore, the
constraint transformation method is coupled with MOCS to
improve the search efficiency.

Moreover, the quality of the initial population has a major
impact on the optimization of an intelligent evolutionary algo-
rithm. If the feasible region accounts for a smaller proportion of the
optimization space, the randomly generated initial solution tends
to be of poor quality. The constraint-based population generation
strategy has proved to be an effective method to solve this problem
[4,46]. This method constraints the initial solution within a certain
range, thereby reducing the search space and improving the quality
of the initial feasible solution. In this paper, we adopt the individual
constraints and group constraints technique (ICGC) to improve the
population initialization [46].
3.2.1. Constraint transformation
In optimal hydropower station operation, the water levels at

each period are usually chosen as decision variables, and the hy-
dropower station outflow at all stages should meet the given con-
straints (e.g., the outflow constraint). Given that the current
outflow is restrained by the current inflow and the next water level,
we attempt to change the outflow constraint into a water level
constraint according to the following water balance equation:

Vðm; t þ 1Þ ¼ Vðm; tÞ þ ½QIðm; tÞ � QOðm; tÞ� � Dt (11)

The variation range of the hydropower station storage capacity
can be determined according to inflow and the outflow constraint,
which is defined as follows:

Vmaxðm; t þ 1Þ ¼ Vðm; tÞ þ ½QIðm; tÞ � QOminðm; tÞ � � Dt (12)

Vminðm; t þ 1Þ ¼ Vðm; tÞ þ ½QIðm; tÞ � QOmaxðm; tÞ � � Dt (13)

where Vðm; tÞ is the storage capacity of hydropower station m at
period t; Vmaxðm; tÞ and Vminðm; tÞ are the maximum and minimum
storage capacity of hydropower station m at period t, respectively.
QIðm; tÞ represents the average inflow of hydropower station m at
period t; QOmaxðm; tÞ and QOminðm; tÞ signify the maximum and
minimum outflow of hydropower station m at period t,
respectively.

Next, according to the range of the hydropower station storage
capacity (formulas 18 and 19), the corresponding water level is
determined based on the relationship of the hydropower station
water level and the storage capacity, which is the range of thewater
level with constraint satisfaction.
3.2.2. Initial population generation with ICGC
For multi-stage decision making problems, the decision vari-

ables at adjacent stages are often highly correlated, which means
that the values of decision variables at previous stage usually affect
the feasible space of decision variables at the current stage.
Therefore, researching the inner restriction relationship of decision
variables between different stages and reducing the search space
can improve the efficiency of optimization. The individual con-
straints technique (IC) is an effective approach for determining the
next feasible space of decision variables based on their inner re-
striction relationship between adjacent stages and the current
values of decision variables. More importantly, the feasible space of
IC is calculated from the first stage to the final stage. The principle
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can be seen in Fig. 2.
However, the search space tends to have a large amount of

infeasible space for multi-constraint optimization problems.
Furthermore, a larger problem is that the sequential decision
making of IC (shown in Fig. 2) may lead to constraint violation in
the final stage. For hydropower station operation, this means that
the final water level is not back to the initial water level, which is
considered unreasonable. To solve these problems, we propose a
method called the group constraints technique (GC) to remove the
infeasible space based on the constraints from the final stage to the
first stage (shown in Fig. 2). Note that the feasible space of GC is
determined by the boundary of the decision space in previous
stage. This method can not only reduce the search space but also
satisfy the constraints. In addition, the largest difference between
IC and GC is that the feasible space of decision variables obtained by
IC only works in one stage, while that obtained by GC is effective in
all stages.

In this paper, the hydropower stationwater levels are selected as
the decision variables. We can determine the feasible search space
of the water level with the initial water level constraints and the
new water level constraints transformed from the outflow con-
straints. First, GC is used to determine the feasible space of the
water level from stage T � 1 to stage 1 based on the water balance
equation. Second, IC is applied to determine the feasible space of
each individual from stage 1 to stage T � 1 based on the water
balance equation. It is important to note that the upper boundary of
the water level is related to the minimum outflow and that the
lower boundary of the water level is related to the maximum
outflow. Finally, the new feasible search space is the intersection set
of the ranges of water level obtained by GC and IC, and the original
water level constraint. After obtaining the new feasible search
space, the algorithm can generate the initial population in the new
feasible search space, which removes the infeasible space and re-
duces the search space. In this manner, the quality of the initial
population is improved, thereby improving the search efficiency.

In addition, it is known that the values of decision variables in
Fig. 2. A sketc
the feasible region boundary can improve the quality of the optimal
solution. Therefore, we increase the feasible space of IC by multi-
plying a value greater than 1 (1.1 in this paper) to improve the di-
versity of the decision variable values of the initial population. In
this manner, it can help the initial population reach a balance be-
tween the diversity and feasibility of decision variable values, even
though the proportion of feasible individuals to the initial popu-
lation is reduced to some extent.
3.3. Flock search strategy

3.3.1. Flock search mechanism
According to the rules of the MOCS, this algorithm chooses a

cuckoo to find one candidate nest every time via L�evy flight. This
model of evolution may result in a low probability of the new
candidate nest being better than the host nest, which indicates
poor efficiency of population regeneration. Furthermore, the algo-
rithm often suffers premature convergence and is easily trapped in
local optima. In order to improve the efficiency of the algorithm, we
propose a new strategy, named the flock search mechanism, and
apply it to the nest search. Specifically, many cuckoos look for the
same number of candidate nests at the same time, and it is still
guaranteed that there is one cuckoo in each host nest that can find
one candidate nest via L�evy flight. In this manner, multiple candi-
date nests can be generated each iteration. Therefore, the flock
search strategy can improve the efficiency of population regener-
ation and accelerate the convergence of the algorithm. The new
position iterative formula of the cuckoo random search nest is as
follows:

Xiterþ1
new ¼ Xiter þ А14L�evyðbÞ (14)

where Xiter is the location of old nests, Xiterþ1
new ¼

2
4 xiterþ1

new ð1Þ
«

xiterþ1
new ðPOPÞ

3
5 is

the location of newnests generated by L�evy flight. А1 is the step size
h of ICGC.
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set, and А1 ¼
2
4 a1

«
aPOP

3
5.

ai ¼ a0

h
xiterðiÞ � xiterbestðjÞ

i
(15)

Next, the new position iterative formula of each nest is

xiterþ1
new ðiÞ ¼ xiterðiÞ þ a0

h
xiterðiÞ � xiterbestðjÞ

i
4L�evyðbÞ (16)

where xiterbestðjÞ is randomly selected from the non-dominated set

Xiter
best .
Similarly, the flock search strategy is also applied when

replacing the worst nests (e nests). The new locations of the
replenished nests (e nests) are

Xiterþ1
replenish ¼ Xiterþ1

selecting þ А24L�evyðbÞ (17)

where Xiterþ1
replenish ¼

2
64
xiterþ1
replenishð1Þ

«
xiterþ1
replenishðeÞ

3
75 is the set of new replenished

nests. Xiterþ1
selecting is randomly selected from the remaining nests

(Xiterþ1
remaining) after eliminating the worst nests, which includes e

nests. А2 ¼
2
4a01

«
a0e

3
5.

a0i ¼ a00
h
xiterþ1
selectingðiÞ � xiterþ1

remainingðjÞ
i

(18)

The new location of each replenished nest is

xiterþ1
replenishðiÞ¼ xiterþ1

selectingðiÞþa00
h
xiterþ1
selectingðiÞ�xiterþ1

remainingðjÞ
i
4L�evyðbÞ

(19)

where xiterþ1
remainingðjÞ is randomly selected from the remaining nests

Xiterþ1
remaining , and jsi.
3.3.2. Fast non-dominated sorting approach
In addition, the flock search mechanism is a form of mathe-

matical population variation. It is inspired by the non-dominated
sorting genetic algorithm (NSGA), which is a multi-objective opti-
mization algorithm first proposed by Srinivas and Deb [47]. This
algorithm works well in finding a Pareto optimal front and main-
taining the diversity of the population. However, this algorithm has
been criticized for limitations including the high time complexity of
sorting, non-elitism strategy, and influence of the sharing param-
eter on the diversity of the population. To overcome these diffi-
culties, Deb et al. [48,49] later proposed the NSGA-II. Specifically, a
fast non-dominated sorting approach is adopted to reduce the
computational complexity. A selection operator based on the
crowding degree and crowding distance is presented to ensure the
diversity. Moreover, the elite strategy is introduced to improve the
population quality and convergence efficiency. At present, NSGA-II
has been widely applied to MOHSOO [50]. In addition, it has
become the benchmark for testing other multi-objective optimi-
zation algorithms.

In this paper, after improving the search mechanism, we also
introduce the improvement ideas of NSGA-II into MOCS. First, a fast
non-dominated sorting approach based on the elite strategy is used
to select the new nests of host birds after merging the host nests
with the newly created candidate nests instead of randomly
selecting new individuals in the MOCS. In this manner, IMOCS can
make full use of the previous excellent host bird's nests. Second, a
selection operator based on the crowding degree is employed to
maintain the diversity of the population. In general, a flock search
strategy that contains the flock search mechanism and fast non-
dominated sorting approach is introduced to IMOCS to accelerate
the convergence.

3.4. Dynamic adaptive probability

In the MOCS, the probability Pa is a fixed value. If Pa is too small,
the algorithm is easy to trap in local optima. Therefore, a probability
that gradually decreases with the evolution generations can help
the algorithm quickly converge to the global optimal solution. In
this paper, the cosine decreasing strategy [30] is applied to
implement the dynamic adaptive change of the probability, which
is shown below:

Pa ¼ Pa;max cos
�
p

2
*
Titer � 1
Tmax � 1

�
þ Pa;min (21)

3.5. Procedure of IMOCS

In this paper, we propose some improvement strategies in the
generation of the initial population and the search process of the
population. First, combining the constraint transformation, ICGC is
used to improve the quality of the initial population. Second, the
flock search strategy is proposed to improve the efficiency of
population regeneration. Finally, a dynamic adaptive probability is
applied to help the algorithm converge to the global optimal so-
lution. These methods work together to enable IMOCS to achieve
faster convergence and better solutions than the traditional MOCS
in hydropower station optimal operation. In summary, the main
flowchart of the proposed IMOCS for solving the optimal problem is
shown in Fig. 3. The detailed steps of IMOCS are as follows:

(1) Set the population size POP, the maximum iterations Itermax,
the value range of the probability Pa;max and Pa;min, the con-
stant a0 and a00.

(2) Transform the constraints with formulas (11)e(13), and
randomly generate the initial nests with ICGC.

(3) Calculate the fitness of the initial nests, perform the non-
dominated sorting and choose the non-dominated nests.

(4) Get the new candidate nests by L�evy flights according to
formula (16).

(5) Calculate the fitness values of all nests.
(6) Combine the new nests and old nests.
(7) Perform the non-dominated sorting and choose the non-

dominated nests.
(8) If the algorithm reaches the maximum number of iterations,

stop and output the results. Otherwise, find and eliminate
part of the worst nests with a certain probability, generate
new replenished nests based on formula (19), and return to
step (4).

4. Numerical experiments

4.1. Benchmark functions and parameter setting

In order to verify the feasibility and effectiveness of IMOCS
method compared with MOCS and NSGA-II, we tested the



Set the parameters (the population size, the maximum
iterations, and the value range of the probability)

Randomly generate the initial populations based on
constraint transformation and ICGC

Calculate the fitness and perform the non-dominated
sorting to obtain non-dominated nests

Get the new candidate nests by L vy flight based on
formula (16)

Combine the new nests and old nests

Perform the non-dominated sorting to obtain non-
dominated nests

Replace the worse nests with
a certain probability and
generate new replenished

nests based on formula (19)

Start

End

iter>Itermax
No

Yes

Calculate the fitness

Fig. 3. The flowchart of IMOCS.
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performance with five typical benchmark functions (ZDT1, ZDT2,
ZDT3, ZDT4, and ZDT6) developed by Zitzler [51] in experiments.
These functions represent the benchmark problems with convex,
non-convex and discontinuous Pareto fronts. Besides, all of them
have two objective functions but no constraint.

It is known that parameter setting usually affects the perfor-
mance of optimization algorithms. To obtain fair results, all the
implementations were conducted under the same conditions. The
population size is 100 in all functions. The maximum number of
iterations is 500 in all functions except ZDT4, where the maximum
number of iterations is 5000 due to its solving complexity. In
NSGA-II, the crossover and mutation operators are 20 and 20,
respectively. The probability in MOCS is 0.25. The value range of the
probability in IMOCS is 0.1�Pa � 0.4. In addition, in order to
decrease the influence of the randomness, we have run 20 times for
every method on each function. Note that the population initiali-
zation strategy is not included in the experiments because this
strategy is suitable for practical problems with multiple constraints
that have correlation. Furthermore, this strategy is verified in the
following case study.
4.2. Performance comparisons

Moreover, two performance metrics are used to evaluate the
quality of non-dominated solution sets found by IMOCS and the
comparing algorithms. Specially, a convergence metric is applied to
estimate the distance or error between the estimated Pareto front
to its corresponding true front [39]. It should be clear that a value of
zero indicates that all the elements generated are in the Pareto
optimal set. A diversity metric is used to measure the extent of
spread achieved among the obtained solutions [49]. For the most
widely and uniformly spread-out set of non-dominated solutions,
the metric would be zero. For any other distribution, the value of
the metric would be greater than zero. The mean and variance of
the distance metric and diversity metric are respectively presented
in Table 1 and Table 2, where the best and worst values are marked
in bold and italics, respectively.

From Table 1, it can be seen that the mean and variance of
convergence metric of IMOCS are the smallest, while those of
NSGA-II are the biggest in all problems. This illustrates that the
Pareto front obtained by IMOCS is closest to the true front



Table 2
Mean (first rows) and variance (second rows) of diversity metric for different
algorithms.

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA-II 0.47 0.58 0.69 0.95 0.34
0.04 0.15 0.03 0.01 0.03

MOCS 0.87 0.81 1.02 0.64 1.27
0.08 0.07 0.06 0.07 0.08

IMOCS 0.40 0.39 0.68 0.39 0.39
0.04 0.04 0.02 0.05 0.03

Fig. 5. Non-dominated fronts of different algorithms for ZDT4.

Table 1
Mean (first rows) and variance (second rows) of convergence metric for different
algorithms.

Method ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA-II 8.66E-03 1.26E-02 2.04E-03 7.19E þ 02 2.46E-01
3.32E-03 5.09E-03 1.82E-03 3.56Eþ02 2.18E-01

MOCS 8.53E-05 1.02E-04 1.47E-05 5.74E-03 3.29E-11
6.22E-05 9.22E-05 1.11E-05 4.62E-03 3.69E-12

IMOCS 4.25E-08 3.64E-08 5.22E-09 4.78E-09 2.41E-11
1.15E-07 1.21E-07 9.09E-09 9.00E-09 1.99E-12
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compared with other two algorithms. Therefore, IMOCS performs
best compared with MOCS and NSGA-II methods in terms of
convergence. It can be seen from Table 2 that IMOCS performs best
compared with MOCS and NSGA-II methods in terms of diversity in
all problems except ZDT6, where NSGA-II performs best compared
with other two algorithms. In addition, the worst performance is
observed with MOCS compared with IMOCS and NSGA-II methods
in terms of diversity in all problems. The results show that IMOCS
and NSGA-II methods can obtain more uniform non-dominated
front due to the non-dominated sorting approach based on
crowding degree. Further, the diversity metric is related to the
average distance of all solutions and the distances between the
extreme solutions and the boundary solutions of the obtained non-
dominated set. Because NSGA-II has worse convergence compared
with IMOCS, the distances between the extreme solutions and the
boundary solutions of the obtained non-dominated set by NSGA-II
are greater than those of IMOCS. Thus, NSGA-II performs worse
than IMOCS in terms of diversity.

The convergence trends of curves of the different algorithms for
ZDT4 are shown in Fig. 4. It can be detected from the figure that the
proposed IMOCS has best convergence compared with other algo-
rithms. NSGA-II converges to local optima after 500 iterations.
MOCS and IMOCS can obtain better solutions due to L�evy flight
compared with NSGA-II. Fig. 5 presents the non-dominated fronts
of different algorithms for ZDT4. It is observed from the figure that
Fig. 4. Convergence curves of the different algorithms for ZDT4.
the proposed IMOCS performs better than MOCS in terms of
convergence to the true Prato curve. Conversely, the non-
dominated front of NSGA-II is far from the true Prato front, which
means bad quality of solutions.

In conclusion, IMOCS and MOCS perform better compared with
NSGA-II method in terms of convergence, IMOCS and NSGA-II
perform better compared with MOCS in terms of diversity. This
result is consistent with other research found in the literature. For
example, Yang and Deb [39] founded that the generalized distance
of MOCS is less than that of NSGA-II, which means that MOCS
performs better compared with NSGA-II method in terms of
convergence. In Ref. [40], a non-dominated sorting-based hybrid
cuckoo search algorithm was proposed and proven to reach the
final best value in less iteration than MOCS and POA. There are
several reasons for this result. First, L�evy flight can balance the
global optima and local optima to some extent in searching. Thus,
IMOCS and MOCS can find the solutions that are closer to true
Pareto front compared with NSGA-II. Second, MOCS only finds a
new nest every time, while IMOCS can generate multiple candidate
nests each iteration and conduct sorting, which can speed up the
convergence. Third, crowding degree is employed in IMOCS to
maintain the diversity of the solutions. However, MOCS lacks this
strategy, thus leading to poor diversity of solutions. Finally, the
dynamic adaptive probability can keep more exploration ability in
later searching. Therefore, IMOCS can obtain better solutions that
are closer to the true Prato front compared with MOCS.
5. Case study

5.1. Introduction of hydropower stations

The Xiaolangdi and Xixiayuan cascade hydropower stations in
the lower Yellow River are taken as a case study to verify the
effectiveness of IMOCS in multi-objective hydropower station
operation. The Yellow River, with a length of more than 5400 km
and a drainage area of 752,443 km2, is the second longest river in
China. It is also of great importance to the water supply in north-
western and northern China. The Xiaolangdi hydropower station,
located in the lower Yellow River, with a height of 281m, has a total
storage capacity of 1.265* 1010m3. It controls a drainage area of 694
thousand km2, which accounts for 92.3% of the total drainage area
of the Yellow River. It has incomplete yearly regulation capacity and
undertakes the task of flood control, ice flood control and sedi-
mentation reduction along with water supply, irrigation, and po-
wer generation. Thus, it is the crucial project for the water
resources management of the lower Yellow River. The Xixiayuan
hydropower station, located downstream of the Xiaolangdi hy-
dropower station, has a total storage capacity of 1.62*108 m3. It is of
daily regulation capacity and is an auxiliary project of the Xiao-
langdi hydropower station. The task of the hydropower station is
readjusting the outflow of the Xiaolangdi hydropower station along
with power generation, irrigation, water supply. Fig. 6 shows the



Fig. 6. Location of the cascade hydropower stations in the Yellow River.

X. Meng et al. / Energy 168 (2019) 425e439 433
location of the cascade hydropower stations in the Yellow River.
The tasks of this multiple-purpose project vary over different

periods (i.e., the main flood season, later flood season and water
supply period), thereby leading to various water level limitations of
the hydropower stations. Furthermore, with the continuous in-
crease in water demand, the contradiction of supply and demand is
made more severe, and the requirement of efficient utilization of
water resources becomes higher than ever before. These issues
bring difficulties to the hydropower station operation. In this paper,
the monthly inflow of the Xiaolangdi hydropower station
(1956e2000) and the water demand downstream are employed to
research the multi-objective hydropower station operation. In
addition, a typical dry year (1990) is selected to analyze the results
in this paper due to the space limitation. Note that the water
Table 3
The proportion of feasible solutions.

Average proportion random
generation

ICGC-based
generation

initial population to the search space 0.6336 0.5208
initial population to the feasible space 0.5820 0.5539
feasible solutions to the initial population 0.0015 0.1835
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Fig. 7. The proportion o
demand of the lower Yellow River includes life, industry, agricul-
ture and ecological water utilization. All of the data are provided by
the Yellow River Conservancy Commission (YRCC).
5.2. Effect of improvement strategies

In this paper, the hydropower station water levels at the end of
each stage are selected as decision variables, and real coding is
adopted due to the clear physical meaning of decision variables. The
algorithm generates and updates the population in the form of a
two-dimensional matrix. In addition, the MOCS and NSGA-II
methods are presented for comparison in the case study. More-
over, to verify the effectiveness of the improvement strategies,
hybrids featuring the MOCS combined with group constraints and
individual constraints (ICGC-MOCS), the flock search strategy (FSS-
MOCS), and dynamic adaptive probability (DAP-MOCS) are pro-
posed in the case study.

In the case study, IMOCS can obtain the convergent Pareto front
rapidly when the population size POP ¼ 100, the maximum
number of iterations Itermax ¼ 1000, and the value range of the
probability 0.1�Pa � 0.4. With the same population size, MOCS and
NSGA-II obtained the convergent Pareto front when Itermax ¼
50000 and Itermax ¼ 5000, respectively.
5.2.1. Diversity of the initial population and proportion of feasible
solutions

If the feasible space represents a small share of the search space,
the initial population is usually of poor quality. The constraint-
based initial population generation strategy can effectively solve
this problem, but it may reduce the diversity of the initial popu-
lation at the same time. In this paper, the diversity of the initial
population is described by the distribution of decision variables in
the feasible space. First, divide the values of decision variables at
each stage into 100 intervals. Second, calculate the number of in-
tervals where the values of the decision variables are contained.
Finally, calculate the proportion of the number obtained in the
second step to the number of total intervals and regard it as the
evaluation index of the initial population diversity. In addition, the
index may be different in various experiments due to the
randomness of initial population generation. Therefore, the average
(over 20 experiments) of various indexes (shown in Table 3) is used
to evaluate the diversity, and POP ¼ 100.

Table 3 and Fig. 7 show that the initial randomly generated
population is uniformly distributed but that the proportion of that
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to the feasible space is relatively small (58.2%). Moreover, after
several generations of evolution, most of the initial population is
eliminated through the penalty function. Hence, the later popula-
tion is produced by a few initial feasible individuals, thereby
decreasing their diversity. As a result, the proportion of feasible
solutions to the initial population with random generation is only
0.15%.

The initial population generated based on ICGC is mainly
distributed in the feasible space, even though the proportion of that
to the search space decreases by 11.3% compared to that generated
randomly. However, importantly, the proportion of the initial
population to the feasible space with ICGC decreases by just 2.8%
compared to that generated randomly. Note that, with the ICGC-
based generation strategy, this feasible space is obtained by GC,
and the initial population is also constrained by IC, thereby
decreasing the proportion of the initial population to the feasible
space. Finally, the proportion of feasible solutions to the initial
population based on ICGC is 18.35%.

The proportion of feasible solutions to the initial population has
influence on the search efficiency. The greater the proportion is, the
higher the search efficiency is. From Table 3 and Fig. 7, it can be
observed that the proportion of feasible individuals to the initial
population based on ICGC is much larger than that with random
generation, which lays a good foundation for finding the Pareto
optimal front. Therefore, the later population is of high diversity
because the values of the decision variables have a large proportion
and a uniform distribution in the feasible space.
Fig. 8. HV convergence curve
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Fig. 9. The final Pareto fronts
5.2.2. Diversity and convergence of the optimal solution
The hypervolume (HV) is usually employed to describe the

convergence and diversity of the Pareto front of a multi-objective
algorithm [52]. The greater the HV is, the better the convergence
of the algorithm is, and the higher the diversity of the individuals is.
In addition, the convergence speedmay be different in various tests
due to the randomness of evolutionary algorithm. In this paper, the
average values of HV (over 10 experiments) are used to plot the HV
convergence curves of different algorithms.

The HV convergence curves and Pareto fronts of different algo-
rithms are shown in Fig. 8 and Fig. 9, respectively. It is clearly
observed that IMOCS is the first to converge to a steady hyper
volume, which is the largest HV compared to that of the other al-
gorithms. Conversely, MOCS requiresmore iterations to converge to
a steady HV, and the final HV is the smallest compared to that of the
other algorithms. The convergence and diversity of Pareto front of
NSGA-II are close to those of IMOCS and vastly superior to those of
MOCS. However, in earlier generations (before 3000 iterations), the
convergence of NSGA-II is worse than that of IMOCS. Therefore,
NSGA-II requires more iterations to reach the steady HV e
compared to IMOCS. In summary, IMOCS is superior to MOCS and
NSGA-II in terms of convergence and diversity.

Moreover, it can be seen that ICGC-MOCS, DAP-MOCS, and FSS-
MOCS are superior to MOCS in both convergence and the diversity
of solutions. Specifically, FSS-MOCS is very close to IMOCS in both
convergence property and convergence speed. ICGC-MOCS and
DAP-MOCS are superior to MOCS in convergence and the diversity
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of solutions. In addition, ICGC-MOCS performs better than DAP-
MOCS and MOCS in earlier generations in terms of HV. To be
sure, IMOCS that combines the three improvement strategies
together, is superior to either of them. The results illustrate that
IMOCS performs best in convergence speed, convergence property,
and the diversity of solutions compared to the other five algorithms
mentioned in this paper.

5.2.3. Iterations and time of convergence
Fig. 10 shows the Pareto fronts at different iterations for
82.5 83 83.5 84 84.5 85 85.5 86 86.5 87 87.5

Power generation/108kWh

0

5

10

15

20

25

30

W
at

er
sh

or
ta

ge
/1

08 m
3

Iter=1000
Iter=5000
Iter=10000
Iter=20000
Iter=50000

SCOM)a(

82.5 83 83.5 84 84.5 85 85.5 86 86.5 87 87.5

Power generation/108kWh

0

5

10

15

20

25

30

W
at

er
sh

or
ta

ge
/1

08 m
3

Iter=1000
Iter=5000
Iter=10000
Iter=20000
Iter=50000

SCOM-PAD)c(

82.5 83 83.5 84 84.5 85 85.5 86 86.5 87 87.5

Power generation/108kWh

0

5

10

15

20

25

30

W
at

er
sh

or
ta

ge
/1

08 m
3

Iter=50
Iter=100
Iter=500
Iter=1000

SCOMI)e(
Fig. 10. The Pareto fronts at different i
different algorithms. It can be seen that the diversity of solutions
and the value of objectives become better and better with the in-
crease of iterations and finally reach a steady state. Moreover, the
iterations when the values of the objectives and HV achieve sta-
bility are consistent. With the same population size, MOCS, ICGC-
MOCS, and DAP-MOCS require 50,000 iterations to converge to
the optimal front. FSS-MOCS and IMOCS only require 1000 itera-
tions to converge to the optimal front, while NSGA-II requires 5000
iterations. In summary, IMOCS can converge to a better global
optimal solution faster than other algorithms.
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Fig. 11. Union of the non-dominated fronts of different algorithms.

Table 5
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The number of iterations for convergence cannot fully reflect the
computation rate of various algorithms because the time com-
plexities of various algorithms are different. It must be applied to
estimate the computation rate together with the computation time.
The numbers of iterations for convergence and computation times
of various algorithms are shown in Table 4. It is clearly found from
Table 4 that DAP-MOCS is the most time-consuming algorithm,
closely followed by MOCS and ICGC-MOCS with the same popula-
tion size and iterations. The three algorithms are time-consuming
because they are not suitable for parallel computing. Conversely,
with parallel computing, IMOCS is the most time-saving algorithm,
closely followed by FSS-MOCS with the same population size and
iterations. NSGA-II is the third time-saving algorithm because it
requires more iterations than IMOCS does.

To be sure, the population initialization strategy can improve the
search efficiency because it can reduce the search space and
improve the quality of the initial feasible solution. The flock search
strategy can help the algorithm quickly converge to the optimal
solutions and greatly reduce the number of iterations, which can
overcome the time-consuming shortcoming of MOCS. This is
because the flock search mechanism can generate multiple candi-
date nests through one iteration to significantly speed up the
convergence. Furthermore, the flock search strategy can also
improve the quality of the non-dominated solutions. The main
reason is that the crowding degree canmaintain the diversity of the
solutions. The dynamic adaptive probability can help the algorithm
avoid falling into local optima prematurely, thus improving the
quality of solutions with the same population size and iterations,
and similar computing time. Therefore, with these three improve-
ment measures, IMOCS can obtain better solutions quickly
compared with the existing methods mentioned above.

5.2.4. Robustness of algorithms
The degree of dispersion of the non-dominated fronts obtained

throughmultiple computations is used to analyze the robustness of
the algorithms. Fig. 11 shows the union of the non-dominated
fronts of different algorithms through multiple computations. It is
seen that the distribution of the non-dominated front of MOCS is
relatively dispersed, indicating that the robustness of MOCS is
obviously poorer than that of IMOCS and NSGA-II. In contrast, the
non-dominated front of IMOCS is concentrated on the line. There-
fore, the robustness of the IMOCS is better than that of other al-
gorithms. In other words, the deviation of solutions obtained by
IMOCS through multiple computations is relatively small.

5.3. Results of hydropower station operation

Fig. 11 shows that there is a clear competitive relationship be-
tween the power generation and water supply, which means that
the water shortage downstream increases with the increase of
power generation. In this paper, we selected nine solutions from
the final non-dominated front of IMOCS, which are featured with
the maximum power generation (solution 1), the minimum water
shortage (solution 9), and a compromise between power
Table 4
Computing times of different algorithms.

Algorithms Population size Iterations for convergence Computing time (s)

MOCS 100 50000 932.8
ICGC-MOCS 100 50000 930.2
DAP-MOCS 100 50000 938.2
FSS-MOCS 100 1000 122.3
IMOCS 100 1000 121.8
NSGA-II 100 5000 144.3
generation and water shortage (solutions 2e8). The power gener-
ation and water shortage of different schemes are shown in Table 5,
and the water level and outflow of the Xiaolangdi hydropower
station are shown in Fig. 12 and Fig. 13, respectively.

It is seen from Figs. 12 and 13 that, in solution 1, the water level
continuously increases from September to next February and finally
reaches the normal water level (i.e., 265 m). More importantly, the
water level of solution 1 is the highest compared to other solutions
in this period. Next, the water level lowers to the flood limited
water level (i.e., 230 m) in June and remains at this value until
August, which is aimed at providing flood control capacity. In
addition, the outflow decreases sharply in September and remains
at a relatively small value until next February. Note that the outflow
of solution 1 is the smallest compared to other solutions in this
period. Next, the outflow increases rapidly until May. It is worth
emphasizing that the outflow of solution 1 is the largest compared
to other solutions in this period. From June to August, the outflows
of different solutions are almost the same. This is because the
outflow is equal to the inflow, which is designed to keep the water
level at the flood limited water level.

In solution 9, the changing trends of water level and outflow are
similar to those of solution 1. In other words, the water level in-
creases from September to next March, then lowers to the flood
limited water level in June, and remains at this value until August.
The outflow decreases from September to next March, then in-
creases until May, and remains it equal to the inflow from May to
August. Nonetheless, the differences are very conspicuous. Specif-
ically, the water level of solution 9 is the lowest compared to other
solutions from September to next March, and the highest water
level (in March) is lower than the normal water level. The outflow
The power generation and water shortage of different solutions.

Solution power generation (108 kWh) water shortage (108m3)

1 87.25 26.26
2 87.02 22.21
3 86.52 16.06
4 86.00 13.21
5 85.55 10.11
6 85.05 7.19
7 84.50 4.61
8 83.97 1.45
9 83.74 0.00
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Fig. 12. The water level of the Xiaolangdi hydropower station.
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Fig. 13. The outflow of the Xiaolangdi hydropower station.
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of solution 9 is the largest from September to next February, while
it is the smallest from March to May compared to other solutions.
These phenomena in solution 9 are just the opposite of those in
solution 1. For other solutions, the changing trends of water level
and outflow are also similar to those of solution 1 and solution 9.
The difference is that both the water level and the outflow of these
solutions are between those of solution 1 and solution 9.

In addition, the interrelationship of power generation and water
shortage can be revealed by the differences between the water
demand and the outflow processes of various solutions. It can be
seen from Fig. 13 that the outflow process of solution 9 is consistent
with the water demand change from September to next March, and
exceeds the water demand in other months. Therefore, there is no
water shortage in solution 9, indicating that the hydropower sta-
tion gives priority to the downstream water requirement by
reducing the power generation. In contrast, the outflow processes
of some solutions with more power generation are less than the
water demand from September to next February. In other words,
the hydropower station gives priority to the power generation
rather than the downstream water requirement in these solutions,
especially solution 1, which has the smallest outflow in this period.

It can be seen from Figs. 12 and 13 that the competitive rela-
tionship of power generation and water shortage mainly exists
from September to next Februarywhen the hydropower station has
to refill water but has relatively small inflow in latter months.
Hence, the water level cannot rise rapidly if the water requirement
is well satisfied. In other words, more power generation will
inevitably lead to more serious water shortage, while less water
shortage will cause less power generation. There are several rea-
sons for this conclusion. First, in flood season, the outflow of
Xiaolangdi reservoir is generally larger than the maximum flow for
power generation. Similar situation occurs in ice flood control and
sediment regulation and does not last long. On the contrary, the
outflow of Xiaolangdi reservoir is generally less than 800 m3/s in
the water supply period. Hence, the reservoir can optimize the
power generation process by taking of its good regulating ability in
this period. Moreover, one effective way is to store more water in
the early scheduling period to make full use of the water head and
water volume in the later scheduling period for more power gen-
eration. However, the current scheduling mode is that hydropower
generation plan is affected by the comprehensive utilization of
water resources. In other words, the power generation has to give
priority to the water supply, which dramatically affects the effi-
ciency of power generation. Therefore, the trade-off between the
two objectives must be weighed carefully in decision making.
Similar results were found in previous studies with a similar scope.
For example, Liu [53] pointed out that the economic dispatch of
power generation of Xiaolangdi reservoir and Xixiayuan reservoir is
feasible in the period of water supply. Further, it is worth exploring
new and more reasonable scheduling mode for water system and
power system. This advicewas also found in previous studies with a
similar scope. Ref. [54] pointed out that China must amend its
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existing operational mode for reservoirs to enhance the economic
benefits of cascade hydropower stations.

6. Conclusions

The large and growing demand for water and energy emphasize
the role of hydropower operation. Efficient utilization of water re-
sources in hydropower station operation has been an important
part of mitigating water and energy scarcity. However, the
complexity of multi-objective hydropower station optimal opera-
tion (MOHSOO) gives rise to more difficulties in solving the model.
We propose a new algorithm named IMOCS to solve the issue. In
the new algorithm, three improvement strategies, including a
population initialization strategy, flock search strategy and dy-
namic adaptive probability, are employed to improve the conver-
gence speed, convergence property, and diversity of solutions.
Moreover, ICGC-MOCS, FSS-MOCS, DAP-MOCS, together withMOCS
and NSGA-II, are used to verify the effectiveness of each improve-
ment strategy and test the performance of IMOCS. The results show
that the population initialization strategy can improve the search
efficiency by limiting the initial solution within a certain range,
which is designed to reduce the search space and improve the
quality of the initial feasible solution. The dynamic adaptive prob-
ability can improve the quality of solutions because it can help the
algorithm avoid falling into local optima prematurely, as well as
converge to the global optimal solution quickly. Most importantly,
the flock search strategy can greatly speed up the convergence and
improve the quality of solutions simultaneously. This is because the
flock search mechanism can generate multiple candidate nests
through one iteration to significantly speed up the convergence.
Moreover, the fast non-dominated sorting approach inspired by
NSGA-II can improve the population quality and the convergence
efficiency. Finally, for the Xiaolangdi hydropower station, the
competitive relationship of power generation and water shortage
mainly exists from September to next February when the hydro-
power station has to refill water but has relatively small inflow in
latter months. The water supply demand seriously impacts the
power generation of the hydropower station.

However, there are still some problems that require further
study to resolve. Specifically, the population initialization strategy
based on ICGC may perform better in short-term hydropower sta-
tion operation because the water level has a large variation range in
a monthly scale, which cannot embody the role of ICGC completely.
Therefore, further study of more effective improvement measures
and their application to more complex models is necessary.
Moreover, more objectives can be expanded to the model, thereby
helping managers realize and handle the competition or coopera-
tion relationship between different objectives, which is their top
concern. In addition, long series of runoff can be used to calculate
the reliability of water supply instead of water shortage.

Acknowledgements

This research was supported by the National Key Research and
Development Program of China (2017YFC0404404,
2017YFC0404406, and 2016YFC0400906) and the Natural Science
Foundation of China (91647112, 51679187, and 51679189). Sincere
gratitude is extended to the editor and the anonymous reviewers
for their professional comments and corrections.

References

[1] WWAP (United Nations World Water Assessment Programme). The united
Nations world water development report 2014: water and energy. Paris:
UNESCO; 2014.
[2] Duan CC, Chen B. Energyewater nexus of international energy trade of China.
Appl Energy 2017;194:725e34.

[3] Li N, Chen WY. Energy-water nexus in China's energy bases: from the Paris
agreement to the Well below 2 Degrees target. Energy 2019;166:277e86.

[4] Li CL, Zhou JZ, Lu P, Wang C. Short-term economic environmental hydro-
thermal scheduling using improved multi-objective gravitational search al-
gorithm. Energy Convers Manag 2015;89:127e36.

[5] Ju LW, Li HH, Zhao JW, Chen KT, Tan QK, Tan ZF. Multi-objective stochastic
scheduling optimization model for connecting a virtual power plant to wind-
photovoltaic-electric vehicles considering uncertainties and demand
response. Energy Convers Manag 2016;128:160e77.

[6] Bai T, Chang JX, Chang FJ, Huang Q, Wang YM, Chen GS. Synergistic gains from
the multi-objective optimal operation of cascade reservoirs in the Upper
Yellow River basin. J Hydrol 2015;523:758e67.

[7] Chang XL, Liu XH, Zhou W. Hydropower in China at present and its further
development. Energy 2010;35(11):4400e6.

[8] Ibanez E, Magee T, Clement M, Brinkman G, Milligan M, Zagona E. Enhancing
hydropower modeling in variable generation integration studies. Energy
2014;74:518e28.

[9] Wang XB, Chang JX, Meng XJ, Wang YM. Short-term hydro-thermal-wind-
photovoltaic complementary operation of interconnected power systems.
Appl Energy 2018;229:945e62.

[10] Araujo RS, Alves MD, de Melo MTC, Chrispim ZMP, Mendes MP, Silva GC.
Water resource management: a comparative evaluation of Brazil, Rio de
Janeiro, the European Union, and Portugal. Sci Total Environ 2015;511:
815e28.

[11] UN-Water (United Nations-Water). Climate change adaptation: the pivotal
role of water. Policy Brief; 2010.

[12] Giuliani M, Li Y, Cominola A, Denaro S, Mason E, Castelletti A. A Matlab
toolbox for designing Multi-Objective Optimal Operations of water reservoir
systems. Environ Model Software 2016;85:293e8.

[13] Zhou YL, Guo SL, Chang FJ, Liu P, Chen AB. Methodology that improves water
utilization and hydropower generation without increasing flood risk in mega
cascade reservoirs. Energy 2018;143:785e96.

[14] Fu X, Li A, Wang L, Ji C. Short-term scheduling of cascade reservoirs using an
immune algorithm-based particle swarm optimization. Comput Math Appl
2011;62(6):2463e71.

[15] Luo JG, Sun XM, Qi YT, Xie JC. Approximating the irregularly shaped Pareto
front of multi-objective reservoir flood control operation problem. Appl Math
Model 2018;54:502e16.

[16] Bozorg-Haddad O, Janbaz M, Loaiciga HA. Application of the gravity search
algorithm to multi-reservoir operation optimization. Adv Water Resour
2016;98:173e85.

[17] Yang TT, Gao XG, Sellars SL, Sorooshian S. Improving the multi-objective
evolutionary optimization algorithm for hydropower reservoir operations in
the California Orovillee-Thermalito complex. Environ Model Software
2015;69:262e79.

[18] Chang JX, Meng XJ, Wang ZZ, Wang XB, Huang Q. Optimized cascade reservoir
operation considering ice flood control and power generation. J Hydrol
2014;519:1042e51.

[19] Afshar MH. Extension of the constrained particle swarm optimization algo-
rithm to optimal operation of multi-reservoirs system. Int J Electr Power
Energy Syst 2013;51:71e81.

[20] Jiang ZQ, Ji CM, Qin H, Feng ZK. Multi-stage progressive optimality algorithm
and its application in energy storage operation chart optimization of cascade
reservoirs. Energy 2018;148:309e23.

[21] Luo JG, Qi YT, Xie JC, Zhang X. A hybrid multi-objective PSOeEDA algorithm
for reservoir flood control operation. Appl Soft Comput 2015;34:526e38.

[22] Adeyemo J, Stretch D. Review of hybrid evolutionary algorithms for opti-
mizing a reservoir. S Afr J Chem Eng 2018;25:22e31.

[23] Bar�an B, Lücken CV, Sotelo A. Multi-objective pump scheduling optimisation
using evolutionary strategies. Adv Eng Software 2005;36(1):39e47.

[24] Gloti�c A, Gloti�c A, Kitak P, Pihler J, Ti�car I. Optimization of hydro energy
storage plants by using differential evolution algorithm. Energy 2014;77:
97e107.

[25] Choong SM, El-Shafie A. State-of-the-art for modelling reservoir inflows and
management optimization. Water Resour Manag 2014;29(4):1267e82.

[26] Fang N, Zhou JZ, Zhang R, Liu Y, Zhang YC. A hybrid of real coded genetic
algorithm and artificial fish swarm algorithm for short-term optimal hydro-
thermal scheduling. Int J Electr Power Energy Syst 2014;62:617e29.

[27] Yang XS, Deb S. Cuckoo search via levy flights. Paper presented at nature &
biologically inspired computing, 2009. [World Congress on, Coimbatore,
India].

[28] Basu M, Chowdhury A. Cuckoo search algorithm for economic dispatch. En-
ergy 2013;60:99e108.

[29] Araghi S, Khosravi A, Creighton D. Intelligent cuckoo search optimized traffic
signal controllers for multi-intersection network. Expert Syst Appl
2015;42(9):4422e31.

[30] Ming B, Chang JX, Huang Q, Wang YM, Huang SZ. Optimal operation of multi-
reservoir System based on cuckoo search algorithm. Water Resour Manag
2015;29:5671e87.

[31] Zheng HQ, Zhou Y. A novel cuckoo search optimization algorithm based on
Gauss distribution. J Comput Inf Syst 2012;8(10):4193e200.

[32] Yang XS, Deb S. Cuckoo Search: recent advances and applications. Neural
Comput Appl 2014;24(1):169e74.

http://refhub.elsevier.com/S0360-5442(18)32307-7/sref1
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref1
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref1
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref2
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref2
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref2
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref2
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref3
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref3
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref3
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref4
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref4
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref4
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref4
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref5
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref5
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref5
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref5
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref5
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref6
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref6
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref6
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref6
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref7
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref7
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref7
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref8
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref8
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref8
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref8
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref9
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref9
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref9
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref9
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref10
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref10
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref10
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref10
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref10
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref11
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref11
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref12
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref12
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref12
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref12
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref13
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref13
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref13
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref13
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref14
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref14
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref14
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref14
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref15
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref15
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref15
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref15
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref16
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref16
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref16
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref16
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref17
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref17
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref17
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref17
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref17
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref18
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref18
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref18
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref18
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref19
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref19
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref19
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref19
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref20
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref20
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref20
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref20
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref21
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref21
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref21
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref21
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref22
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref22
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref22
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref23
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref23
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref23
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref23
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref24
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref24
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref24
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref24
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref24
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref24
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref24
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref25
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref25
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref25
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref26
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref26
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref26
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref26
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref28
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref28
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref28
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref29
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref29
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref29
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref29
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref30
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref30
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref30
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref30
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref31
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref31
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref31
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref32
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref32
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref32


X. Meng et al. / Energy 168 (2019) 425e439 439
[33] Li XT, Yin MH. Modified cuckoo search algorithm with self-adaptive param-
eter method. Inf Sci 2015;298:80e97.

[34] Mlakar U, Fister I, Fister I. Hybrid self-adaptive cuckoo search for global
optimization. Swarm Evol Comput 2016;29:47e72.

[35] Salgotra R, Singh U, Saha S. New cuckoo search algorithms with enhanced
exploration and exploitation properties. Expert Syst Appl 2018;95:384e420.

[36] Kanagaraj G, Ponnambalam SG, Jawahar N. A hybrid cuckoo search and ge-
netic algorithm for reliabilityeredundancy allocation problems. Comput Ind
Eng 2013;66(4):1115e24.

[37] Gheisarnejad M. An effective hybrid harmony search and cuckoo optimization
algorithm based fuzzy PID controller for load frequency control. Appl Soft
Comput 2018;65:121e38.

[38] Marichelvam MK, Prabaharan T, Yang XS. Improved cuckoo search algorithm
for hybrid flow shop scheduling problems to minimize makespan. Appl Soft
Comput 2014;19:93e101.

[39] Yang XS, Deb S. Multiobjective cuckoo search for design optimization. Comput
Oper Res 2013;40:1616e24.

[40] Balasubbareddy M, Sivanagaraju S, Suresh CV. Multi-objective optimization in
the presence of practical constraints using non-dominated sorting hybrid
cuckoo search algorithm. Eng Sci Technol Int J 2015;18(4):603e15.

[41] Wang Z, Li YZ. Irreversibility analysis for optimization design of plate fin heat
exchangers using a multi-objective cuckoo search algorithm. Energy Convers
Manag 2015;101:126e35.

[42] Pavlyukevich I. L�evy flights, non-local search and simulated annealing.
J Comput Phys 2007;226(2):1830e44.

[43] Tang J, Wang D, Wang XY, Jia HJ, Wang CS, Huang RL, et al. Study on day-
ahead optimal economic operation of active distribution networks based on
Kriging model assisted particle swarm optimization with constraint handling
techniques. Appl Energy 2017;204:143e62.
[44] Zhang R, Zhou JZ, Wang YQ. Multi-objective optimization of hydrothermal
energy system considering economic and environmental aspects. Electr Po-
wer Energy Syst 2012;2:384e95.

[45] Bai T, Kan YB, Chang JX, Huang Q, Chang FJ. Fusing feasible search space into
PSO for multi-objective cascade reservoir optimization. Appl Soft Comput
2017;51:328e40.

[46] Wang XB, Chang JX, Meng XJ, Wang YM. Research on multi-objective opera-
tion based on improved NSGA-Ⅱ for the lower Yellow River. J Hydraul Eng
2017;48(2):135e45.

[47] Srinivas N, Deb K. Multi-objective function optimization using non-dominated
sorting genetic algorithms. Evol Comput 1994;2(3):221e48.

[48] Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-Ⅱ. Lect Notes
Comput Sci 2000;1917:849e58.

[49] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective
genetic algorithm: NSGA-Ⅱ. IEEE Trans Evol Comput 2002;6(2):182e97.

[50] Uen TS, Chang FJ, Zhou YL, Tsai WP. Exploring synergistic benefits of Water-
Food-Energy Nexus through multi-objective reservoir optimization schemes.
Sci Total Environ 2018;633:341e51.

[51] Zitzler E. Evolutionary algorithms for multiobjective optimization: methods
and applications. Shaker Ithaca, 1999.

[52] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans Evol Comput 1999;3(4):
257e71.

[53] Liu SJ. Optimal united operation of Xiaolangdi and xixiayuan reservoirs. Yel-
low River 2012;35(2):83e5.

[54] Shang YZ, Lu SB, Ye YT, Liu RH, Shang L, Liu CN, et al. China' energy-water
nexus: hydropower generation potential of joint operation of the three
Gorges and Qingjiang cascade reservoirs. Energy 2018;142:14e32.

http://refhub.elsevier.com/S0360-5442(18)32307-7/sref33
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref33
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref33
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref34
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref34
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref34
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref35
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref35
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref35
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref36
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref36
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref36
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref36
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref36
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref37
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref37
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref37
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref37
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref38
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref38
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref38
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref38
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref39
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref39
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref39
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref40
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref40
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref40
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref40
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref41
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref41
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref41
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref41
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref42
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref42
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref42
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref42
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref43
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref43
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref43
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref43
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref43
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref44
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref44
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref44
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref44
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref45
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref45
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref45
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref45
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref46
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref46
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref46
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref46
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref47
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref47
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref47
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref48
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref48
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref48
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref48
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref49
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref49
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref49
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref50
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref50
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref50
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref50
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref52
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref52
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref52
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref52
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref53
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref53
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref53
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref54
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref54
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref54
http://refhub.elsevier.com/S0360-5442(18)32307-7/sref54

	Multi-objective hydropower station operation using an improved cuckoo search algorithm
	1. Introduction
	2. Hydropower station operation model for power generation and water supply
	2.1. Objective functions
	2.2. Constraints

	3. Improved multi-objective cuckoo search
	3.1. Multi-objective cuckoo search
	3.1.1. Cuckoo search
	3.1.2. Multi-objective cuckoo search

	3.2. Population initialization strategy
	3.2.1. Constraint transformation
	3.2.2. Initial population generation with ICGC

	3.3. Flock search strategy
	3.3.1. Flock search mechanism
	3.3.2. Fast non-dominated sorting approach

	3.4. Dynamic adaptive probability
	3.5. Procedure of IMOCS

	4. Numerical experiments
	4.1. Benchmark functions and parameter setting
	4.2. Performance comparisons

	5. Case study
	5.1. Introduction of hydropower stations
	5.2. Effect of improvement strategies
	5.2.1. Diversity of the initial population and proportion of feasible solutions
	5.2.2. Diversity and convergence of the optimal solution
	5.2.3. Iterations and time of convergence
	5.2.4. Robustness of algorithms

	5.3. Results of hydropower station operation

	6. Conclusions
	Acknowledgements
	References


