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ABSTRACT
Droughts are among the most damaging environmental disasters
that may have destructive damages on societal properties and
lives. Generally, socio-economic drought occurs when water
resources systems could not fulfil the water demand. Additionally,
it is not to be overlooked the role of local reservoirs in modifying
uneven distribution of water and coping with climatic extremes.
This study examined the evolution characteristics of the socio-eco-
nomic droughts via applying a Multivariate Standardized Reliability
and Resilience Index (MSRRI). Furthermore, the influences of anom-
alous atmospheric circulation on the socio-economic droughts
were explored through adopting the cross wavelet analysis to
investigate the meteorological driving force behind the socio-eco-
nomic droughts. Results mainly indicated that (1) the MSRRI has
proven to be effective in evaluating socio-economic droughts for
its integration of inflow-demand reliability and water storage resili-
ence indexes; (2) the MSRRI series in Datong River Basin (DRB) has
a non-significant increasing trend at annual scale with apparent
periods (17 and 22years) and (3) the comprehensive effects of
ENSO, EASM and PNA contribute to the socio-economic drought
variations, and the ENSO has strongest impacts than others. The
findings in this study benefit local socioeconomic drought mitiga-
tion and water resources planning and management.
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1. Introduction

Drought is widely regarded as a complex natural hazard that occurs in large areas
over long-time periods and has highly destructive effects in terms of water supply,
crop yield, and ecological environment (Wilhite 2000; Huang et al. 2014a; Gan
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et al. 2016; Fang et al. 2019a). Droughts can be typically divided into four types:
meteorological, hydrological, agricultural and socio-economic droughts depending
on various hydrological cycle deficits (Wilhite and Glantz 1985), and the former
three types are with respect to the shortages of precipitation, soil moisture and run-
off, respectively.

Previous studies have focused more on meteorological, hydrological, and agricul-
tural droughts (Guttman 1998; Heim 2002; Shukla and Wood 2008; Mor�anTejeda
et al. 2013; Lin et al. 2017). The Palmer Drought Severity Index (PDSI) (Palmer
1965), Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano
et al. 2010) and Standardized Precipitation Index (SPI) (McKee et al. 1993) are the
most widely utilized indices to monitor meteorological drought across the world. In
addition, the Standardized Streamflow Index (SSI) (Shukla and Wood 2008; Vicente-
Serrano et al. 2012) using streamflow data to calculate the Hydrological Drought
Index has been widely applied in hydrological research (Lorenzolacruz et al. 2013;
Barker et al. 2016). The Crop Moisture Index (CMI) (Palmer 1968) and Surface
Water Supply Index (SWSI) (Shafer 1982) are extensively applied in agricultural
drought monitoring and forecasting.

To the best of our knowledge, it is only until recently that there have been a few
studies focusing on socio-economic drought (Arab et al. 2010; Mehran et al. 2015).
Socio-economic drought refers to conditions in which water supply fails satisfying
water demand, resulting in adverse effects on society, economy and environment
(Dinar and Mendelsohn 2011; Zseleczky and Yosef 2014). As population and industry
grow and water demand increases, socio-economic drought becomes a major concern
in many regions of the world (Arab et al. 2010; Chen and Fu 2011; Wada et al. 2011;
Madani 2014; Sivapalan 2015; Wheater and Gober 2015; Vogel et al. 2015; Montanari
2015). In especial, semiarid and arid regions are particularly vulnerable to climatic
variability and change impacts on water availability and distribution (Cayan et al.
2008; Seager and Vecchi 2010; Connell-Buck et al. 2011).

Reservoirs play a key role in modifying uneven distribution of water in both space
and time, which are regarded as the most important and effective man-made water
storage facilities to manage the water resources (Bai et al. 2015; Fang et al. 2017).
Besides producing hydroelectric energy and providing water for irrigation, reservoirs/
hydropower stations smooth out extreme inflows and provide resilience against
extremes (e.g. floods and droughts) (Chang and Chang 2006). From the human eco-
nomic society, the main function of the reservoir is to manage water supply and
demand and to reduce the impacts of socio-economic droughts. At present, reservoirs
have controlled approximately 20% of the total global annual river discharge and pro-
vided about 70% of global freshwater withdrawal (Shiklomanov et al. 2000; Huang
et al. 2014b; Fang et al. 2019b; Meng et al. 2019). There are indications that reservoirs
are crucial in providing resilience for human water use globally (Zhang et al. 2014).
China has the world’s largest number of reservoirs in the world, with more than
98,000 reservoirs. The reservoir construction in mainland of China has made the river
systems strongly regulated: only 6% of the assessed river basins are free-flowing; 20%
of assessed river basins have enough cumulative reservoir capacity to store more than
the entire annual river flow (Yang and Lu 2014). With quite importance of reservoir
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in China, it is necessary to take the resilience of reservoir as the main factor on mon-
itoring socio-economic drought.

In recent years, being aware of the importance of reservoirs in resisting socio-eco-
nomic droughts attracts some attention. Mehran et al. proposed the Multivariate
Standardized Reliability and Resilience Index (MSRRI) for assessing water stress due
to both climatic conditions and local reservoir levels and has good sensitivity and
reliability. In this present study, the application of MSRRI in a region of interest of
China is conducted to verify its accuracy and reliability.

Studying socio-economic drought is likely to grow more important as climate
changes and population grows. It has been proved that there are statistically signifi-
cant correlations between hydrological drought and large-scale climate anomalies
where some factors such as precipitation showed a statistically significant difference
between positive and negative phases of some large-scale climate anomalies (Tan
et al. 2016). Furthermore, however, it can be inferred that changes in seasonality of
precipitation or snowmelt combined with population and agricultural, and industrial
growths can lead to more stress on water supply (Mehran et al. 2015). This is also
suggestive of the importance of studying the relationship between socio-economic
drought and climate indices. Many studies demonstrated that meteorological, agricul-
tural and hydrological droughts are closely linked to climate indices such as EI
Ni~no–Southern Oscillation (ENSO), the East Asian Summer Monsoon (EASM) Index,
Atlantic Oscillation (AO) and the Pacific North American (PNA) Index and so on
(Cronin et al. 2002; Wu et al. 2009; Li et al. 2013). To explore the impact of large-
scale climate changes on social-economic drought, the correlations of socio-economic
drought with the anomalous atmospheric circulation are also to be carried out in
this study.

Datong River is located in the northeastern edge of the Qinghai-Xizang Plateau of
China, which is one of the secondary tributaries of the Yellow River. With abundant
water resources, the DRB has the cascaded power station group composed of large-
scale controlling reservoir—Nazi Gorge Reservoir and 16 small hydropower stations.
Reservoirs play a very important role in the regulation of water resources in DRB.
Taking DRB as the study case, the primary objectives of this present study are to (1)
verify the accuracy and reliability of the MSRRI in characterizing socio-economic
droughts in DRB; (2) fully reveal the evolution characteristics including the trend,
stationarity and periodic component of the socio-economic droughts in DRB and (3)
explore the influences of anomalous atmospheric circulation such as ENSO, EASM
and PNA on socio-economic drought with a purpose of revealing the meteorological
driving force behind the socio-economic droughts.

2. Study area and data

The Datong River is located in the northeast edge of the Qinghai-Tibet Plateau, and
situated between 98.5�E�103.3�E and 36.5�N�38.4�N, with an area about 15,130 km2.
The Datong River Basin (DRB), as the second-order tributary of the Yellow River
and the biggest tributary of the Huangshui River (Figure 1). The length of the
Datong River main stream is 560.7 km. Nazi Gorge Reservoir is the first key project
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in the upper reaches of Datong River. Nazi Gorge reservoir is a within-year reservoir,
covering an area of 6593 km2, which has 7.33 hundred million m3 total storage and
121.5m dam height. As the reservoir was built and came into operation in November
2014, the available water resources in DRB were regulated effectively, and the runoff
internal distribution was transformed which not only increased the power generation
but also improved the ability of drought resistance. Due to the reservoir is not built
for long, there is no long series measured outflow process and the simulated values
were adopted in this present study.

The monthly Nino 3.4 index time series spanning 1957–2012 collected from the
NOAA Earth System Research Laboratory (www.esrl.noaa.gov/psd/data/correlation/
nina34.data) was employed to characterize ENSO events in this study. In addition,
the monthly PNA and EASM series were accessed from the NOAA National Climatic
Data Center (www.ncdc.noaa.gov/teleconnections/ao.php).

3. Methodology

3.1. A Multivariate Standardized Reliability and Resilience Index

According to the regulation period of the reservoir, reservoir systems are generally
classified into two types, over-year and within-year. This classification signifies the
importance of variations, especially for the time period which may affect the reservoir
system. A time frame is defined for each reservoir system, either 6months (for

Figure 1. The location of Nazi Gorge Reservoir in DRB. Source: Author
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within-year system) or 12months (for over-year system) depending on the category
of the reservoir system. After definition of time frame, the developed multivariate
approach for characterizing socio-economic drought relies on two individual indices
(Mehran et al. 2015). The two new indicators are defined as follows: water storage
resilience (WSR) indicator and inflow-demand reliability (IDR) indicator. IDR indica-
tor is derived by computing the sum of the percent change of inflow with respect to
water demand during the projected time frame:

at ¼
Pt

i¼t�mþ1 Qini � Qestt

Qestt
; Qestt ¼

Pt�13þm
i¼t�12 Qoutð Þi if m ¼ 6Pt

i¼t�mþ1 Qoutð Þi if m ¼ 12

(
(1)

where Qini indicates the monthly inflow to the reservoir (i2month[1, N], which is
the sample size); m indicates the selected time frame in months (6 for within-year
and 12 for over-year), Qestt denotes the total estimated water demand within pro-
jected time frame, and t is time step and t2month[13, N]. Here, the first 6 or
12months (referring to the reservoir system type) of the data are taken to evaluate
the demand within the projected time frame. The total water demand for the pro-
jected time frame (next m months) is evaluated based on the same period in the pre-
vious year (Mehran et al. 2015). Therefore, the index can only be estimated
beginning from the second year of the data (t¼ 13, 14, … , N).

The IDR indicator is in respect to the “top-down” methodology (Dessai and
Hulme 2004), in which the available inflow to reservoir is assessed relative to water
demand. That is, the IDR represents whether the available water (inflow to the sys-
tem) could meet the water demand regardless of the storage in the reservoir.

The WSR indicator corresponds to the “bottom-up” methodology (Mastrandrea
et al. 2010). WSR is defined on the basis of monthly inflow, monthly water demand,
monthly storage and total water demand during the time frame. Computed monthly,
WSR represents whether the reservoir storage could satisfy water demand for the
selected time period (m):

bt ¼
Stt þ Qint�Qoutt�Qmin�Qestt

Qestt
(2)

where Stt denotes the reservoir storage at month t, t2month[13, N], Qmin denotes
the minimum operational storage of reservoir; Qint represents the monthly inflow to
the reservoir at month t; Qoutt is the monthly water demand at month t. The others
are as mentioned above. In addition, if reservoir storage is not available, then it is
needed a reservoir model to estimate the storage based on the inflow and out-
flow (demand).

At first, the marginal probabilities of both indicators (WSR and IDR) are evaluated
as follows

P xtð Þ ¼ I�0:44
N þ 0:12

(3)
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where P(xt) represents the corresponding empirical probability at month t; N indi-
cates the sample size; I is the rank of nonzero indicator (a or b) data from the small-
est to largest.

Then the empirical probability is transformed into a Standardized Index (SI) as

SI xð Þ ¼ u�1 P xð Þð Þ (4)

SI P xð Þð Þ ¼
if 0<P xð Þ � 0:05; þ k� C0 þ C1kþ C2k2

1þ d1kþ d2k2 þ d3k3

� �
and k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1=P xð Þ2
� �q

if 0:5<P xð Þ � 1; þ k� C0 þ C1kþ C2k2

1þ d1kþ d2k2 þ d3k3

� �
and k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1= 1� P xð Þð Þ2
� �q

8>>><
>>>:

(5)

where / is the standard normal distribution function. The P(xt) can also be standar-
dized by a commonly used approximation (as Equation (5)), in which the value of
C0, C1, C2, d1, d2, and d3 are, respectively, 2.515517, 0.802583, 0.010328, 1.432788,
and 0.189269 (Kumar et al. 2009; Farahmand et al. 2015). Substituting a and b with x
from Equations (3) to (5) leads to standardized indices for IDR and WSR (hereafter
SI(a) and SI(b)).

Then the two univariate indicators are combined through a multivariate frame-
work as followed (Hao and Singh 2015).

Pjt ¼ Pr SI að Þ � SI atð Þ; SI bð Þ � SI btð Þ� �
(6)

where Pjt represents the joint (multivariate) empirical probability at month t, cal-
culated by two indexes of SI(at) and SI(bt). After the two univariate indicators are
obtained, the joint empirical probability is hence being derived with the multivariate
model of the Gringorten plotting position introduced by Yue et al. (1999).

Pjt SI atð Þ; SI btð Þ� � ¼ I�0:44
N þ 0:12

(7)

where I denotes the number of occurrences of the pair (SI(at), SI(bt)) for SI(a) �
SI(at) and SI(b) � SI(bt). The MSRRI, by standardizing the joint distribution function
of the IDR index and WSR index (Hao and AghaKouchak 2014):

MSRRI ¼ u�1 Pjð Þ (8)

where the joint empirical probability Pj can be standardized using Equation (5).
For each identified socio-economic drought event, the MSRRI value can be calculated
through the IDR and WSR.
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3.2. The heuristic segmentation method

The traditional time series test methods, such as filter test, sliding T-test, sliding F-
test, and the Gramer method, are based on a hypothesis that the time series are sta-
tionary and linear when they are used in detecting change points. However, the time
series are always non-stationary and nonlinear in real world. The statistical character-
istics of the non-stationary time series is a hot topic in many fields. In 2001, Pedro
et al. proposed a heuristic segmentation method to study the change of the heart beat
non-stationary time series. The heuristic segmentation method segments the non-sta-
tionary time series into several self-stationary segments, which overcomes the prob-
lem that the traditional test method’s poor application in non-stationary time series
(Gong et al. 2006; Liu et al. 2019a). The heuristic segmentation method is applied in
this paper to detect the non-stationary in multivariate drought index time series. The
detail computational process can be referred to Pedro et al. (2001).

3.3. The modified Mann–Kendall method

As a frequently used non-parametric test approach, the Mann–Kendall (Mann 1945;
Kendall 1948) trend test method is presented by the World Meteorological
Organization (Mitchell et al. 1966), which is originated from a rank correlation test
put forward by Kendall (1948). Nevertheless, the Mann–Kendall test results are
always influenced by the seasonality and persistence existed in the hydrological
sequence. A modification of the Mann–Kendall trend test named Seasonal Kendall
test (Hirsch et al. 1982; Hirsch and Slack 1984; Zetterqvist 1991) was proposed to
eliminate the effect of seasonality. However, the Seasonal Kendall test does not solve
the persistence problem (Hirsch and Slack 1984). Hamed and Rao (Hamed and Rao
1998) put forward the Modified Mann–Kendall trend test method by accounting for
the lag-i autocorrelation, which eliminated the persistence of the hydrological
sequence successfully. The method is employed in this study due to its robust per-
formance. The detail computational processes can be found in Hamed and Rao.

3.4. The moving-eindow correlation analysis (MWCA) method

Periodic component is one significant part of hydrologic time series. The MWCA is a
period analysis method proposed by Xie et al. (2016) for hydrologic series. MWCA
constructs periodic processes verifies the significance of periods utilizing the correl-
ation between periodic processes and original series and investigates local time and
frequency domain of time series. Moreover, the concept of time frequency centre
(TFC) is also proposed for detecting the significant periods of hydrologic series in
MWCA. It could identify the true periods, extract the reliable periodic components,
find the active time ranges of various periodic components and have a good anti-
noise property. MWCA is applied to analyse the periodic component of socio-eco-
nomic drought series. The specific procedures would be referred to Xie.
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3.5. The cross wavelet analysis method

The cross wavelet analysis is a popular method in examining the relationships
between two associated time series. Combined the wavelet transform with cross spec-
trum analysis, it could be used to identify the variation characteristics and coupled
oscillations of the two series in both time and frequency fields (Charlier et al. 2015).
The cross wavelet transform of the two series xn and yn can be defined as
WXY=WXWY�, where � is the complex conjugation. Then, the cross wavelet power is
described as |WXY| and the complex argument arg(WXY) can be regarded as the local
relative phase between xn and yn in the time-frequency domain. The theoretical distri-
bution of the cross wavelet power of the two time-series with their background power
spectra pXk and pYk is expressed as below (Huang et al. 2015):

D
jWX

n sð ÞWY
n � sð Þj

rXrY
< p

� �
¼ Zv pð Þ

v

ffiffiffiffiffiffiffiffiffiffiffi
PX
k P

Y
k

q
(9)

where Zv(p) represents the confidence level associated with the probability p for a
probability distribution function defined by the square root of the product of two v2

distributions (Grinsted et al. 2004). The relevant codes of the cross wavelet transform
can be downloaded freely in the following website: www.pol.ac.uk/home/research/
waveletcoherence.

Figure 2. The monthly IDR, WSR and MSRRI series in 1957–2012(a) and 1999–2012(b), respectively.
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4. Results and discussions

4.1. Variations of monthly MSRRI series in DRB

For the DRB, the reservoir is a within-year system. Thus, the time frame for this sys-
tem is set as 6months. The monthly MSRRI series is calculated through considering
the WSR indicator and IDR based on the Qini , Qoutt , Qestt and Qmin of the reservoir.
The main results are exhibited in Figure 2. The displayed monthly IDR and WSR
indices behave differently in trend and severity, which is related to climatic and reser-
voir conditions, respectively.

The IDR and WSR values could signify diverse droughts and local reservoir condi-
tions that are relative to the demand. In cases, for instance, as observed in Figure 2,
IDR < 0 means the occurrence of a low-inflow condition (i.e. hydrological drought)
for input relative to demand, whilst WSR > 0 represents the storage is adequate to
meet the demand. The hydrological indices imply the occurrence of a hydrological
drought. However, if the demand could still be met with the available storage, the
hydrological drought has not caused a socio-economic drought. By contrast, the scen-
ario of “IDR > 0 and WSR < 0” denotes mean inflow is above to demand (IDR >

0), whilst storage is still below mean and insufficient to meet demand (WSR < 0).
This corresponds to a situation in which there is no hydrological drought based on
input to reservoirs, while the system is still suffering from a socio-economic drought
as the available storage cannot meet the demand.

MSRRI is a combination of IDR and WSR which implies the synthetically informa-
tion overall the system. As shown in Figure 2, the three lines of monthly IDR, WSR
and MSRRI series demonstrate strong coherence. The correlation coefficients of the
monthly MSRRI series in 1957–2012 with the corresponding IDR and WSR series are
0.86 and 0.80, respectively, which indicates the reliability and effectiveness of the
MSRRI in characterizing socio-economic droughts. As the integration of IDR and
WSR, the smaller of MSRRI the more severe the drought and the more serious water
shortage. According to the historical drought data, the certain regions in the DRB
experienced severe droughts in 1970, 1990 and 1995 (Wan et al. 1997; Wang et al.
2015) when the corresponding MSRRI values were smaller than �2. This further veri-
fies the reliability and effectiveness of the MSRRI index.

Figure 2 indicates that MSRRI always presents earlier detection of signs of drought,
and with better persistence in DRB. It could be inferred that the MSRRI has better
sensitivity in the onset and recovery of socio-economic drought than the IDR and
WSR. In addition, the variations of MSRRI are consistent with the changes in all the
indices such as supply and storage relative to demand. Therefore, the MSRRI can be
adopted to characterize the socio-economic droughts in the DRB with good
performance.

4.2. Trends of MSRRI series in DRB

The trends of the MSRRI, IDR and WSR data in DRB are detected at the monthly
and annual scale with the application of the MMK trend test method. On the whole,
the trend of MSRRI series appears non-significant increasing at the annual scale
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under the 5% significance level while the monthly MSRRI shows significant increas-
ing tendency. Specifically, the trends statistic value is 3.3818 and 1.8164, respectively,
which are less than the standardized test statistic Ua/2=1.96 under the 5% significance
level. Additionally, Figure 3(a) shows the trend line of annual MSRRI series, and the
slope of the trend line is 0.0076, which implies progressive increase simultaneously.
Generally, the socio-economic drought in 1957–2012 in DRB had a non-significantly
increasing trend.

Correspondingly, both annual IDR and WSR series exhibit the performance of sus-
tained growth (Figure 3(b,c)). In specific, the WSR appear prominent significantly
increasing tendency through the MMK trend test (the statistic value Umonthly=4.009,
Uannual=3.4702). Nevertheless, the tendency of IDR maintains incremental change
non-significantly both at monthly and annual scale. As mentioned in Section 4.1, the
IDR series illustrate stronger coherence with MSRRI, with a significant correlation
coefficient 0.86 monthly and 0.91 annually. From this, in part, it can be inferred that
IDR occupies a leading role in synthetic index MSRRI. Furthermore, the observed
relationship is mainly dominated by variations in the inflow (dominated by metro-
logical component) rather than the bottom-up component.

4.3. Detections of change points of annual MSRRI series

The identification of change points in annual MSRRI series in the DRB was con-
ducted by the application of the heuristic segmentation method which aims to further
understanding the changing regime of the socio-economic droughts. With quantifying
the discrepancies between the average values of the left- and right-side subseries of
MSRRI, the variations were exhibited in Figure 4. The threshold value of P0 and e0
were set as 0.95 and 25, respectively (Pedro et al. 2001). As shown in Figure 4, the
probability of the largest T¼ 0.87 is less than P0, which implies that there are no

Figure 3. The trends of annual MSRRI(a), IDR(b) and WSR(c) series in 1957–2012 in DRB.
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change points detected. Therefore, the stationarity of the annual MSRRI series in the
DBR is still valid.

4.4. Periodic components of annual MSRRI series

The MWCA method was applied to obtain the periodic component of annul MSRRI
series in the DRB at the 5% confidence level. Figures 5 and 6 display the periodic
spectrum analysis results of annul MSRRI series. In Figure 5, the MWCA manifests
two apparent periods (T¼ 17, 22 years), whose coverage ratio is 0.609 and 0.385,
respectively. The MWCA could not only detect the true periods according to the
period spectrum of time series, but also show the estimated active time ranges of sig-
nificant periods through the distribution of the TFC points of time series. The TFC
points clearly show that T¼ 17 and T¼ 22 are two significant periods in the entire
time domain, and the period components have no abrupt changes (Figure 6).
Accordingly, it can be believed that annual MSRRI series has two significant periods
(17 and 22 years).

4.5. Analysis of the meteorological driving force behind socio-economic drought

As observed worldwide, the large-scale climate indices show strong linkages with
hydrological droughts, especially precipitation event, which is an essential key factor

Figure 5. Periodic spectrum analysis results of annul MSRRI series in DRB.

Figure 4. Identification results of change points in the annual MSRRI series in DRB.
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towards reservoir inflow (Huang et al. 2016, 2017; Liu et al. 2019b). Therefore, it is of
great necessity to investigate the detailed linkages, especially the evolution of the rela-
tions between the socio-economic droughts based on MSRRI from a perspective of
climate change. Here, the cross wavelet analysis was utilized to statistically estimate
the linkage between annual MSRRI series and climate indices (ENSO, EASM and
PNA), with a purpose of revealing the meteorological driving force behind the socio-
economic droughts. The cross wavelet transforms between annual MSRRI series in
1957–2012 and corresponding ENSO, EASM and PNA in the DRB are illustrated in
Figures 7–9, respectively.

It is evident that ENSO events strongly affect the annual MSRRI series in DRB,
implying that ENSO events play an important role in the evolution characteristics of
the socio-economic drought in the DRB (Figure 7). In particular, the ENSO events
show consistent, statistically significant coherence at inter-annual (2–6 years) scale
with the annual MSRRI series. Figure 7 exhibits the statistically significant linkages is
positive in 1981� 2002 and negative in 1968� 1980 both with a signal 2–6 year at

Figure 6. Time frequency analysis results of annul MSRRI series in DRB.

Figure 7. The cross wavelet transforms between annual MSRRI series and ENSO during 1957–2012
in DRB. The colour bar denotes the energy density with the unit of 1. The 95% confidence level
against red noise is shown as a thick contour and the relationship is represented as arrows (with
anti-phase pointing left, in-phase pointing right). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.).
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the 95% confidence level. Additionally, the EASM and PNA also have significant
effects on the evolution characteristics of socio-economic drought in the DRB. The
EASM showed statistically significant negative correlations with annual MSRRI series
with a signal of 2 and3 years in 1971–1982 and in 1992–1998. Moreover, there is also
a signal of 5–7 years in 1980–1990. Similarly, the PNA has positive linkages with
annual MSRRI with a signal of 3–5 years in 1968–1975 and a signal of 4–6 years
in 1982–1997.

Generally, the comprehensive effects of ENSO, EASM and PNA contribute to the
variations of the socio-economic droughts in the DRB. Among them, the ENSO has
strongest impacts on the socio-economic droughts in the DRB, followed by PNA, and
lastly EASM, because the significant correlation region between the ENSO and

Figure 8. The cross wavelet transforms between annual MSRRI series and EASM during 1957–2012
in DRB. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Figure 9. The cross wavelet transforms between annual MSRRI series and PNA during 1957–2012
in DRB. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.).
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MSRRI is largest, followed by PNA and EASM. It should be noted that the observed
relationship is mainly dominated by variations in the inflow (dominated by metro-
logical component).

5. Conclusion

Socio-economic drought is likely to gain more attention among different drought
types as climate changes and population grows. Additionally, it should not be over-
looked that reservoirs play a key role in modifying uneven distribution of water in
both space and time, which therefore are regarded as the most important and effect-
ive man-made water storage facilities in coping with climatic extremes. This offers a
further understanding of water stress based on various factors, including large-scale
climatic conditions represented by IDR index and local resilience of the water resour-
ces system denoted by WSR index to cope with extreme conditions.

In this study, an MSRRI was applied for characterizing the socio-economic
drought conditions in the DRB. The main results showed that (1) the MSRRI is more
sensitive to the onset and recovery of socio-economic droughts than IDR and WSR,
which responds to variations of either or both of the indices (such as supply and stor-
age relative to the demand) as a joint distribution function of IDR and WSR; (2) the
MSRRI series in the DRB has a non-significant increasing trend at annual scale with
apparent periods (T¼ 17, 22 years); (3) there are no change points identified in the
annual MSRRI series in 1957–2012 in the DRB.

Moreover, the cross wavelet analysis was applied to investigate the linkages between
annual MSRRI series and large-scale ocean-atmospheric circulation (ENSO, EASM and
PNA) in the DRB, which helps revealing the meteorological driving force of the
variations in the socio-economic droughts in the DRB. The results indicate that
the comprehensive effects of ENSO, EASM and PNA contribute to the variations of the
socio-economic droughts in the DRB, in which the impact of ENSO events is strongest,
followed by PNA, and lastly EASM. This suggests that the large-scale ocean-atmos-
pheric circulation index has the potential to improve the accessing of socio-economic
droughts in the study region. We highlight the atmospheric impact of large-scale cli-
mate indices on the evolution of socio-economic droughts, which has great implica-
tions on management of water availability and distribution in semiarid and
arid regions.
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