IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 26, 2019, accepted July 14, 2019, date of publication August 8, 2019, date of current version August 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2933989

EIDM: A Ethereum-Based Cloud User Identity

Management Protocol

SHANGPING WANG“1, RU PEI'”1, AND YALING ZHANG 2

I'School of Science, Xi’an University of Technology, Xi’an 710048, China

2School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

Corresponding author: Ru Pei (peirul226@126.com)

This work was supported by the National Natural Science Foundation of China under Grants No. 61572019, Key Research and

Development Program of Shaanxi (Program No. 2019GY-028).

ABSTRACT In cloud system, user identity authentication is a key problem. If design defects persist in a
cloud user identity authentication scheme, direct risks of sensitive data loss and severe information breach
will be incurred. At present, the main problem of cloud user identity management system is that it relies
too much on third-party services. Although some third-party-detachment schemes have been proposed
in recent years, most of them still rely heavily on cloud server-centered design system. In this paper,
a cloud user identity management protocol based on ethereum blockchain was proposed, followed by an
establishment of a simple credit management system framework. The new protocol is an improved version
of CIDM (Consolidated Identity Management) referred to as EIDM (Ethrerum-based Identity Management)
protocol. In the improved protocol, JWT (JSON Web Token) in OAuth 2.0 was used to introduce smart
contracts into EIDM protocol, and the credit management system was added to the system so that it can
provide a credible identity authentication protocol for cloud users and service providers. The new protocol
solves the problem of over-reliance on third parties in the existing identity management system solutions.
In the end, an analysis on the security of the new protocol showed that the EIDM protocol proposed in
this paper presents more diversified security guarantees relative to the CIDM protocol. The performance

evaluation results also indicated that the new protocol demonstrates better practicability and flexibility.

INDEX TERMS Cloud computing, identity management, blockchain, reputation, smart contract.

I. INTRODUCTION

With the development of the Internet, there are more and more
applications to make our life more convenient. At present,
people generally use a variety of mobile phone apps, and
using an app means it requires registering an account and
setting a password. This phenomenon means that people have
to remember a lot of passwords and accounts. Although there
are many web-based tools for saving passwords, such as
cookies, its security has considered. In recent years, many
apps designed by large Internet companies have launched
an application that can be registered into the app using an
account provided by another service provider. An identity
management system accompanies this phenomenon. Iden-
tity management is an integrated concept that includes pol-
icy, programming, and engineering to enable authorized
resources to define the identity of users accurately and to

The associate editor coordinating the review of this manuscript and
approving it for publication was Peter Langendorfer.

control the use of information between them [1]. The identity
management system uses an identity identifier to represent
the identity, which identifies the service provider to deter-
mine whether to authorize the user to utilize the service.
Identity management generally uses one of three types to
manage a user’s personal information: the first is a piece
of information that both the user and the service provider
know, such as setting a password; the second is a piece of
information that the user understands and identity manage-
ment. Can verify it, such as Social Security Number; the
third is for the user’s identity characteristics, such as the
user’s fingerprint, iris, etc [2]. In [3], there are three types
of clouds: 1 private cloud, two public clouds, and three
hybrid clouds. As the sharing concept has swept the world’s
dominant Internet companies, cloud product service types
have also emerged. In cloud computing for high-end applica-
tions, identity management is critical. If you do not manage
the identity, then cloud service providers or users will face
unpredictable losses. Cloud computing is a fusion of various

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

115281

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8964-5328
https://orcid.org/0000-0003-2048-8261
https://orcid.org/0000-0002-1759-6678

IEEE Access

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

technologies. Its inherent complexity is intricate, and there
are all kinds of software and hardware to interact. Now the
number of cloud computing users has been increasing all over
the world, which requires more and more different — Identity
Management Technology (IDM) to provide a secure cloud
computing environment. Unlike our traditional identity man-
agement, identity management used in cloud computing uses
more technologies, such as encryption technology to ensure
user security, and signature technology to enable the cloud
to verify the legitimacy of users. In [4], it summarizes the
following traditional identity management models (IDMs).
Scenario steps for traditional IDMs:(1). The user logs in to
the identity management (IDM) system using the username
and password; (2). User requests access to the cloud service
provider (CSP) data or applications; (3). The CSP requests
the token from the user; (4). The user requests the token
from IDM; (5). Respectively, to IDM Token, generated CSP
and the user; (6). Obtained from the user using the Token
issued to IDM CSP; (7). Received from the user CSP Token
and Token to get themselves IDM Make a comparison; (8).
If the Token comparison is successful, the user is legal. CSP
agreed to visit. Traditional identity management systems have
many drawbacks. For example, it may exist that an attacker
colludes with an IDM server and may intercept and ana-
lyze IDM messages when they exchanged between the user
and the CSP. Theft, loss, or malicious mobile code moves
into the mobile — devices to capture personal information
or cooperate with other malicious attackers [4]. Since the
introduction of blockchain technology, various researchers
have been rushing to exploit new technologies. Due to the
particularity and decentralization of the CSP’s structure, this
can give many applications a way to solve the problem of
user trust. In particular, the identity management system,
which is the first level of user contact with the application,
can make good use of blockchain technology. By 2019,
many blockchain-based identity management systems have
designed. Several applications for identity management sys-
tems based on blockchain design has the list in [S] — for
example, 1D2020, ShoCard, Uport, etc. But in the scenario
mentioned above, the only big for the average user to the
application of the machine or real identity management sys-
tems (such as banks, schools Under the identity management
system of social entities such as police stations, the guarantee
of the trust of the user identity management system has not
mentioned that in the application of cloud computing devel-
opment, the trust problem that users receive will be more than
in reality. To be complicated. The motivation of this paper is
to solve the trust problem caused by users in the application
background and the excessive centralization of the cloud
server itself in the context of cloud computing. To answer
the above questions, we use CIDM (Consolidated Identity
Management)protocol, smart contract, reputation system, and
other knowledge to propose an identity management system
based on the Ethereum blockchain, and submit an improved
CIDM protocol, and call it EIDM(Ethereum-based Identity
Management). The contibutions of this paper are as follow:

115282

1) By introducing smart contracts, our identity manage-
ment protocol enables parties in the system to perform
identity authentication steps without interfering with
each other automatically, and the reputation system can
also prevent excessive cloud service providers from
existing identity management systems.

2) Our new protocol EIDM (Ethereum-based Identity
Management) is an improvement to the CIDM (Con-
solidated Identity Management) protocol. The EIDM
protocol arranges smart contracts based on the CIDM
protocol and uses JWT as a token between the cloud
service provider and the user.

Below we will give the related wrok in Section IIthe
preliminaries in Section IIl,and give our program model and
the new protocol is based on CIDM agreement, the EIDM
agreement we made in Section IV, design details of the smart
contract will be given in Section V, Section VI is the per-
formance evaluation and security analysis, the final article
summarized and future work in the Section VIIL.

Il. RELATED WORK

A. REVIEW THE IDENTITY MANAGEMENT SYSTEM

In this section, we will review it from the traditional identity
management system to the current identity management sys-
tem, as well as the new identity management system based
on blockchain technology. It is these programs that motivate
our programs. In 2014, Issa Khalil et al. proposed the CIDM
(Consolidated Identity Management System) scheme [4],
which provides a new IDM (Identity Management System)
solution for cloud users based on traditional IDMs. Detailed
steps give in the Preliminaries section. Suguna M et al. pro-
posed an identity management program in 2017 [7], but there
are still defects. First, the solution cannot prevent man-in-
the-middle attacks, and the channel between the CSP and the
IDM system is non-secure; and we find that the protocol of
the solution is CSP-centric and does not take into account
that the CSP itself may not be wholly trusted. In all iden-
tity management systems based on blockchain-based cloud
computing, many researchers have given different solutions
to how cloud service providers integrate with blockchains.
The system in this paper uses the Cloud Data Center Repre-
sentative from [8], and the literature [8] establishes a strategic
framework for cloud data movement through the decentral-
ization of Ethereum. Cloud trust. In order to connect the cloud
with Ethereum, a carrier is needed. The solution is to use the
representative of the cloud data as a carrier to allow cloud data
to store in the Ethereum blockchain through the cloud data
center. The delegate also has an Ethereum address to interact
with the smart contract to achieve the desired result. Daniel
Augot et al. proposed in 2017 a system for authenticating
identity on the Bitcoin blockchain and user-centered [9],
which suggests an identity management system built on the
Bitcoin blockchain. It is a big step forward in this research
direction. It uses the decentralization of Bitcoin blockchain
to create a user-centric identity management system for users
and service providers to share information. The OpenStack

VOLUME 7, 2019

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

IEEE Access

cloud platform identity management solution [10] proposed
by Yapingchi et al. in 2018 has improved the problem of
too simple identity management of the platform. A patent
submitted by Hanan [11] in 2018 uses modern bio-simulation
technology to realize the identity management of cloud users.
In [12], Alex Miller mentioned using JWT as an access token
between the user and the server, but he did not specifically
apply the technique to the actual cloud user identity manage-
ment system, but only gave the user alogin DAPP. A practical
suggestion when (distributed applications). Currently, there
are a variety of identity authentication protocols that serve
users and clients, and they are also applications of identity
management systems. But they all have different security
issues. There are also several applications based on identity
management systems, such as Windows CardSpace [13].
Users can set the personal information they want to save,
such as the login account password of each app. It will
generate a Token based on this information. These tokens
can prove the identity of the user, but its defect lies in its
third party. There is also PRIME [14] in Europe: allows users
to obtain attributes from third parties without revealing any
information about themselves. But its flaw is that it needs to
rely on third parties. Once the privacy data leak, the conse-
quences are unimaginable. There is also Openld [15]: This is
a distributed authentication protocol that helps cloud users
manage their multiple digital identities to control their PII
(Personal Identification Number) sharing better. But it is
very vulnerable to phishing attacks. Finally, there is the
well-known OAuth [16], which is also a distributed protocol
to help cloud users manage their identity. In this protocol,
the user accesses the resources hosted on the resource server
through the Token obtained by the authentication server. This
article uses a JWT (JSON Web Token) [6] in OAuth2.0 [17],
which will be used as one of our Tokens to make it a credential
to authenticate cloud servers and users. However, as far as
the OAuth protocol is concerned, its flaws are also raised
in the literature [18]: including the lack of data trust and
the trust of the server. To solve the problems found in the
above scheme, an identity management scheme based on the
Ethereum smart contract was proposed in our project, and an
application of the system was completed, which apply to the
CIDM (Consolidated Identity Management) protocol. EIDM
(Ethereum-based Identity Management) protocol.

B. THE BLOCKCHAIN TECHNOLOGY IN IDENTITY
MANAGEMENT SYSTEM

The need for blockchain based identity management is par-
ticularly noticeable in the internet age,we have face manage-
ment challenges since the dawn of the internet [S]. As we
all know, there are many problems in the current identity
management system. For example, the cumbersome login
process, although there have been many third-party autho-
rized login programs, and has been widely used in recent
years. However, whether it is a third-party authorized login
or a traditional account password login, they are faced with
various network attacks. For example, we will save some

VOLUME 7, 2019

login information of the user in the database. If there is a prob-
lem in the database, the consequences will be unpredictable.
The emergence of blockchain technology can solve the above
problems for us. First, based on its own decentralized nature,
our system will not require any trusted central authority.
Moreover, the data on the blockchain is tamper-proof, which
also prevents some illegal activities. In addition,the users do
not need to provide an account number and password, and all
work can be done with the blockchain itself.

IIl. PRELIMINARIES
In this section, we will introduce the pre-knowledge used in
some of the scenarios to understand our system better.

A. ETHEREUM AND SMART CONTRACTS

Now the smart contract we use in Ethereum is the same as
the basic concept of contract in life, but the difference is that
the smart contract is a small computer program and stored in
the blockchain. Smart contracts can help solve many existing
ones. Relying on the problems of third-party platforms, ratio-
nal design of smart contracts allows us to achieve the goals
they want to make, such as crowdfunding, elections, and other
social activities, such as the verification of a bank statement,
the development of personal software, We can all use smart
contracts to achieve our goals. Blockchain technology has
received extensive attention in various academic fields since
it was applied in Bitcoin by Nakamoto [19] in 2008. Due to
its inability to be modified and decentralized, it is also sup-
ported internally by cryptography. The security has widely
used in the field of verification technology in various lines.
Ethereum [20] is also known as Blockchain 2.0 technology.
It has a more appropriate consensus mechanism than the pre-
vious Bitcoin and more extensive use of smart contract tech-
nology to bring blockchain technology from the last single
electronic currency field. Apply to various areas. Ethereum
provides us with a pleasant development environment; we can
use Ethereum and smart contracts to make our contribution in
multiple fields.

B. JWT(JSON WEB TOKEN)

The declaration in JWT (JSON Web Token) encode as a
JSON object that acts as a payload for the JSON Web Signa-
ture (JWS) structure or a plain text of the JSON Web Encryp-
tion (JWE) structure, enabling the declaration to be digitally
signed or compromised. Protection. It is a self-contained
token format (general tokens are of two types: certificate
type, distributed by the central authority; stand-alone type,
distributed by the user and distributed). This format is a good
fit for our approach. JSON Web Token (JWT) is a com-
pact declaration representation format for space-constrained
environments such as HTTP Authorization headers and URI
query parameters [6]. It is a self-contained token format. The
principle of JWT is that after server authentication, a JSON
object generates and sent back to the user. Later, when the
user communicates with the server, he must send back this
JSON object. JWT works by creating a JSON object that is

115283

IEEE Access

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

sent back to the user after the server authenticated. In the
future, when the user communicates with the server, they
send back this JSON object. The server does not save any
session (session) of the data, that is, become a stateless server,
and thus relatively easy to achieve expansion. In [7], we pro-
vided with a JWT interface and a JWT.

C. KEY PRESERVATION MECHANISM IN

ETHEREUM WALLET

A public-private key pair used to encrypt signed transactions.
To ensure that your private key not stored in plaintext in the
file (that is, anyone can read it as long as it can read it),
it is essential to encrypt it with a robust symmetric algorithm.
This file is mainly used to store the user’s public and pri-
vate key pairs. The file has the following parts: (1). Cipher:
is a symmetric encryption algorithm used to encrypt the
Ethereum private key; (2). Cipherparams: is a public parame-
ter used in symmetric encryption; (3). Ciphertext: dense Text;
(4). kdf: is a key generation function; (5). Kdfparams: Param-
eters required by the key generation function [22]. Square
Ethernet-based developer chooses protection password; you
only need to enter a password to retrieve the decryption key.
After the decryption key generated, the key is processed in
conjunction with the ciphertext and compared to the MAC.
If the result is the same as the MAC, the password is correct.

D. REPUTATION SYSTEM

Our system based on Ethereum Smart Contract Identity Man-
agement has a secure reputation system for CSP (Cloud
Service Provider) and users to record reputation values. Just
entering the system, if it is a legitimate user and a legitimate
CSP, you can get the default reputation initial value. When
the system initializes, the user and the cloud service provider
will first specify that both the reputation values are «; in
our, Ethereum based In the identity management system of
the blockchain, users, and CSPs that enter the system after
registering the Ethereum wallet are legal by default. However,
if there is a behavior in the system that provides a false token
or causes the system to operate abnormally, the reputation
value will be deducted. If the operation is regular, the rep-
utation value will not deduct.

E. CIDM
The CIDM protocol [4] proposed by Issa Khalil et al.
in 2014 has attracted the attention of many researchers in this
field. In Figurel, the protocol makes a new IDMs (identity
management system) scheme for mobile users based on the
traditional IDM protocol.

The specific steps of the protocol in this scheme are as
follows:

1) The user generates a key K and a session submission
value M (including the user’s identity information,
CSP information, IDM information, and a random
value). Then use K to encrypt this M to generate
C=EK,M),

115284

5. MKASQ

1.C=E(KM)

FIGURE 1. CIDM.

2) The user logs in to the IDMs (identity management
system) using the account registered in the system. The
user then sends C to the IDMs and requests a token
from the IDMs for the following CSP to authenticate
the account.

3) IDMs generate a token and send the Token and C
together to the CSP;

4) CSP asks the user about the security question (SQ) (this
security question can be a non-public personal question
such as asking your nickname, your primary school
name, etc.);

5) The user sends the M, K and security question
answers (ASQ) encrypted with the CSP public key and
sent to the CSP;

6) CSP decrypts with the private key to obtain the
response of ASQ and M, K. Now CSP uses K to
encrypt M to get C’, verify and compare C sent from
IDMs to see if C is equal to C’;

7) If they are similar, the user can get the service of the
CSP.

Compared with the traditional IDM protocol, the scheme has
specific improvements. For example, he can prevent duplicate
attacks, and in terms of the amount of data, it needs less data
exchange, which can help users save money. However, it still
has many flaws. For example, in [7], it is pointed out that
the scheme cannot guarantee man-in-the-middle attacks. And
when dealing with the transmission of the Security Question
Answer (ASQ), the user directly transmits the answer to the
security question (ASQ) to the CSP (Cloud Service Provider).
If the answer to the security question is not encrypted,
the transmission in plaintext must be It is not safe. Finally,
in this scenario, almost all verification work is done by CSP,
utterly dependent on the centralized CSP, and there is no
structure similar to the reputation system to supervise its
work. A wholly trusted CSP does not exist. In response to this
problem, the EIDM protocol in our system is a new protocol
based on the above protocol. We have retained a better design
in the CIDM protocol and implemented decentralized identity
authentication based on blockchain technology. The system,

VOLUME 7, 2019

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

IEEE Access

coupled with smart contracts and reputation systems, adds
flexibility and usability to our new protocols without losing
the security of previous protocols.

IV. SYSTEM MODEL

The program consists of the following entities: users,
cloud service providers, cloud data center representatives,
an Ethereum wallet, two smart contracts, and an Ethereum
blockchain. User: The user will register on the Ethereum
wallet, and then the user can deploy the smart contract with
the wallet address. The user can enter the information into
the Ethereum blockchain through the agreement and use the
smart contract to complete the identity authentication. The
cloud contains two roles: Cloud Service Provider (CSP) and
Cloud Data Center Representative (CDC) [7]. The functions
of these two roles briefly explained below. Cloud Service
Provider (CSP): The cloud service provider interacts with the
user to further determine the user’s security issues by iden-
tifying the token. Cloud Data Center Representative (CDC):
The cloud data center represents the smart contract deploy-
ment of the cloud service provider and the interaction with
the cloud service provider for verification. Together with
verifying the legitimacy of the user’s identity, in addition
to the tokens in the system (JSON Web Token), needs to
be generated by the private key signature represented by the
cloud data center. At the same time, it needs to deploy a user’s
reputation value record on the smart contract to interact with
the smart contract implemented by the user to form a reputa-
tion system belonging to the user for supervision. Ethereum
Wallet: Can be any of the popular Ethereum wallet applica-
tions, used to create Ethereum accounts for users and cloud
data center representatives, and provide public and private
key pairs, mainly to ensure the security of the wallet. Smart
Contracts: Smart contracts are an essential part of our system.
The system deployed a total of three smart contracts, one
implemented by the user and two deployed by the cloud data
center. Our smart contract mainly stores the user’s encrypted
token and the security of the cloud server. We will use the
smart contract to verify the above information and form a
reputation system to make our solution more than before.
Fair. Ethereum blockchain: Provide a credible environment
for our solutions, so that the user’s reputation value publish
in the chain, which helps cloud service users to simplify the
cumbersome authentication process in the future. Our system
architecture, as shown in Figure 2:

The framework of the EIDM system solution is as follows:

1) User U registers an account on the Ethereum wallet as
Count U(EOA: External Owner Account);

2) The Ethereum wallet returns a key pair to the user and
records it as pk, and sk,,the key pair here is mainly
used by user to manage his wallet account and not use
elsewhere;

3) System initialization, user and cloud service provider
must first specify a consistent reputation value o; the
user establishes a smart contract (SC1) and enters the
user’s necessary information, such as the login name,

VOLUME 7, 2019

11.CSP request verification to the user

8. Epke(rJWT)

- -
12 theusersend hash -
o ‘ \
. .. [[

Stheuser yser 7 SC2returnthe JWT' K P s the b > !
m-l;lg;hmg . B doud ‘:rl\:,l is
O computes

ASQ=h

Etherheum blockchain

4. The CSP register an account CountC.

5. return the pkeand ske

Ethereum Wallet

FIGURE 2. The archeticture of EIDM model.

etc., the login name will be in the initialized system.
Then the cloud service provider can generate JWT
(JSON Web Token), and the initial value of the rep-
utation, and finally need to create a random value r,
which will be used later (to be used to prevent duplicate
attacks);

4) The cloud data center representative (cloud data center
representative) register as the Count C on the Ethereum
wallet;

5) The Ethereum wallet returns to the cloud data center to
represent a key pair, and record as pk. and sk, the key
pair here is used by the cloud data center to manage its
wallet account, and will not use elsewhere;

6) The cloud data center represents the design of the
smart contract SC2 contract, and then the cloud service
provider enters the cloud data center token JWT (JSON
Web Token) and a security question. This security ques-
tion is used to ask the user’s JWT to attach the r,and
generate the hash 7 = (JWT]||r). To ensure that JWT
does not leak in the Ethereum blockchain, we will use
JWT (JSON Web Token) randomly selected in the AES
algorithm, and use the base64 to process the encrypted
JWT and record it as JWT'. Finally, the ciphertext K is
obtained by using the user’s public key PK,, to encrypt
the key K, and this K’ is stored on the SC2 together
with the encrypted JWT.

7) The cloud service provider invokes the SC2 contract,
which returns the encrypted JWT' and K’ to the user.

8) The user obtains K’ and JWT’ ,and decrypts its using his
private key SK),,the user obtains K and decrypted JIWT,
then uses the public key PK, to encrypt r and JWT, and
sends it to the CSP together;

9) The cloud service provider (CSP) decrypts the
encrypted JWT received from the user with the private
key, compares it with the original JWT, calls the com-
pareJwts() method, and if the method returns true,then
set the hash 4 = (JWT]||r) to the answer to the security
question;

115285

IEEE Access

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

10) The CSP enters the hash value into the SC2 through the
cloud center data representative;

11) The CSP initiates a verification request for the security
question to the user and informs the user of the address
of the smart contract SC2 so that we can perform the
following operations;

12) The user hashes with the encrypted JWT and r to get a
hash value /’, and enters the value into SC1; then user
calls the smart contract SC1 to obtain the address of
the smart contract SC2, and the user can read the hash
value h in SC2. Enter it into the compare ASQ() method
and compare it with h. This method will also update
the reputation value (if the error will cause the original
reputation value to decrease if the correct reputation
value will be added), then the smart contract SC2 will
The verification results are displayed in the Ethereum
blockchain.

Now we combine the specific steps in the above scheme
to give us the improved CIDM protocol we used last. The
Ethereum-based Identity Management (EIDM) protocol in
our system solution is as follows:

1) The user first registers in the Ethereum wallet,
Ethereum wallet returns the user’s pair of public and
private key pairs and records it as pk, and sk,. Then,
after logging in to the Ethereum wallet, the user deploys
a smart contract SC1 and saves the revealable neces-
sary personal information and the initialized reputation
system in the form of publication on the smart contract
SCI1. Finally, the user has to generate a random value
r for future use (the random value cannot be entered in
the smart contract) (corresponding to steps 1, 2, 3);

2) The cloud data center representative(CDC) will register
in the Ethereum wallet, and the Ethereum wallet will
return a pair of key pairs and record it as pk, and sk..
Then the CDC deploy a smart contract SC2, and collect
user information to form a JWT (the specific JWT form
will give in Section V). The JWT is encrypted with
AES, and the CDC use the key K encode the JWT,and
it can obtain C1(C; = E(K,JWT)), and use Base64 deal
with the C; to obtian the C>(C, = Base64(C)). After
the user’s public key PK,, is used for CDC encrypt the
key K, obtain the K'(K' = E(PK,,K)) Finally,CDC
publishes the K’ and C; on the SC2 (corresponding to
step 4, 5, 6 of the scheme);

3) After the above information deploys on the Ethereum
blockchain, SC2 returns C» to the user and the CSP
separately, and returns K’ to the user; the user decrypts
the K’ using his private key SK,,,and obtain the K1, then
use Base64 obtain the C{(C;’= Base64(C,)). Then the
user using K| decode the C; and obtain JWT’. Finally,
it is encrypt r and JWT’ obtain C3 = (PK., JWT'|r)
by the public key PK. of the cloud service provider,
and user sent C3 to the CSP (corresponding to steps 7,
8, 9 of the scheme);

4) The CSP decrypts the C3 with the private keyy SK..
Now compare the previous JWT’ with the previous

115286

JWT. If it is not equal, close the following steps. If the
JWT is correct, add a random value r’ after the JWT,
then hash it to get the hash h(h = h(JWT'||r")). Finally,
let this # As the future ASQ (the answer to the security
question), (corresponding to step 10 of the plan);

5) The CDC (cloud data center representative) get & and
write into the comparehashs() interface of the smart
contract SC2. The CSP will send a verification request
for the security question to the user, and then the
user will input JWT’ and r,and generated /(K = h
(JWT'||r)) and write /" into the compare ASQ() method
in SC1, and SC1 will interact with SC2 to read the hash
value, and then write the /4 in the interface of compar-
eASQ(),then user call the method. If &’ = h,the user’s
reputation value will increase. Otherwise, it reduces.
The equality of hash values also indicates that the user
passed the test for security issues. (corresponding to
steps 11, 12 of the scheme)

6) If the above verification gives, the user and the CSP
are allowed to interact (that is, the two can access each
other).

V. SMART CONTRACT AND JWT DESIGN

A. SMART CONTRACT DETAILS

In this part, we give the relationship between the smart con-
tracts involved in the scheme and the specific design and
function of the functions in each contract and finally provide
some algorithm logic. In Ethereum, each contract will have an
address that allows us to view and access data in the contract.
The deployment contract and design of each operator will also
cost the corresponding Gas to reduce the cost and load of
the blockchain. We also need to design efficient smart con-
tracts. First, we give the relationship between the contracts,
as shown in Figure 3: The user deploys Smart Contract SC1,
which deploys Smart Contract SC2, where SCI is imple-
mented using the user’s Ethereum wallet address, and SC2 is
deployed separately with CSP’s Ethereum wallet address and
is publicly visible on the Ethereum blockchain. SC1 and
SC2 also need to interact. SC1 needs to read some data input
in SC2 on the Ethereum blockchain, which is convenient
for us to use later. In the following, we will give a detailed
description of the specific functions of the methods in each
contract and the interpretation of some parameters.

1) The SC1 deployed by the user called the Users contract;
Its primary function is first to store the user’s personal
information, and then to give the user an initial repu-
tation system (including the initial value of the repu-
tation); finally, you need to design an interface for the
previous ciphertext C1 and a verification function. The
most important functions of the contract is as follows:
First, define a structure User to store the user’s nec-
essary information, including the user name and other
information equivalent to the payload in the JWT, and
the user’s reputation value. In this system, the user’s
reputation value « just entered is defaulted (to achieve

VOLUME 7, 2019

IEEE Access

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

Contract 1 Users Contract

pragma solidity A0.4.19;
contract Users{
struct User{
}
address owner;
uint public Rpt=60;
uint numUsers;
mapping(uint= User) users;
mapping(uint = bytes) asqs;
modifier ownerOnly(){
require (msg.sender == owner);
event Userinfo(uint userID,bytes32 myASQ,
address owner,uint Rpt);
function newUser(string name,uint iat,uint index,
bytes32 ASQ,bytes32 myASQ)
public returns (uint userID){
function compare ASQ(bytes a,bytes b)
public returns(bool)

Ethereum
blodkchain

FIGURE 3. The relationship between contracts.

the contract) We set « is 60 at here, this value can
change according to the specific situation), after the
compareASQ() method is executed, the value will
change. If the two ASQs are not equal, the reputation
value will decrease, we will put the value Published
in Ethereum, through the event Userinfo () we can
view the user index UserID, the user’s wallet address
and other information corresponding to the value on
the corresponding Ethereum website. Use the modifier
onlyowner() to restrict the contract to only be used
by one of the user’s wallet addresses. In the compar-
eASQ() method, since we can’t directly compare two
bytes, we use the keccak() method in solidity to calcu-
late the hash value of the two to achieve the comparison
of the two values. The UserRPT() method can return
the current user’s reputation value. Finally, the kill()
method (This function is not given in this article,but

VOLUME 7, 2019

you can see the detailed code in my github.!)can be
used by the user to destroy the contract in person. This
method restricts the wallet address of the deployment
contract to execute the contract.

SC2 deployed by CSP called Csp contract; The main
function of this contract is that the user token stor-
age (encrypted) is required first; the establishment and
verification of the security problem; the second is the
user’s reputation value determination condition; the
need to store K’, C2, and return The user reputation
value and the security question answer (ASQ) interface.
The specific form of the contract is as follows: The rep-
utation value « of the cloud service provider (to achieve
the contract, we set the o contract to 60, the value
can also change according to the specific situation).
The Csps contract and the previously deployed Users
contract have the same essential functions, and the CSP
structure is different. We need to store K’ which is
encrypted with RSA by RSA. We record K’ as keys,
and record the encrypted JWT as enJwt. Also, since
we consider more than one CSP, We give its index value
index, as well as the hash value and the reputation value
Rpt. As mentioned earlier, to minimize the cost, we can
process the encrypted ciphertext to 32 bytes, which is
convenient for us to implement the latter methods. The
primary purpose of the modifier and kill() is also to
make the contract available only to the CSP and only
to use the Ethereum wallet that deploys the contract.

2)

B. THE DESIGN OF JWT
The form of JWT is as follows:

In the official document of JWT (JSON Web Token), there
is an introduction to the above information. Here we mainly
explain the signature field. The meaning of the HMAC-
SHA256 brackets means that they are base64 encoded in
the base64url of the package in Node.js, and then on the
opposite side. Two fields are HMACSHA256 signature algo-
rithm with the secret. This secret place above the private key
that Ethereum returns to the CSP (cloud service provider)
(since the HMACSHA?256 algorithm use for this information,
we will not worry about it leaking). Note that to prevent
third-party interception of the access token when transmitting
the access token, our JWT sent in encrypted form in the sys-
tem. Finally, we can use the JWT encryption format formed
on the JWT official website [21] as an experiment in our later
period.

VI. PERFORMANCE AND SECURTY ANALYSIS

A. ENVIRONMENTAL CONFIGURATION

For the base hardware,we use a HP Pro 3380 MT 32-bit
Linux OS,Inter Core i5-3470@3.2GZ x4,4GB Memory with
a AMD CEDAR GPU.Our test templates built on the Alibaba
Cloud lightweight application server [24]. Fig 4 is a simply
and test login page on my phone.

1 https://github.com/flower-pp/ethereum-IDM

115287

IEEE Access

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

Contract 2 Csps Contract
pragma solidity A0.4.19;
contract Csps{

struct CSP{

uint index;

uint myRpt;

bytes keys;

bytes enJwt;

bytes myhash;

}

address owner;

uint numCsps;

uint cspsRpt = 60;

mapping(uint =CSP)csps;

modifier ownerOnly(){
require (msg.sender == owner);

—>

}

event eventinfo(uint cspID,bytes32 keys,
bytes enJwt,bytes myhashs,uint Rpt);
function newCsp(uint index,uint myRpt,bytes keys,
bytes enJwt,bytes myhash)
public returns (uint cspID){
cspID=numCsps—++;
csps[cspID] = CSP(index,myRpt.keys,
enJwt,myhash);
}
function comparehashs(uint cspID,bytes a,bytes b)
public returns(bool){
CSP storage f = csps[cspID]
if(keccak256(a)= keccak(b)){

f.myRpt++
return true
1
else{
f. myRpt——
return false;
1
1
}
® 4710311164 M
User Login
user name:[:
your address: :]
L —
O —

FIGURE 4. A test web in my smart phone.

Table 1 shows the software used in our experiments and
their corresponding version numbers and usages:

In the experiment, we assume that an existing user and
a CSP (cloud service provider) are involved in our system,

115288

JWT
Header:{
“alg” : “HS256”,
“type” : “jwt”
} Playoad:{
“iss” : “csp”’,
“userID” : “0”,

“name” : “pp”,
“at” : 1545778800,//unix timestamp
“exp” : 1545951600//unix timestamp
} Signature: {
HACSHA256(base64url
(header)+“.”” + bse64url(payload),secret)
}

TABLE 1. Software and version.

Software Version Use
Ubuntu 16.04LTS oS
Metamask 6.0.1 Ethereum wallet
Remix 0.7.5 Solidity IDE
OpenSSL 1.0.2p encrypt tool
Node.js 6.16.0 The back-end language
Web3.js[25] 1.0.0 API

but in practice, our system also satisfies multiple users and
multiple CSPs participating in our system. Each user and CSP
only needs to register an Ethereum wallet, and only the CSP’s
private key needs to used in our system. The OpenSSL library
provides us with AES and RSA APIs. We can use Ubuntu’s
terminal (Shell command line) to encrypt and decrypt data.
Our AES here selects the CBC mode; the key is 32 bytes,
the actual size of the ciphertext after encrypting JWT (JSON
Web Token) is 128 bytes; the private key length of RSA is
512 bytes; JWT 1is on the official website [21] generated.
The actual size is 177 bytes (the final JWT form will give
in the appendix); the user’s random value is 4 bytes. To make
the cost as small as possible, the more extensive data in the
smart contract is processed and reduced to 32 bytes, and
the ciphertext is converted by base64, and then the existing
tool is used to add the prefix Ox to Bytes. In the form so
that we can store this data on a smart contract. Finally, our
contracts deploy on the Ethereum test site Rinkeby [26], and
the specific contract address will give in our appendix.

B. THE COST OF OUR TEST
Two smart contracts used in our system.In addition,we give
the current Ethereum capitalization is 1 ETH = $219.02. 2
The user deploys the first contract User. It costs 477901 gas
(0.000478ETH), which is 0.07USD. The cost of other
functions shown in Table 2.

2https :/letherscan.io/chart/etherprice

VOLUME 7, 2019

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

IEEE Access

TABLE 2. The cost for user.

Function Used Gas(wei) | Used Ether | Used USD
newUser() 167047 0.000167 0.02
compareASQ() 30684 0.000031 0.00
UserRPT() 27218 0.000027 0.00
kill() 21700 0.000022 0.00
TABLE 3. The cost for CSP.
Function Used Gas(wei) | Used Ether | Used USD
newCSP() 129354 0.000129 0.02
comparehashs() 30960 0.000031 0.00
kill() 21678 0.000022 0.00

In Table 2, we can see that the newUser() method consumes
a total of 167047 gas, which is equivalent to one-third of
the deployment contract, but the following compare ASQ(),
UserRPT() and kill() methods only cost a small amount
of gas., which are 30684 gas, 27218 gas, and 21700 gas,
respectively, converted to 0.000031 ETH, 0.000027 ETH,
and 0.000022 ETH, respectively. Next, the second contract
CSPs deployed by the cloud data center representatives. They
respectively cost 462729 gas to synthesize ETH to 0.00463,
and ETH to USD is 0.07 USD. In Table 3, we can know
the cost of each method in the two contracts, newCsp()
consumes 129354 gas (0.000129 ETH), converted to USD
0.02 USD, which is equivalent to one-third of the deployment
contract, the latter two The methods compearehashs() and
kill() also cost only 30960 gas (0.000031 ETH) and 21678 gas
(0.000022 ETH), respectively.

C. PERFORMANCE COMPARISON
Table 4 gives a comparison of the data exchange between
the previous CIDM protocol and our new protocol. The data
exchange volume of CIDM in Table 4 comes from the liter-
ature [4]. Finally, our new protocol allows users to interact
with CSPs with less data interaction. In EIDM, users need to
enter information in our system. The two hash values entered
by the user are 64 bytes, plus the reputation value, the ID and
time are 70 bytes, and the received data size is 64 bytes, so the
total It requires 134 bytes of data exchange, which is 10 bytes
less than the previous CIDM. The data exchange volume of
the EIDM system is 101 bytes, and finally, the data exchange
volume of the cloud service provider is 162 bytes. The EIDM
protocol replaces the complex program implementation with
a smart contract, and it also shows its superiority in terms of
data exchange, which can further save data traffic for users.
In our EIDM protocol, since the security of the user and
CSP key is based on the security of the Ethereum wallet
itself, in the aforementioned internal mechanism of the wallet,
we can also prove that it is against man-in-the-middle attacks,
as well as other attacks.. Now our main concern is the possible

VOLUME 7, 2019

TABLE 4. Performance comparison results between CIDM and EIDM.

CIDM OUR EIDM
user | cidm | csp | user | eidm | csp
Send(bytes) 104 66 40 70 37 130
Receive(bytes) 70 37 130 64 64 32
Total(bytes) 174 103 170 | 134 101 162

TABLE 5. Summary of experimental results.

IDM | CIDM | OUR EIDM

IDM server Yes No No
compromise
Smanphqne Yes No)
compromise
. Networ‘k Yes No No
interception

Rely on
IDM server Yes Yes No

Rely on Yes Yes No

User

attacks within our system. In [4], we consider the external
IDM server conpromise. In our EIDM system, the IDM server
is the Ethereum blockchain itself. Suppose we put a wrong
code into a smart contract, and the contract will detect the
error at runtime. Moreover, even if you put a malicious user
code, because of the reputation system of our system set-
tings, if the user will affect its credibility, this behavior is
not worth the loss. Similarly, if a CSP also puts malicious
code into it, it will affect its own credibility. In the case of
Newtwork traffic interception, since all of our information is
encrypted in transmission, even if a malicious intermediary
gets the data, the real data cannot be obtained. Then there
is the case of Smart compromise. Since the mobile browser
does not support the Ethereum wallet plug-in, the work on
the mobile side is still unknown. However, we have already
done a test interface, you can also see this interface in the
phone. Then there is the situation of over-reliance on the IDM
server system. Since our system is based on the blockchain, its
own decentralization means that our system does not rely too
much on the IDM server. Similarly, it does not rely too much
on users. of. This guarantees the rights of users and protects
the rights of CSP. In Table 5, we summarize the above and the
comparison between our scheme and the CIDM scheme and
the traditional IDMs scheme.At last,we give the cost of time
in Fig 5.

D. SECURITY ANAYSIS
1) Anonymity and privacy: First of all, our users store
virtual identities in our system, so there is no need
to worry about the leakage of the user’s true identity.
Furthermore, the tokens, keys, and other information
in our system are encrypted and transmitted, and RSA

115289

IEEE Access

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

5000
— CIDM
4500 & EIDM

4000

8

3000

the cost of times(ms)
g

2000 K

1500 A

1000
o 2 4 & & 10 12 14 16 18 20

The numbers of usersicsps

FIGURE 5. The cost of time and compare with CIDM.

and AES are used to protect users and cloud service
providers from providing sufficient privacy.

2) Preventing replay attacks: When designing the
CIDM protocol, the designer has devised a way to
avoid replay attacks by letting the user take a random
number 7 so that the same user cannot use the same ran-
dom number to enter our system. The random number
will change, and this measure can well protect against
replay attacks.

3) Prevent users from collusion attacks: Assuming that
User A and User B collude to attack our system, CSP
(Cloud Service Provider) still sends them the public key
PK. and K, but since they do not know the private key
SK., they will not get the key K, so that the token is not
available, then our system is still safe.

4) Prevent the single point of failure caused by CSP
itself: Assume that the CSP is faulty, then the system
will directly exit the system in the smart contract, which
will not cause loss to our system, or the user can
immediately execute the smart contract SC1. The kill()
method is used to destroy the code, which also ensures
that your rights are not affected.

VIl. CONCLUSION AND FUTURE WORK

The motivation for establishing an identity management sys-
tem based on Ethereum’s smart contracts is to solve the prob-
lem of excessive third-party-centricity of existing identity
management systems, and our new solution enables users and
CSPs to supervise and manage the system through Ethereum
Smart Contracts jointly. In the new scheme of this paper,
the latest technology of blockchain used as a powerful tool
in the user authentication step in the identity management
system, which makes the blockchain technology help us to
supervise each other and jointly promote the security of the
network. In our EIDM protocol, the privacy of both users and
CSPs also considered, and users are more flexible, and the
interaction between users and CSPs becomes fairer. With the
development of blockchain technology, Ethereum technology
will continue to grow. Our solution is to let cloud users real-
ize their identity management through Ethereum technology.
The reason why the Ethereum blockchain is used to replace
the previous IDMs system is because our system has the
Ethereum blockchain record of making the results of our
operations transparent,and through JWT and cryptography

115290

knowledge, we make our The operation process is rela-
tively private compared to the previous one, which respects
cloud users and appreciates cloud service, providers. On the
other hand, users and cloud service providers can transmit
data themselves through smart contracts, and the flexibility
between the two is also improved. In our experiments, we can
also see that the cost of smart contracts is not very high, it has
individual practicability, and our new protocol also has less
data transmission than the previous protocol and improved
the earlier protocol of data transmission.

In a future work, our program is still facing some of
these problems. First, because Ethereum mining takes time,
our system needs to improve the speed of user login. Also,
we should use more advance encryption methods to increase
the speed of encryption and decryption of user information.
Finally, since the protocol of the EIDM system is tested
based on the CIDM protocol, our system can also be used on
smartphones, and only open any browser application in the
smartphone to input our test address [24].

You can see the interface of the system, but since the
Ethereum wallet is temporarily not installed on the plug-in
of the smartphone browser, there is still a lot of work to be
done on the interactive function of the smartphone.

APPENDIXES
You can find those address in the Rinkeby Testnet of
Ethereum.
CDC Ethereum Wallet Address:
0x1c1c265f4b4da8247e8df5¢c0ef07c757ee07b3bb
User’s Ethereum Wallet Address:
0x0A04B00C07ADDC1d24D463074A5BF7897A0a9ESf
Csps contract address:
0x316a7a3C4760E5d345bC9046Bbe32a07075cB518
Users contract address:
0x06ba741090dc310f587a86841c31448375391002
Signature contract address:
0x48alceb52f6e19076ae1273d30bc4025¢a527008

ACKNOWLEDGMENT
Thanks also go to the anonymous reviewer for their userful
comments.

REFERENCES

[1] R. Shaikh and M. Sasikumar, “‘Identity management in cloud computing,”
Int. J. Comput. Appl., vol. 63, no. 11, 2013.

[2] P. Angin, B. Bhargava, R. Ranchal, N. Singh, M. Linderman,
L. B. Othmane, and L. Lilien, “An entity-centric approach for privacy
and identity management in cloud computing,” in Proc. 29th IEEE Symp.
Reliable Distrib. Syst., Oct./Nov. 2010, pp. 177-183.

[3] L. Yan, C.Rong, and G. Zhao, “Strengthen cloud computing security with
federal identity management using hierarchical identity-based cryptogra-
phy,” in Proc. IEEE Int. Conf. Cloud Comput. Berlin, Germany: Springer,
2009, pp. 167-177.

[4] I. Khalil, A. Khreishah, and M. Azeem, “Consolidated identity manage-
ment system for secure mobile cloud computing,” Comput. Netw., vol. 65,
no. 2, pp. 99-110, Jun. 2014.

[5] O. Acobovitz, “Blockchain for identity management,” Dept. Comput. Sci.,
Lynne William Frankel Center Comput. Sci., Ben-Gurion Univ., Eilat,
Israel, Tech. Rep., 2016, vol. 1, p. 9.

VOLUME 7, 2019

S. Wang et al.: EIDM: A Ethereum-Based Cloud User Identity Management Protocol

IEEE Access

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

[19]
[20]

[21]
[22]

[23]

[24]

M. Jones, B. Campbell, and C. Mortimore, JSON Web Token (JWT)
Profile for OAuth 2.0 Client Authentication and Authorization Grants,
document RFC 7523, 2015.

M. Suguna, R. Anusia, S. M. Shalinie, and S. Deepti, “Secure identity
management in mobile cloud computing,” in Proc. Int. Conf. Nextgen
Electron. Technol., Silicon Softw. (ICNETS2), Mar. 2017, pp. 42-45.

S. Kirkman and R. Newman, “A cloud data movement policy architecture
based on smart contracts and the ethereum blockchain,” in Proc. IEEE Int.
Conf. Cloud Eng. (IC2E), Apr. 2018, pp. 371-377.

D. Augot, H. Chabanne, T. Chenevier, W. George, and L. Lambert,
“A user-centric system for verified identities on the bitcoin blockchain,” in
Data Privacy Management, Cryptocurrencies and Blockchain Technology.
Cham, Switzerland: Springer, 2017, pp. 390-407.

Y. Chi, G. Li, Y. Chen, and X. Fan, “Design and implementation of
OpenStack cloud platform identity management scheme,” in Proc. Int.
Conf. Comput., Inf. Telecommun. Syst. (CITS), Jul. 2018, pp. 1-5.

J. K. Hanna, “Systems and methods for an incremental, reversible
and decentralized biometric identity = management system,”
U.S. Patent 10078 758 B1, Sep. 18, 2018.

A. Miller. (2018). The Author Gives a Lot of New Ideas on the Identity
Management System Field. Never Use Passwords Again With Ethereum
and Metamask. [Online]. Available: https://hackernoon.com/never-use
-passwords-again-with-ethereum-and-metamask-b61c7e409f0d?gi=
6defOcb49a0e#4acdifeb?

A.W. Alrodhan and J. C. Mitchell, “Improving the security of CardSpace,”
EURASIP J. Inf. Secur., vol. 2009, Mar. 2009, Art. no. 167216.

PRIME. (2010). Privacy Identity Management for European. [Online].
Available: https://www.prime-project.eu/

OPENID. (2010). This is a Distributed Authentication Protocal. [Online].
Available: http://openid.net/

OAuth. (2007). This is a Distributed Authentication Protocal That Help
Cloud Users Manage Identities. [Online]. Available: https://oauth.net/
OAuth 2.0. (2011). OAuth 2.0 is the Industry-Standard Protocol Forautho-
rization. [Online]. Available: https://www.prime-project.eu/

K. Khash. Four Attacks on OAuth-How to Secure Your OAuth
Implementation. The Author Gives Many Examples That are Close
to Our Lives and Illustrates the Shortcomings of This Agreement.
Accessed: 2014. [Online]. Available: https://www.sans.org/reading-
room/whitepapers/application/paper/33644

S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic CashSystem.
[Online]. Available: https://bitco.in/pdf/bitcoin.pdf

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1-32, Apr. 2014.
JWT. Accessed: 2015. [Online]. Available: https://jwt.io/

C. Dannen, Introducing Ethereum and Solidity. New York, NY, USA:
Apress, 2017, pp. 89-110.

(2019). The Ethereum Identity Management Model. [Online]. Available:
https://github.com/flower-pp/ethereum-IDM

(2019). This is a Test Model Web. You Can See it on a PC or a Smart Phone.
[Online]. Available: http://47.103.11.164

VOLUME 7, 2019

[25] (2014). Web3.js.It is a New Ethereum JavaScript API Which Connects

to the Generic JSON RPC Spec. [Online]. Available: https://github.
com/ethereum/web3.js

[26] Rinkeby. An Ethereum Test Net. You Can Check the All Transitions If

You Can Kown Every Transaction’s Address. Accessed: 2019. [Online].
Available: https:/rinkeby.etherscan.io

SHANGPING WANG received the B.S. degree in
mathematics form the Xi’an University of Tech-
nology, Xi’an, China, in 1982, the M.S. degree
in applied mathematics from Xi’an Jiaotong Uni-
versity, Xi’an, in 1989, and the Ph.D. degree in
cryptology from Xidian University, Xi’an. He is
currently a Professor with the Xi’an University of
Technology. His current research interests include
cryptograph and information security.

RU PEI received the B.S. degree in mathematics
form the Baoji University of Arts and Sciences,
Baoji, China, in 2017. She is currently pursuing the
M.S. degree with the Xi’an University of Technol-
ogy, Xi’an, China. Her current research interests
include information security and blockchain tech-
nology.

YALING ZHANG received the B.S. degree in com-
puter science from Northwest University, Xi’an,
China, in 1988, the M.S. degree in computer sci-
ence, and the Ph.D. degree in mechanism electron
engineering from the Xi’an University of Technol-
ogy, Xi’an, in 2001 and 2008, respectively. She is
currently a Professor with the Xi’an University of
Technology. Her current research interests include
cryptograph and network security.

115291

	INTRODUCTION
	RELATED WORK
	REVIEW THE IDENTITY MANAGEMENT SYSTEM
	THE BLOCKCHAIN TECHNOLOGY IN IDENTITY MANAGEMENT SYSTEM

	PRELIMINARIES
	ETHEREUM AND SMART CONTRACTS
	JWT(JSON WEB TOKEN)
	KEY PRESERVATION MECHANISM IN ETHEREUM WALLET
	REPUTATION SYSTEM
	CIDM

	SYSTEM MODEL
	SMART CONTRACT AND JWT DESIGN
	SMART CONTRACT DETAILS
	THE DESIGN OF JWT

	PERFORMANCE AND SECURTY ANALYSIS
	ENVIRONMENTAL CONFIGURATION
	THE COST OF OUR TEST
	PERFORMANCE COMPARISON
	SECURITY ANAYSIS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	SHANGPING WANG
	RU PEI
	YALING ZHANG

