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ABSTRACT
In this paper, we consider the source strength identification prob-
lem for the three-dimensional inverse heat conduction equations.
The problem is to determine an unknown heat source strength from
the measurement data for a specified location. In this process, the
direct problem is solved by applying the Green’s function method.
Then, this problemcanbe converted into a Volterra integral equation
of the first kind. Further, the Tikhonov and truncated singular value
decomposition regularizationmethods are developed to identify the
unknown source strength based on the discrepancy principle for
choosing the regularization parameter. Finally, numerical examples
are presented to show the feasibility and efficiency of the proposed
method.
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1. Introduction

The source strength identification problem, or the inverse heat conduction problem
(IHCP) is typically stated as the problemof using the internal temperature to determine the
unknown heat source strength function, which has many applications in various branches
of engineering and science [1,2]. As is known, the source strength identification prob-
lem is severely ill-posed in the sense of Hadamard [3]. In fact, for physical measurements
contaminated with small noise, the corresponding solutions have large errors. It is diffi-
cult to obtain the numerical solution of this problem. Hence, the regularization method
has been used to solve the IHCP. In [4], the Tikhonov regularization method is used to
stabilize the solution of the IHCP. In recent years, the regularization method has been
proposed for obtaining an efficient solution of the source strength identification problem,
see [5–8]. Theoretical investigation of the uniqueness and conditional stability results of
the source identification problems are provided in [1,9,10]. The two-dimensional source
strength identification problem was developed to solve a Volterra integral equation by uti-
lizing the sequential algorithm [11]. The unknown source strength of a plane surface is
identified by using a combination of the regularization and modified conjugate gradient
methods [12,13]. The heat conduction equation has been solved by using Green’s function
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2 T. MIN ET AL.

method, and the temperature distribution has been obtained in the series form in terms
of circular functions [14,15]. Based on the Green’s function, fundamental solutions have
been developed for solving the source strength identification problem [2,3].

This paper is organized as follows. In Section 2, we formulate the three-dimensional
inverse heat source strength identification problem. In Section 3, we show that this prob-
lem can be converted into a Volterra integral equation of the first kind. The numerical
algorithms are derived, and they are given using the Tikhonov regularization and truncated
singular value decomposition (TSVD) with the discrepancy principle (DP) to choose the
regularization parameter. In Section 4, numerical examples are presented to demonstrate
the feasibility and efficiency of the proposed method. Finally, we summarize this paper in
Section 5.

2. Description of the problem

The direct heat conduction problem (DHCP) is the determination of the interior tempera-
ture with boundary conditions and an initial condition. The mathematical formulation of
this problem is given by the three-dimensional heat conduction equations:

∂u
∂t

= a2
(

∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
+ g(t)δ(x − x0, y − y0, z − z0),

(x, y, z) ∈ �, t > 0, (1a)

u(x, y, z, 0) = f (x, y, z), (x, y, z) ∈ �, (1b)

u(0, y, z, t) = u(L, y, z, t) = 0, 0 ≤ y ≤ H, 0 ≤ z ≤ P, t > 0, (1c)

u(x, 0, z, t) = u(x,H, z, t) = 0, 0 ≤ x ≤ L, 0 ≤ z ≤ P, t > 0, (1d)

u(x, y, 0, t) = u(x, y,P, t) = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H, t > 0, (1e)

where � = {(x, y, z)|0 < x < L, 0 < y < H, 0 < z < P}, δ(·)is the Dirac delta function,
(x0, y0, z0) ∈ �, g(t) is the point heat source strength function, and a denotes the disper-
sion coefficient.

For the direct problemwhere the initial condition f (x, y, z) and the heat source strength
g(t) are known, the problem given by (1) is concerned with the determination of the tem-
perature distribution u(x, y, z, t) in the interior region of the solids as a function of the time
and position.

For the inverse problem considered here, the initial condition f (x, y, z) is known, and
the heat source strength g(t) is regarded as being unknown. To identify the source strength
g(t), additional information is given by the following measured data:

u(x∗, y∗, z∗, t) = φ(t), t > 0, (2)

where (x∗, y∗, z∗) ∈ �. Therefore, the inverse problem can be stated as follows: identify the
unknown source strength function g(t) by utilizing the above-mentioned measured data.
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3. Algorithm analysis

3.1. Solution of the direct problem

It is well known that the direct problem (1) can be solved by the Green’s function method
[15]. To determine the Green’s function, we consider the homogeneous version of this
problem:

∂φ

∂t
= a2

(
∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2

)
, (x, y, z) ∈ �, t > 0, (3a)

φ(x, y, z, 0) = f (x, y, z), (x, y, z) ∈ �, (3b)

φ(0, y, z, t) = φ(L, y, z, t) = 0, 0 ≤ y ≤ H, 0 ≤ z ≤ P, t > 0, (3c)

φ(x, 0, z, t) = φ(x,H, z, t) = 0, 0 ≤ x ≤ L, 0 ≤ z ≤ P, t > 0, (3d)

φ(x, y, 0, t) = φ(x, y,P, t) = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H, t > 0. (3e)

The solution of problem (3) is obtained by the separation of variables:

φ(x, y, z, t) =
∫ L

0

∫ H

0

∫ P

0

{
8

LHP

∞∑
m=1

∞∑
n=1

∞∑
p=1

sin
(mπx

L

)
sin

(nπy
H

)
sin

(pπz
P

)

× sin
(
mπx′

L

)
sin

(
nπy′

H

)
sin

(
pπz′

P

)

× e−a2[(mπ
L )

2+( nπH )
2+(

pπ
P )

2]t
}
f (x′, y′, z′)dx′dy′dz′. (4)

Thus, the Green’s function is obtained as

G(x, y, z, x′, y′, z′, t) = 8
LHP

∞∑
m=1

∞∑
n=1

∞∑
p=1

sin
(mπx

L
)
sin

(nπy
H

)
sin

(pπz
P

)
sin

(mπx′

L
)

× sin
(nπy′

H
)
sin

(pπz′

P
)

× e−a2[(mπ
L )

2+( nπH )
2+(

pπ
P )

2] t . (5)

The solution of problem (3) in terms of the Green’s function is given as

φ(x, y, z, t) =
∫ L

0

∫ H

0

∫ P

0
f (x′, y′, z′)G(x, y, z, x′, y′, z′, t)dx′dy′dz′. (6)

Because the direct problem is nonhomogeneous, the desired Green’s function is obtained
by substituting t with (t − τ) in (5), and it has the following form:

G(x, y, z, x′, y′, z′, t − τ) = 8
LHP

∞∑
m=1

∞∑
n=1

∞∑
p=1

sin
(mπx

L
)
sin

(nπy
H

)
sin

(pπz
P

)

× sin
(mπx′

L
)
sin

(nπy′

H
)
sin

(pπz′

P
)

× e−a2[(mπ
L )

2+( nπH )
2+(

pπ
P )

2](t−τ). (7)
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Then, the solution of the direct problem can be given as

u(x, y, z, t) =
∫ L

0

∫ H

0

∫ P

0
f (x′, y′, z′)G(x, y, z, x′, y′, z′, t)dx′dy′dz′

+
∫ t

0

∫ L

0

∫ H

0

∫ P

0
G(x, y, z, x′, y′, z′, t − τ)g(τ )δ(x′ − x0, y′ − y0, z′ − z0)

× dx′dy′dz′dτ , (8)

and it can be simplified as follows:

u(x, y, z, t) =
∫ L

0

∫ H

0

∫ P

0
f (x′, y′, z′)G(x, y, z, x′, y′, z′, t)dx′dy′dz′

+
∫ t

0
g(τ )G(x, y, z, x0, y0, z0, t − τ)dτ . (9)

3.2. Discretization of the heat source strength identification problem

From (9), we have

u(x, y, z, t)−
∫ L

0

∫ H

0

∫ P

0
f (x′, y′, z′)G(x, y, z, x′, y′, z′, t)dx′dy′dz′

=
∫ t

0
g(τ )G(x, y, z, x0, y0, z0, t − τ)dτ . (10)

According to (2), the source strength identification problem is reduced to solve theVolterra
integral equation of the first kind, which is stated as follows:

w(t) =
∫ t

0
g(τ )G(x∗, y∗, z∗, x0, y0, z0, t − τ)dτ , (11)

where

w(t) = u(x∗, y∗, z∗, t) −
∫ L

0

∫ H

0

∫ P

0
f (x′, y′, z′)G(x∗, y∗, z∗, x′, y′, z′, t)dx′dy′dz′

= φ(t) −
∫ L

0

∫ H

0

∫ P

0
f (x′, y′, z′)G(x∗, y∗, z∗, x′, y′, z′, t)dx′dy′dz′. (12)

Since w(t) contains a triple-integral, which makes it difficult to obtain the exact value,
we approximate it by using theGauss–Legendre quadrature. To identify the source strength
g(t) in (11), we employ a numerical method which is obtained by using a mid-rectangle
quadrature.

The interval [0, t] can be subdivided into intervals of width h = t/N, ti = ih, i =
1, 2, · · · ,N. We have

w(ti) =
∫ ti

0
g(τ )G(x∗, y∗, z∗, x0, y0, z0, ti − τ)dτ

=
∫ t1

0
g(τ )G(x∗, y∗, z∗, x0, y0, z0, ti − τ)dτ
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+
∫ t2

t1
g(τ )G(x∗, y∗, z∗, x0, y0, z0, ti − τ)dτ + · · ·

+
∫ ti

ti−1

g(τ )G(x∗, y∗, z∗, x0, y0, z0, ti − τ)dτ . (13)

If the mid-rectangle rule is used to approximate each integral, then

w(ti) ≈h[G(x∗, y∗, z∗, x0, y0, z0, ti − h
2
)g(

h
2
) + G(x∗, y∗, z∗, x0, y0, z0, ti − 3h

2
)g(

3h
2

) + · · ·

+ G(x∗, y∗, z∗, x0, y0, z0, ti − 2i − 1
2

h)g(
2i − 1
2

h)]. (14)

For convenience, we denote G(x∗, y∗, z∗, x0, y0, z0, ti − ((2j − 1)/2)h) as Gij, g(((2j −
1)/2)h) as gj, and w(ti) as wi. The equation can be written as follows:

wi ≈ h[Gi1g1 + Gi2g2 + · · · + Gijgj], (15)

where i, j = 1, 2, · · · ,N; i ≥ j. This can also be written in the matrix form:

Gg = w, (16)

where G is the matrix of the coefficients:

G = h

⎡
⎢⎢⎢⎢⎢⎣

G11 0 0 · · · 0
G21 G22 0 · · · 0
...

...
...

. . .
...

G(N−1)1 G(N−1)2 G(N−1)3 · · · 0
GN1 GN2 GN(N−1) · · · GNN

⎤
⎥⎥⎥⎥⎥⎦ , (17)

g is the vector of solutions:

g = (g1, g2, · · · , gN)T , (18)

and w is the vector of the nonhomogeneous part:

w = (w1,w2, · · · ,wN)T . (19)

3.3. Regularization algorithms for the identification of heat source strength

In general, the Volterra integral equation of the first kind is ill-posed. In the finite-
dimensional case, the condition number of matrixG is very large. Hence, the problem (16)
is ill-conditioned. Generally, the regularizationmethod is considered to be an effective tool
for solving an ill-conditioned problem. Therefore, we apply the Tikhonov regularization
and TSVD to find a stable approximate solution to (16).
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To achieve that, the Tikhonov regularization is proposed to solve the following:

gα = arg min
g∈RN

Jα(g) = (||Gg − w||22 + α||g||22), (20)

where α(α > 0) is the regularization parameter. The computation of the approximate
solution gα consists of solving the augmented normal equation

(GTG + αI)gα = GTw, (21)

where GT is the adjoint operator of G, and I is the identity operator.
The singular value decomposition (SVD) of the matrix G is given by

G =
N∑
j=1

ujσjvTj , (22)

where the left and right singular vectors uj and vj are orthonormal, and the singular val-
ues σj are nonnegative and nonincreasing, σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0. Then, the Tikhonov
regularization solution of (16) obtained using SVD can be expressed as follows:

gα =
N∑
j=1

σj

σ 2
j + α

uTj wvj. (23)

As another approach to find a stable approximate solution to (16), we determine an
approximate solution of the least-squares problems of the form

min
g∈RN

||Gg − w||2, (24)

and the least-squares solution can be expressed as

gLS = G+w =
r∑

j=1

uTj w

σj
vj, (25)

where G+ denotes the pseudo-inverse of G. Owing to the singular values of G ordered
according to

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · σN = 0, (26)

the singular value gradually tends to zero, and the least-squares solution is far from the
exact solution. The TSVD screens outs the smallest singular values ofG, those that are less
than an imposed threshold. In this case, the threshold is set at σk when k ≤ r. We obtain
the TSVD regularization solution as

gk =
k∑

j=1

uTj w

σj
vj, (27)

where k is the regularization parameter.



INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 7

In practical applications, the data are often affected by the Gaussian random noise.
Hence, we consider the determination of the regularization parameters using the following
model:

w = Gg + ε, (28)

where ε is an i.i.d. Gaussian random vector with variance σ 2, andwe denote ε ∼ N(0, σ 2I).
To obtain an effective approximate solution to the original ill-posed problem, determin-

ing the regularization parameter will be very important. Next, we introduce the DP, which
is a standard regularization parameter method used for the inverse problem.When the DP
is used to determine the regularization parameter, where υ satisfies:

||Ggυ − w||22 = E[||ε||22] = Nσ 2, (29)

we define the discrepancy function as

D(υ) = ||Ggυ − w||22 − Nσ 2 = 0. (30)

From (30), we compute the value ofυ. The functionD(·) is simplified using the SVD,which
is given as follows for the Tikhonov regularization and TSVD, respectively,

D(α) =
N∑
i=1

α2(uTi w)
2

(σ 2
i + α)

2 − Nσ 2, (31)

D(k) =
N∑

i=k+1

(uTi w)
2 − Nσ 2. (32)

Therefore, the value α can be obtained using methods such as Newton’s method when
using the DP for Tikhonov regularization. Moreover, the value k can choose the first ksuch
that D(k) ≤ 0 when using the DP for TSVD.

4. Numerical examples

For the source strength identification problem (1)–(2), let � = {(x, y, z)|0 < x < 1, 0
< y < 1, 0 < z < 1}, 0 < t ≤ 1, a = 1. We consider the following equations:

∂u
∂t

= ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

+ g(t)δ(x − 0.5, y − 0.5, z − 0.5), (33)

u(x, y, z, 0) = f (x, y, z), (34)

u(0, y, z, t) = u(1, y, z, t) = 0, (35)

u(x, 0, z, t) = u(x, 1, z, t) = 0, (36)

u(x, y, 0, t) = u(x, y, 1, t) = 0, (37)

u(0.25, 0.25, 0.25, t) = φ(t), (38)

where f (x, y, z) = sin(πx) sin(πy) sin(πz).
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Table 1. Additional values of u(0.25, 0.25, 0.25, ti).

ti 0.1 0.2 0.3 0.4 0.5

u(0.25, 0.25, 0.25, ti) 0.01986922 0.00318231 0.00179090 0.00111926 0.00065214
ti 0.6 0.7 0.8 0.9 1.0
u(0.25, 0.25, 0.25, ti) 0.00036048 0.00019231 0.00010004 0.000051076 0.00002570

Table 2. L∞ error norm and RE for g(t), with σ = 0.

Method Parameter RE L∞
Tikhonov 6.35906253× 10−5 0.02796904 7.62407172× 10−4

TSVD 40 6.07527492× 10−8 4.19828995× 10−9

We can see that G(x, y, z, x′, y′, z′, t) is an infinite series and it cannot be used directly
for numerical computations. Therefore, we adopt

G(x, y, z, x′, y′, z′, t) ≈ 8
LHP

100∑
m=1

100∑
n=1

100∑
p=1

sin
(mπx

L
)
sin

(nπy
H

)
sin

(pπz
P

)

× sin
(mπx′

L
)
sin

(nπy′

H
)
sin

(pπz′

P
)

× e−a2[(mπ
L )

2+( nπH )
2+(

pπ
P )

2]t , (39)

which guarantees the convergence of the series.
Firstly, assuming that the source strength is known, let g(t) = te−8t . In the compu-

tations, we take N = 40. The additional values are obtained using the Gauss–Legendre
quadrature in discrete time with time step �t = 0.025 and at (0.25, 0.25, 0.25). The
obtained values are listed in Table 1. Then, the values will be used to determine g(t).

We use the L∞ error norm and the relative error (RE) tomeasure the difference between
the numerical and exact solutions. The L∞ error norm [16] is defined by

L∞ = max
0≤i≤N

|g(ti) − g̃(ti)|, (40)

and the RE [16] is defined by

RE =
√√√√ N∑

i=1
(g(ti) − g̃(ti))2

/√√√√ N∑
i=1

(g(ti))2, (41)

where ti, N, g(t), g̃(t) denote the test points, the total number of uniformly dis-
tributed points on the interval [0, 1], the exact solution and the numerical solution,
respectively.

Example: First, we consider the source strength identification problem in a non-
noise jamming situation. We obtain the reconstructions for the source strength g(t)
with σ = 0.

To solve the source strength identification problem, we apply the Tikhonov regular-
ization and TSVD methods. The Tikhonov regularization parameter α and the TSVD
regularization parameter k are chosen using the DP; the L∞ error norm and the RE are
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Figure 1. Comparison of exact and numerical solutions using Tikhonov regularization with σ = 0.
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Figure 2. Comparison of exact and numerical solutions using TSVD with σ = 0.

listed in Table 2. From the table, we can see that the TSVD errors are smaller than those of
the Tikhonov regularization. Figures 1 and 2 compare the exact solution with its numerical
solution that used the regularization method. As shown in the figures, the regularization
method to identify the source strength is in good agreement with the exact solution in the
non-noise jamming situation.

Next, we consider the source strength identification problem in a Gaussian random
noise jamming situation. In our experiment, we considered the Gaussian random noise
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Figure 3. Comparison of exact and numerical solutions using Tikhonov regularization with
σ =2.16583542×10−5.
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Figure 4. Comparison of exact and numerical solutions using TSVD with σ =2.16583542×10−5.

with mean zero and standard deviation

σ = 1
50

√√√√ N∑
i=1

g2i

/
N, (42)

the noisy data are generated by (28).We takeN = 40, and obtained σ =2.16583542×10−5.
The Tikhonov regularization and TSVD method are applied to reconstruct the source
strength g(t). In Figures 3 and 4, we compare the numerical solution of the proposed
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Table 3. L∞ error norm and RE for g(t), with σ =2.16583542×10−5.

Method Parameter RE L∞
Tikhonov 6.51184081× 10−5 0.05079719 0.00190189
TSVD 15 0.04314080 0.00431313

method with the exact solution. From these figures, it can be seen that the numerical solu-
tion is in agreement with the exact solution. The regularization parameter, L∞ error norm
and RE are presented in Table 3. As shown in Table 3, the REs are maintained within an
acceptable range, and the L∞ error norm for the Tikhonov regularization is smaller than
that for the TSVD.

From the previous numerical example, it can be seen that the TSVD numerical results
are quite satisfactory in the non-noise jamming situation. In the noise jamming situation,
the reconstruction results for different regularization methods are considered acceptable.

5. Conclusion

In this paper, we presented the Tikhonov regularization and TSVD method to solve the
three-dimensional inverse source strength identification problem based on the Green’s
function and Volterra integral equation of the first kind. Numerical examples have been
provided to check the proposedmethod for a non-noise jamming situation and a Gaussian
random noise jamming situation. The results show that the proposed method is feasible
and effective in identifying the unknown source strength.
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