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Abstract
Image splicing/compositing is common content tampering operation. In this work, we devote
to improve the detection accuracy of the splicing/compositing attack for image, and propose an
effective image splicing localization method based on the noise distribution characteristic in
image. Firstly, the test image is divided into non-overlapping blocks by using an improved
simple linear iterative clustering (SLIC) algorithm. Then block-wise local noise level estima-
tion and noise distribution characteristic estimation are performed to generate distinguishing
features. Utilizing the fact that image regions from different sources tend to have larger inter-
class difference, the fuzzy c-means clustering is used to identify spliced regions. Compared to
existing noise-based image splicing detection methods, experimental results on different
datasets have shown that the proposed method has superior performance, especially when
the noise difference between the spliced region and the original region is small. Moreover, the
proposed method is robust for content-preserving manipulations.

Keywords Image splicing detection . Image splicing localization . Simple linear iterative
clustering . Noise distribution characteristic . Fuzzy c-means clustering

1 Introduction

The wide using of powerful image editing software makes it ubiquitous to alter the content of
digital images without leaving any visible clues. Although the developments of image editing
techniques have provided many post-processing tools for artistic expression in the field of art,
the abuse of image editing tools have caused serious problem even lead to crimes. Therefore, it
is necessary and urgent to develop reliable and precise image forensics technologies to
detection and identification image content change caused by malicious attack, whether from
the theoretical research or practical application.
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Digital image passive forensics has been an active research area during the last decade. It is
based on the assumptions that different imaging devices or imaging processing would
introduce different inherent patterns into the outputted images. These underlying patterns are
consistent in the original images and would be altered after some image manipulations. Thus, it
can be used as evidence for image source identification and forging detection [19]. Image
forging means that the image content is altered by malicious attacks. Image splicing is a
widespread forging operation, and it is done by copying a part of image content and pasting to
another image to create a composited image. Since human’s eyes can be cheated by spliced
images even without any post-processing, so image splicing detection has attracted great
attention in recent years. Figure 1 presents two examples of splicing image. In Fig. 1, (a)
“Tibetan antelope” is one of the China’s top ten most influential news photos in 2006 (come
from China central television (CCTV)). In fact, it is a composograph created by splicing two
independent images, train and Tibetan antelope. (b) Hidden heaven of the earth, it is a
documentary named Patagonia, broadcasted by BBC. It is reported that the volcanic eruption
showed in the video system was created by splicing two video pieces via computer. To obtain
real visual effect, lightning was combined with erupted ash cloud, and created splendid
volcanic thunderstorms.

Since different image have different intrinsic characteristics, while splicing forgery will
result in intrinsic inconsistency in forged image. This kind of intrinsic inconsistency can be
considered as the forensics feature to detect image splicing attacks. To capture such intrinsic
inconsistency, many methods have been proposed during the last decade.

1.1 Related works

In the last decades, a lot of researchers have devoted to the study of image splicing detection.
The existing techniques in literature include two main categories: image splicing detection and
splicing region localization. The former is a deterministic method that only detects whether an
image has undergone splicing operations. The latter is a computational method that can find
the position and shape of spliced image regions.

The earlier technologies were mainly focusing on image splicing detection. This kind of
methods cast the problem as image classification task. It usually selects well designed image
features, and fed into a trained classifier to distinguish spliced images from authentic images.
The typical method is the statistical features-based methods. This kind of methods is based on

(a)          (b)

Fig. 1 The examples of image splicing. a Tibetan antelope, it is created by splicing train and Tibetan antelope (b)
Hidden heaven of the earth, lightning was combined with erupted ash cloud
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the fact that image splicing might cause the change of inherent statistical features. E.g, [33] and
[44] used image chroma component as distinguishing features and SVM as a classifier to
detect image splicing. Work [17] suggested a method that extract neighboring joint density
features of the DCT coefficients, and use SVM as classifier to detect image splicing. Since
image splicing might destroys the texture correlation in the edge of the spliced regions, so the
inherent inconsistencies of texture features can be used to detect image splicing. For example,
work [32] used gray level co-occurrence matrix (GLCM) to construct features; works [1, 2, 42]
used Local binary patterns (LBP) [21] as features to detect image splicing; work [36] reported
a method to detect changes caused by seam modification on JPEG retargeted images.

From the view of tampering detection, the real challenge is splicing region localization.
With the publishing of the Columbia Image Splicing Detection Evaluation Dataset [7], a lot of
scholars were devoted to the study of splicing region detection. Recent years, many splicing
region detection methods were proposed.

Johnson and Farid [14] developed a method to identify splicing image regions by detecting
the inconsistency in lighting with respect to different parts in an image. Consider that the
camera response function (CRF) is a fundamental property of the cameras, and it maps input
irradiance to output image intensity, some CRF-based methods [11, 12] are proposed to detect
spliced image regions. Fang et al. [39] detect spliced regions by evaluating consistency check
of camera characteristics among different areas in an image. Zhang et al. [41] introduced a
method based on the planar homography constraint to locate the fake regions roughly and an
automatic extraction method using graph cut with online feature/parameter selection to
segment the faked objects. Recent work [13] reported a method for detecting image forgery
by locating grid alignment abnormalities in JPEG compressed image. Work [34] used a SVM
for classing to detect gamma transformation in image and then used it to detect the tampered
image regions. Work [29] proposed a model that is based on features extracted from DCT
coefficients and Multi-Scale LBP, and presented a method to detect image splicing. Other
methods such as [40] and [18] detect image composites by estimating the shadows in image.

Consider that image splicing may influence the features of blur in images, and thus, blur
can be used as a cue for image splicing detection. Some defocus blur based splicing detection
methods were proposed, for example, [3, 5], and [30]. Recently work [4] reported an image
splicing localization method that is based on the partial blur type inconsistency.

Since image splicing may destroy the correlation introduced by the Color Filter Array
(CFA) interpolation process, many works are devoting to detect image splicing/ composite by
identifying the inconsistency of CFA interpolation pattern. The typical method was proposed
in [23]. Gallagher and Chen developed a method [9] that detects image tampering by
measuring the presence of demosaicing in digital image. Wang et al. [31] introduced a
technique to locate image splicing via re-demosaicing.

Due to the limitation of manufacturing technique and the characteristic of material, imaging
devices have some internal defects inevitably. These defects will present in the outputted
image in the form of special pixels or pattern noise. In a spliced/composited image, spliced
regions that are come from different origins may have different noise characteristics, and this
inconsistency can be regarded as an evidence to identify spliced regions.

Lyn e.t. [20] reported a method to expose region splicing by revealing inconsistencies in
local noise levels. This method was based on a blind noise estimation algorithm. Pun e.t.[24]
proposed an image splicing detection method based on multi-scale noise estimation. In their
work, the test image was segmented into superpixels of multiple scales. Those segments not
constrained by the noise level function of individual scale were regarded as suspicious regions.
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Consider that the principal component analysis (PCA) is a common method of noise estima-
tion, work [38] proposed a method by using PCA-based noise level estimation. In their work,
authors perform block-wise noise level estimation of a test image with PCA, and segment the
tampered region from the original region by k-means clustering.

Since sensor pattern noise can be considered as the camera’s fingerprint, work [6]
reported an approach to detect image forgeries using sensor pattern noise. In their
work, authors casted the problem in terms of Bayesian estimation, and modern convex
optimization techniques were then adopted to achieve a globally optimal solution and
photo-response non-uniformity (PRNU) noise estimation. Consider that noise in image
forensic applications is generally weak and content-related, work [37] described a
noise level function (NLF) that better fits the actual noise characteristics. By exploring
the relationship between NLF and the camera response function (CRF), authors
formulated a Bayesian maximum a posteriori (MAP) framework to optimize the
NLF estimation, and developed a method for image splicing detection according to
noise level inconsistency in regions taking from different images.

In recent years, with the widely application of neural network model in pattern recognition
field, learn-based detection methods are presented successively, e.g. [8]. These methods are
effective and accurate to detect whether an image has undergone splicing operations. Work
[27] presents a technique that utilizes a fully convolutional network (FCN) to localize image
splicing attacks. Many splicing detection schemes based on Markov features in transform
domain have been proposed [10, 43] et al. Work [35] using the difference between the edges of
the spliced area and the edges of the natural image, detection of tampered images will become
more accurately. Experimental results show that their method outperform some existing
splicing localization algorithms.

1.2 Our contributions

Although many image splicing localization methods have been proposed in recent
years, there are still some challenging problems, such as the accuracy and robustness
of the algorithm. In this work, we devote to improve the detection accuracy and the
robustness for content-preserving manipulation, and propose an image splicing/
compositing detection technique. Firstly, the test image is divided into non-
overlapping blocks by using the Simple linear iterative clustering (SLIC). Then we
perform a block-wise local noise estimation in the questioned image, and use the
fuzzy c-means clustering to identify spliced image regions. Compared to the existing
noise-based image splicing region detection methods, the proposed method has higher
detection accuracy and robustness, especially when the noise difference between the
spliced region and the original region is small.

The rest of this paper is organized as follows. The proposed image splicing/compositing
detection method is described in Section 2. In Section 3, we present experimental results and
performances analysis. Section 4 concludes the paper with some thoughts on future works.

2 The proposed method

The proposed method consists of four pipeline stages: image segmentation, local noise level
estimation, noise distribution characteristic estimation, splicing region localization.
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2.1 Improved SLIC-based image segmentation

Simple linear iterative clustering (SLIC) is a simple and efficient algorithm to construct
superpixels. Since this algorithm can generate compact and nearly uniform superpixels, and
has a higher comprehensive evaluation in terms of computing speed, object contour preserva-
tion, superpixel shape, etc., so it meets the expectation segmentation effect of our work.
Moreover, the algorithm groups the pixels by using the similarities among the features of
pixels and replaces multitude pixels with a few superpixels to express the image features,
which greatly reduces the complexity of image post-processing. Therefore, in this section, we
used SLIC as the pre-processing of the proposed algorithm.

However, for traditional SLIC algorithm, the numbers of superpixels depend on artificially
setting. In our work, we improve the traditional SLIC algorithm, and propose a method that
uses the size of image to self-adaptively determine the number of superpixels. Our approach
overcomes the randomness and uncertainty caused by artificial observation and experience in
determining the number of image partitions. In particular, it is very meaningful for the batch
processing image of different sizes.

In order to establish an approach that can self-adaptively determine the number of
superpixels, we take 200 same size images randomly from the image database. We process
these images by adding zero mean Gaussian noise with variance σ = 5, then segment these
images uniformly as non-overlapping blocks with size n × n, n = 16, 32, 64, 128, respectively,
and the schematic diagram is shown in Fig. 2 (a), (b), (c), and (d). We estimate the noise level
of each block by using PCA, respectively, calculate noise mean and variance of all blocks, and
the results are listed in Table 1.

As can be seen from the Table 1, when n = 64, the estimated noise mean is 4.588, it is the
closest to 5. This means that the noise estimate is relatively accurate when n = 64. Therefore, it
is reasonable to use n = 64 as the segmentation size.

For M ×N test image I, let Q =M ×N. We define the number of superpixels as:

K ¼
200; k≥150
k; 100≤k≤150
100; others

8<
: ð1Þ

Here k ¼ Q
n�n, n = 64.

We use SLIC algorithm to segment the image I into certain superpixel blocks (seeing Fig. 3
(a)), denote the segmented image as I′ (seeing Fig. 3(b)), denote each superpixel block as Si(i =
1,2,...,K), where K is the number of superpixels.

Fig. 2 Different size segmentation diagram. These images uniformly as non-overlapping blocks with size, n =
16, 32, 64, 128, respectively

Multimedia Tools and Applications



2.2 Noise standard deviation estimation

2.2.1 Blocks filled and superpixel matrix

To use PCA to estimate the noise variance of each superpixel block, it is necessary to transform
the irregularly superpixel block into regular one. To this end, we fill each Si(i = 1,2,...,K) into a
rectangular area according to the horizontal maximum value and vertical maximum value,
respectively, and the pixels of filled part come from the surrounding area of the superpixel
block in the original image. As shown in Fig. 3(c), the red area indicates an irregular superpixel
block; we want to fill it into a regular area, seeing the green rectangle. In Fig. 3(d), black spots
indicate the pixels included in the superpixel block, and white spots indicate the pixels that
need to be filled. In Fig. 3(e), red spots indicate filled pixels that come from the area inside the
green rectangle and outside the superpixel block. Without loss of generality, in M ×N matrix
IMN, let red frame represents a superpixel block, green frame represents corresponding filled
regular black.

Table 1 The comparison of noise means and variances for different blocks (The ground truth σ = 5)

n 16 32 64 128

Noise mean 3.1707 4.4905 4.5880 3.856
Noise variance 0.3371 0.4258 0.3981 0.3357

Fig. 3 The framework of PCA-based noise standard deviation estimation
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Let the matrix of each filled superpixel blocks Si be denoted as Ri0(i = 1, 2, … ,K).

Ri0 ¼
yi; j ⋯ yi; jþt
⋮ ⋱ ⋮
yiþs; j ⋯ yiþs; jþt

2
4

3
5

2.2.2 The noise standard deviation

To extract noise feature, the matrix Ri0(i = 1, 2, … ,K) is divided into four sub-matrix Ri1, Ri2,
Ri3, Ri4. As shown in Fig. 3(f). If the row or column of Ri0 is even, divide row or column
equally (seeing the Fig. 4 (a)); if the row or column is odd, the pixels in the middle row or
column are divided into the next sub-matrix (seeing the Fig. 4 (b)). Next, take 1/4 center matrix
of Ri0 as a new matrix Ri5 (as shown in Fig. 3 (g)).

Let Bi,X denote the sample covariance matrix of Ri,X, let λ
1ð Þ
i;X ≥λ

2ð Þ
i;X ≥⋯≥λ Mð Þ

i;X (Descending

order) be the eigenvalues of Bi,X with the corresponding normalized eigenvectors

V 1ð Þ
i;X ;V

2ð Þ
i;X ;⋯;V Mð Þ

i;X , where, i = 1, 2,⋯, K, X = 0, 1, 2,⋯, 5. According to work [26], V 1ð Þ
i;X

� �T
Ri;X ; V 2ð Þ

i;X

� �T
Ri;X ;⋯ V Mð Þ

i;X

� �T
Ri;X are the sample principal components of Ri,X, and have the

following characteristic:

(a) Case 1 (b) Case 2

Fig. 4 a divides row or column equally. b the pixels in the middle row or column are divided into the next sub-
matrix
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s2 V bð Þ
i;X

� �T
Ri;X

� �
¼ λ bð Þ

i;X ; b ¼ 1; 2;⋯;M ð2Þ

Where s2(·) represents the variance of V bð Þ
i;X

� �T
Ri;X , M represents the number of eigenvalues

and eigenvectors of the corresponding covariance matrix.
Therefore, the following equation can be used to obtain the corresponding block noise

standard deviation σi, X please refer to [26] for details:

lim
N→∞

E jλ bð Þ
i;X−σ

2
i;X j

� �
¼ 0 ð3Þ

Equation (3) represents λ bð Þ
i;X convergence in mean to σ2

i;X . Therefore, the noise variance can be

estimated as λ bð Þ
i;X , Since convergence in mean implies convergence in probability, λ bð Þ

i;X is a

consistent estimator of the noise variance. Therefore, we have

σi;X ¼
ffiffiffiffiffiffiffiffi
λ bð Þ
i;X

q
ð4Þ

Using formula (4), we can get the noise standard deviations σi, X, (X = 0, 1, 2,⋯, 5), and the
average noise standard deviation σi:

σi ¼ 1

6
∑
5

X¼0
σi;X ð5Þ

Here, X = 0,1,...,5. Repeat above steps for all blocks Si to get σi i ¼ 1; 2;⋯;Kð Þ.

2.3 The estimation of noise distribution characteristic

Work [24, 25, 28] and [15] reported, in certain brightness, the image noise level conforms to
the Poisson distribution. To describe the characteristics of noise distribution, we investigate the
relationship between noise distribution and pixel intensity by using the method of work [24].

(1) Let I
0
W represent the Weiner filtered image of I′,

I
0
W ¼ W I

0
� �

ð6Þ

Here, W(•) represent the Weiner filter. The residual image EMN is as follows:

EMN ¼ I
0
−I

0
W ð7Þ

Let EMN(Si) represent the residua of superpixel block Si. Computing the standard deviation
σ(Si) of EMN(Si), i = 1, 2, ⋯, K.

�E Sið Þ ¼
∑
jSij

j¼1
E Pj
� �

jSij ð8Þ

σ Sið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jSij ∑
jSij

j¼1
E P j
� �

− �E Sið Þ� �2s
ð9Þ
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Where,∣si∣is the number of pixels include in superpixel block Si, E(Pj)(j = 1, 2,⋯, | Si| )
represents the intensity value of j-th pixel in EMN(Si), �E Sið Þdenotes the mean value of pixel
in EMN(Si), σ(Si) indicates the standard deviation of pixel in EMN(Si), it is also the noise standard
deviation of Si.

Computing the mean value b(Si) of the pixel intensity in Si(i = 1, 2,⋯,K).

b Sið Þ ¼
∑
j
pi jð Þ
jsij ð10Þ

Where pi(j) is pixel intensities, ∣si∣ is the number of pixels include in the superpixel block Si,
b(Si) denotes the mean pixel intensity of the i − th superpixel block Si.

(2) According to [24], the least squares polynomial curve fitting technique [16] can be
used to construct noise level function, and five-degree curve fitting shows better
result in their experiment. Assuming the distribution function of noise level has the
form of eq. (11):

f xð Þ ¼ a0 þ a1xþ a2x2 þ a3x3 þ a4x4 þ a5x5 ð11Þ
Where, x denotes the average pixel intensity of the superpixel block and a0, a1, ⋯, a5 are the
coefficients to be estimated.

Let

C ¼ ∑
K

i¼1
σ Sið Þ− f b Sið Þð Þ½ �2 ð12Þ

Let the partial derivatives of C equal to zero, as in formula (13), the coefficients a0, a1, ⋯, a5
can be calculated.

∂ Cð Þ
∂a0

¼ ∂ Cð Þ
∂a1

¼ ⋯ ¼ ∂ Cð Þ
∂a5

¼ 0 ð13Þ

Therefore, for the superpixel block Si, the probability distribution function of the noise
standard deviationσ(Si) is obtained as follows:

P σ Sið Þð Þ ¼ e−λ:λσ Sið Þ

σ Sið Þ! ð14Þ

Where λ = f([b(Si)]), (i = 1, 2, .....,K).

2.4 Splicing region detection

As one of the main techniques of unsupervised machine learning, fuzzy clustering analysis is
an effective method of data analyzing and modeling. Fuzzy clustering analysis has been used
in various fields effectively such as large-scale data analysis, data mining, vector quantization,
image segmentation, pattern recognition, etc.

Consider that image noise is a random signal, and it has uncertainties and is subject to
various factors. On the other hand, the image tampering techniques are constantly improved,
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and the image tampering methods are diversification, as well as the anti-forensics techniques
are widely applied. These factors cause the ambiguity between the tampered image regions and
the real image regions. As a result, splicing detection is very difficult. Moreover, noise in
image forensic applications is generally weak and content-related. To avoid the influence of a
single factor, we estimate the noise difference using two factors, noise level and noise
distribution probability, and then we constructed a splicing localization algorithm by using
Fuzzy c-means (FCM) clustering.

2.4.1 Establishment data sets

Let U ¼ �σi ; p Sið Þf g, where �σi is the noise standard deviation and p(Si) is the noise distribu-
tion probability.

2.4.2 Calculating cluster centers

To identify the splicing regions, the superpixel blocks Si (i = 1, 2,⋯,K) of the testing image
will be divided into two categories, and the objective function is as follows:

J U ;Vð Þ ¼ ∑
K

i¼1
∑
2

q¼1
uiq
� �m diq

� �2 ð15Þ

Here V = {(x1, y1), (x2, y2)} indicates cluster center, Urepresents the data matrix uiq ∈ [0, 1]
represents the membership value of the i − thsample belonging to the q-th class, and
m ∈ [0,∞] is the weighted index. According to the experimental research on clustering validity
[22], the best selection interval of m is m ∈ [1.5, 2.5]. In this work, we let m = 2.0. Let diq
denote the Euclidean distance between the i − th sampleti ¼ �σi;P Sið Þ� �

and the q − th cluster

center vq = (v1q, v2q), (q = 1, 2).
It can be expressed as follows:

diq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ i−v1q
� �2 þ P Sið Þ−v2q

� �2q
ð16Þ

J(U, V) indicates the weighted square sum of the distances from the samples in every category
to the cluster center. The smaller J(U, V) is, the smaller the in-class dispersion will be, and the
better the clustering effect will be obtained. According to clustering rule, the minimum form of
J(U, V) is defined as follows:

min J U ;Vð Þf g ¼ min ∑
K

i¼1
∑
2

q¼1
uiq
� �m diq

� �2( )
ð17Þ

Using the Lagrange multipliers method, we can obtain the membership value as follows:

uiq ¼ ∑
2

j¼1

diq
djq

� �2= m−1ð Þ
 !−1

ð18Þ

Where ∑
V

q¼1
uiq ¼ 1. If exists q, r such that drq = 0, then urq = 1. Additional, for j ≠ r, ujq = 0.

Then the cluster centers can be defined as follows:
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v1q ¼
∑
K

i¼1
uiq
� �m

σi
—

∑
K

i¼1
uiq
� �m

v2q ¼
∑
K

i¼1
uiq
� �mP Sið Þ

∑
K

i¼1
uiq
� �m

; vq ¼ v1q; v2q
� �� �

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ

The cluster center V can be obtained by repeatedly iterating to optimize the objective function
J(U, V), until the Euclidean distance between two adjacent cluster centers is less than the
threshold ε.

2.4.3 FCM clustering results

Using the FCM clustering algorithm, the dataset U is clustered into two categories. Then the
dataset is indexed to the corresponding superpixel block Si(i = 1, 2, .....,K) to obtain the
corresponding image regions. Figure 5 shows the clustering result. In Fig. 4, the red marks
the splicing image regions, the green mark indicates the original regions.

Consider that the image splicing is a partial operation, we appoint the small image region as
the spliced region and mark it. We define

BMN ¼
Splicing region index1ð Þ if

length index1ð Þ
length index1ð Þ þ length index2ð Þ ≤0:5

Splicing region index2ð Þ otherwise
length index1ð Þ

length index1ð Þ þ length index2ð Þ > 0:5

8>><
>>: ð20Þ

Where index1 and index2 are the sets of the indices of superpixel blocks, respectively. length(•)
indicates the total number of corresponding mark blocks.

In theory, the advantages of our method include two aspects. The first, we
investigate the noise difference using two factors, noise level and noise distribution

Fig. 5 Clustering results. The red marks the splicing image regions, the green mark indicates the original regions
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probability. This may effectively avoid the failure of splicing localization caused by
single factor. The second, for the blocks with high noise level, the probability value
of the noise distribution is bigger also. Therefore, the comprehensive consideration of
noise level and noise distribution probability is equivalent to amplifying the difference
of noise. As a result, the splicing positioning accuracy is improved, so the proposed
method has better advantages compared with other methods.

3 Experimental results and performance analysis

In this section, we will evaluate and analyze the performance of the proposed method via
experiments. The experiments consist of three parts.

First, we compare the proposed method with four state-of-the-art image splicing localiza-
tion methods to demonstrate the superior detection effect of the proposed method in image
splicing localization, present the numerical result of pixel-level detection accuracy, and
quantitatively analyze the detection effect by adding noise in spliced regions.

Second, we evaluate the robustness of the proposed method for content-preserving manip-
ulations, such as JPEG compression, adding noise, blur, down-sampling and up-sampling,
gamma correction, via quantitative indicators, and compare it with other related methods.

Third, we analyze the computational complexity of the proposed method. Computational
complexity includes the calculating time spent on superpixel segmentation, noise feature
extraction, and Splicing region detection. In our experiments, we test the average running
time of proposed method and compare it with works [20, 24, 38] and [37].

The simulation experiments were performed on a computer with a 3.1 GHz CPU and 4 GB
RAM. In experiments, we investigate the splicing detection ability, robustness, detection
accuracy, and the time complexity of the proposed method, respectively; and compare with
the state-of-the-art methods.

3.1 The detection effect and the detection accuracy

For the image splicing detection algorithm, one of the most important factors to evaluation the
algorithm performance is the detection accuracy. In this section, we examine the detection
accuracy of the proposed algorithm via visually demonstration and quantitative assessment,
and compare with other related methods.

3.1.1 The visual effect of splicing detection

To evaluation the splicing detection effect of the proposed method, we test it on the Columbia
uncompressed image splicing detection evaluation dataset (Columbia IPDED) [7]. In experi-
ment, we take the original images randomly and corresponding splicing images from Colum-
bia IPDED, then detect these images using the proposed method and methods in works [20,
24, 37], and [38], respectively. Figure 4 shows four examples of the spliced tampering images
and their detection results.

In Fig. 6, the first row is the original images, and the second row is the corresponding
splicing images. The third row is the detection results of the proposed method, and the spliced
regions are marked with white. The fourth row is the detection results of the method [38], the
spliced regions are marked with green grid, and the red grids represent the regions of error
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detection. The fifth row is the detection results of the proposed method [20], and the spliced
regions are marked with green, and the red grids represent the regions of error detection. The
sixth row is the detection results of the proposed method [24], and the spliced regions are
marked with white. The seventh row is the detection results of the proposed method [37], and

Fig. 6 Splicing detection effects and their comparison
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the spliced regions are marked with white. As can be seen from Fig. 6, our method provides
exact detection regions, whereas the other methods may fail in some cases or have more false
detection. The reason is that the noise level difference between the original region and the
spliced region in this dataset is typically small; the proposed method has strong distinguishing
ability and can distinguish small noise differences, whereas the other methods cannot.

3.1.2 The detection accuracy

To quantitatively analysis the performance of the proposed method, we investigate the
detection accuracy in pixel level. For this purpose, we formalized the true positive
rate (TPR) and false positive rate (FPR) as follows.

TPR ¼ NPS−S

NTPS
� 100%

FPR ¼ NPO−S

NTPO
� 100%

Here, TPR is the rate of pixels in the spliced region that are correctly detected and FPR is the
rate of image pixels in the original region that are falsely detected. NPS − Sis the number of
pixels in the spliced regions that are correctly detected. NTPS is the total number of pixels in
splicing regions. NPO− S is the number of pixels in original regions that are detected as splicing
pixels. NTPO is the total number of pixels in the original image. An effective splicing
localization method is expected to achieve high TPR and low FPR simultaneously.

We calculate the pixel-level TPR and FPR of above testing four images, the testing results
are shown in the Table 1.

As can be seen from Table 2, the proposed method provides accurate detection, and the
detection accuracy is higher than those methods in [20, 24, 38] and [37].

3.1.3 Quantitative analysis of the detection accuracy

We take randomly 200 images from the BOSSbase database. First, for the original image with
the size 256 × 384, add zero mean Gaussian noise with the standard deviation σ, and σ changes
from 1 to 10 with step size of 1. By such a way, 10 × 200 different noise images can be
obtained. We cut a 120 × 120 square region from each noise image and splice into other image
to generate 10 different simulated image data sets with total 2000 images. Then we carry out
the proposed algorithm to compute average TPR and FPR on each data set and compared with
the works [20, 24, 38] and [37]. The results are shown in Fig. 7.

Table 2 Pixel-level accuracy and the comparative results (%)

(a) (b) (c) (d)

TPR FPR TPR FPR TPR FPR TPR FPR

The proposed method 100.0 0.26 93.6 1.4 97.0 4.5 94.5 0.14
[38] 97.0 4.1 70.2 0 93.4 5.1 80.2 1.0
[20] 16.5 59.3 69.3 3.8 60.1 32.0 32.0 2.6
[24] 7.7 17.7 17.8 12.4 12.5 31.9 0 16.3
[37] 0 100 90.2 3.4 0 100 85.9 7.3
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Figure 7 shows the average TPR and FPR for all 200 images at each noise level. In the Fig.
7, the red lines represent the proposed method, the blue lines represent the method in [38], the
green lines represent the method in [20], the black lines represent the method in [24], and the
yellow lines represent the method in [37]. Here, the solid lines denote average TPR, and the
dotted lines denote average FPR.

As can be seen from the Fig. 7, comparison with methods [20, 24, 38] and [37], not only the
proposed method has higher TPR and lower FPR, also, its detection accuracy is stable and
does not change with the change of noise standard deviation σ. Specially, when σ is small, the
TPR and FPR of the proposed method are still satisfactory.

3.2 The analysis and comparison of the robustness

For the image splicing detection algorithm, another very important factor to evaluation the
algorithm performance is the robustness. In this section, we evaluate the robustness of the
proposed method via quantitative indicators, and compare it with other related methods.

Fig. 7 The comparison of the splicing detection accuracy. a TPR rates comparison for image splicing localiza-
tion. b FPR rates comparison for image splicing localization

Fig. 8 The examples of the splicing images
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Robustness means that the algorithm is stabilized for incidental changes caused by content-
preserving manipulations, such as JPEG compression, adding noise, blur, down-sampling and
up-sampling, gamma correction, and so on.

1 2 5

(n1)

(n2)

(a1)

(a2)

(b1)

(b2)

(c1)

Fig. 9 The detection results and the comparison results for splicing images with different noise level
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(c2)

(d1)

(d2)

(e1)

(e2)

(f1)

(f2)

Fig. 9 (continued)
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3.2.1 Robustness for adding noise

To investigate the robustness of the proposed method for adding noise, we firstly
generate splicing image, then adding noise to the spliced image, and finally, test the
splicing image using the proposed method, and comparison with the methods [20, 24,
38] and [37].

In the experiment, we randomly take 4 images from the Columbia IPDED. Figure 8
show two examples of the spliced image, in which, (a) and (b) are the original images, a
bird and a man from (b) is inserted into (a) to form splicing images (c), respectively.
Then the spliced images (see Fig. 8(c)) are operated by adding zero mean Gaussian noise
with standard deviation σ=1, 2 and 5, respectively, as show in Fig. 9 row (n1) and row
(n2). Then we perform the proposed algorithm to detection the splicing regions; and

a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3

Fig. 10 The examples of the splicing images, A1, A2, B1, B2, C1, C2, D1 and D2 are original images, A3, B3, C3

and D3 are the splicing images
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results are shown in Fig. 9. In Fig. 9, images in row (a1) and row (a2) are the detection
results of the proposed method, images in row (b1) are the binary image of the row (a1),
and images in row (b2) are the binary image of the row (a2). Images in row (c1) and row
(c2) are the detection results of the method [38]. Images in row (d1) and row (d2) are the
detection results of the method [20]. Images in row (e1) and row (e2) are the detection
results of the method [24]. Images in row (f1) and row (f2) are the detection results of
the method [37]. In all the detection results, the detected splicing regions are marked
with white.

As can be seen from the Fig. 9, the proposed method provides accurate detection results for
splicing images, especially when the added noise is small. Whereas, method [20, 24, 38] and
[37] are able to provide meaningful clues about the forgeries, but the detection results are not
exact. The methods [20, 38] and [37] have higher false positives regions, and the methods [24]
deteriorate more significantly and fail to locate the spliced regions.

a4 b4 c4 d4 

Gaussian 
blur(5× 5)

Gaussian 
blur(3× 3)

Up-sampling

(20%)

Down-sampling

(20%)

Gamma 
correction(0.8)

Gamma 
correction(1.2)

Fig. 11 The detection results of the splicing images with Post-processing, A4, B4, C4 and D4 is without post-
processing operation detect results
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3.2.2 Robustness for Gaussian blur, resampling and gamma correction

In order to investigate the robustness of the proposed method for Gaussian blur, resampling
and gamma correction, we firstly generate splicing image, then process splicing images by
post-processing operations such as, Gaussian blur, resampling and gamma correction, respec-
tively, and finally, test those operated image using the proposed method, and comparison with
the methods [20, 24, 38] and [37].

In the experiment, we randomly take 8 images from the Columbia IPDED. Figure 10 shows
four examples of the spliced images, in which, A1, A2, B1, B2, C1, C2, D1 and D2 are original
images, A3, B3, C3 and D3 are the splicing images. Then we perform Gaussian blur, up-
sampling, down-sampling, and gamma correction for A3, B3, C3 and D3, respectively. We
perform the proposed algorithm to detection the splicing regions; and results are shown under
the corresponding images of the Fig. 11.

As can be seen from the Figs. 10 and 11, though the splicing images undergo post-
processing, the detection results are still satisfactory.

3.2.3 The comparison of the robustness

We also compare the proposed method with the related methods through application to the
whole Columbia uncompressed image splicing detection evaluation dataset before and after
common post-processing. The average pixel-level quantitative comparison is reported in
Table 3. As can be seen from the Table 3, comparison with the [20, 24] and [38], the proposed
method is superior in robustness. However, the proposed method also shows some limitations
in that it is not robust enough for JPEG compression. The reason is that the JPEG compression
seriously destroys the correlation of noise, this results in a significant decrease in detection
capability of the noise-based detection algorithm.

However, it can be seen from Table 3 that the [37] is less different from the TPR proposed
in this paper, but the FPR the [37] is larger. Taking TPR and FPR into account, the proposed
method has great advantages. The only deficiency is that literature [37] has a good advantage
for JPRG compression.

Table 3 Pixel-level performance comparison (%) for the Columbia uncompressed image splicing detection
valuation dataset, before and after post-processing

Method (%) NO post-
processing

JPEG
compression

Down-
sampling

Gamma
correction

Gaussian blur
(3 × 3)

85 95 20% Gamma = 1 σ = 1

The Proposed
Method

TPR 58.9 18.7 20.3 60.2 57.6 55.2
FPR 7.8 4.5 3.2 9.8 10.8 11.0

Lyu et al. [20] TPR 36.8 33.2 37.7 32.0 30.8 29.9
FPR 23.0 24.4 20.7 20.9 27.0 28.1

Zeng et al. [38] TPR 47.9 21.3 22.0 46.0 31.9 33.3
FPR 18.5 11.7 10.8 23.5 17.4 19.7

Pun et al. [24] TPR 33.9 25.4 32.1 30.3 29.8 30.2
FPR 15.6 8.7 6.5 23.5 19.8 20.4

Yao et al. [37] TPR 63.6 48.5 52.4 58.0 60.6 53.2
FPR 26.5 29.8 25.0 25.6 26.9 25.8
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3.3 Computational complexity analysis

Computational complexity includes the calculating time spent on superpixel segmentation,
noise feature extraction, and Splicing region detection. In our experiments, we test the average
running time of proposed method and works [20, 24, 38] and [37] for each image from the
Columbia IPDED. Table 4 shows the statistical average values. Due to the segmentation of
non-overlapping blocks, the method [38] is faster. The method [24] is time-consuming because
it uses multi-scale superpixel segmentation to estimate the noise level, which leads to a higher
time complexity.

4 Conclusions

In this work, we propose an effective image splicing detection method. Based on the
assumption that spliced regions and original regions tend to have different noise levels,
we perform a block-wise local noise level estimation in the questioned image. Compared
to the existing noise-based image splicing region detection methods, experimental results
on different datasets have shown that the proposed method has superior performance,
especially when the noise difference between the spliced region and the original region is
small.

However, the proposed method shows some limitations, that is, it is not robust enough for
JPEG compression, and it will invalid when the noise levels of the spliced image regions is the
same with that of the source images regions.

It is worth pointing out that we cannot expect such noise-based methods to detect all
potential forgeries in a real scenario, due to the variety of the image splicing. However, as
stated in [20], the noise-based methods can give the forensic investigator important clues about
the potential forgery when combined with other detection methods.
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