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Abstract: In internal combustion engines (ICEs), the frictional performance of ring-liner conjunction
(RLC) has drawn special attention because it greatly affects the fuel efficiency of the engines. In recent
years, surface texture (i.e., micro dimples or grooves) has emerged as a promising approach to
improve the frictional performance of RLC. However, most current studies on surface textured RLC
were conducted by assuming that the liner was ideally circular and the lubrication condition was
either fully flooded or starved. In this study, to evaluate the frictional characteristics of an RLC
with surface texture on the ring, a numerical model of lubrication is presented by considering the
liner deformation, as well as the coexistence of the fully flooded and staved lubrication conditions
in an engine cycle. On this basis, the frictional properties of a surface textured RLC are analyzed,
and the impacts of the liner deformation and temperature on the friction-reducing effect of the surface
texture are also evaluated. The results show that the surface texture on the ring can effectively reduce
the power dissipation and friction dissipation of an RLC, and the reductions vary with the liner
temperature and deformation. Large reductions in the power dissipation and friction dissipation of
an RLC are obtained when the liner temperature is low or the liner deformation is small.

Keywords: surface texture; liner deformation; friction; power dissipation; temperature; mixed lubrication

1. Introduction

In recent years, surface texture has been regarded as an effective approach to improve the
frictional performance of the ring-liner conjunction (RLC) in internal combustion engines (ICEs) [1–4].
However, for the RLC in ICEs, actual working conditions are very complex and greatly affect frictional
performance [5,6]. Therefore, to understand the friction-reducing mechanism of the surface texture on
the ring/liner more deeply, the investigation into the frictional characteristics of surface textured RLC
under complex working conditions has attracted more and more attention.

During the working process of an RLC, hydrodynamic and mixed regimes of lubrication usually
coexist in an engine cycle [5,7]. Hence, the hydrodynamic and mixed regimes of lubrication in
the engine cycle of an RLC must be considered. Etsion et al. [8,9] conducted some research works
on the friction-reducing effect of the dimple textured ring. The partially dimple textured ring
was observed to have excellent frictional properties under the hydrodynamic lubrication regime.
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Caciu et al. [10] assessed the frictional characteristics of the dimple/groove textured liner. Optimal
frictional properties were observed when a suitable shape and distribution were chosen for the
dimple/groove. Noutary et al. [11] analyzed the oil film pressure of an RLC with different groove
shapes, depths, and densities by using a multigrid code method. Groove depth and density were
observed to have great influence on load-carrying capacity. Ezhilmaran et al. [12] textured laser
dimples on the ring by using YAG (yttrium aluminum garnet) system. The frictional properties
and oil film distribution in a textured RLC were studied experimentally and theoretically. However,
these works [8–12] were mainly focused on the frictional properties of the textured RLC under the
hydrodynamic regime of lubrication. The frictional properties of the textured RLC under the mixed
regime of lubrication need to be further understood.

Usman et al. [13] developed a 2D mathematical model to simulate the frictional characteristics
of the textured RLC under the mixed regime of lubrication by considering the realistic rheology
properties of lubricant. The influence of surface texture on the frictional behaviors of an RLC was
studied under warm operation conditions. Morris et al. [14] presented a combined model to predict
the frictional behaviors of a laser textured RLC at piston top dead center (the regime of lubrication was
mixed). The friction reduction of the RLC after surface texturing was negligible when the depth of
surface texture was small. Yin et al. [15] assessed the mixed lubrication behaviors of a textured RLC
under different combustion modes. The combustion mode showed a significant effect on lubrication
performance. Liu et al. [16] and Söderfjäll et al. [17] proposed a mass conservative lubrication model for
a dimple textured liner with a consideration of asperity contact under the mixed regime of lubrication.
Based on the model, the impact of dimple geometry on the friction and power dissipation of an RLC
was studied. In these works [13–17], the lubrication condition of the RLC was assumed to be fully
flooded, and an isothermal condition was also considered. By considering that the oil film thermal
effect caused by friction and the prevalent starved lubrication condition in an RLC, Meng and his
coworkers [18–20] studied the effects of surface texture on the frictional characteristics of an RLC.
Their results showed that surface texture can reduce the friction of an RLC significantly, even if the
lubrication condition was starved. In the works of Meng et al. [18–20], an ideal circular liner was
considered to evaluate the frictional characteristics of a surface textured RLC.

It is clear that a liner is not ideally circular, and two different conditions of lubrication
(i.e., fully flooded and starved) usually coexist in an RLC engine cycle [21–23]. This is because
liner deformation at assembly and service stages is inevitable [24], and the lubricant supplied to the ring
is time-varying and usually insufficient at some points of the engine cycle [25]. Therefore, this study
provides a comprehensive mathematical model to analyze the frictional characteristics of a groove
textured RLC by considering liner deformation and the coexistence of the two different lubrication
conditions in an engine cycle. Based on the model, the frictional characteristics of a groove textured
RLC were analyzed for different liner deformations. Furthermore, different liner temperatures were
also considered to evaluate the friction-reducing effect of ring grooves because liner temperature has
great influence on lubricant viscosity [26], and different values of lubricant viscosity will result in
different frictional behaviors.

2. Mathematical Modeling

2.1. Geometrical Modeling

Micro grooves are considered to be textured at the both ends of a ring because of its significant
friction-reducing effect [13]. Figure 1 and Table 1 show the schematic diagram and geometry
parameters of an RLC with micro grooves. To describe the geometry and distribution of the grooves,
three dimensionless parameters are defined and written as [13]:

χ = bt/b, (1)

s = rg/rc, (2)
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ε = hg/rg, (3)

where χ is the area ratio of groove and χ = 0.6 is adopted in the analysis [13]. bt is width of
textured zone in the axial direction, b is the width of ring, s is the area density of groove, and ε
is the depth-to-width ratio of groove. According to previous research works [13,16], small values
of the area density s (i.e., s = 0.25) and depth-to-width ε (i.e., ε = 0.1) were adopted in the current
study to maximally improve the frictional characteristics. The corresponding dimensional width of
groove rg, width between two adjacent grooves rc, and maximum depth of groove hg were 12.5, 50,
and 1.25 µm respectively.
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Figure 1. Schematic diagrams of the groove textured ring and ring-liner conjunction (RLC): (a) Groove
textured ring; (b) groove textured RLC.

Table 1. Geometry parameters of the RLC.

Parameter Value Unit

Stroke length, ls 90 mm
Axial width of ring, b 1 mm
Thickness of ring, ar 3.5 mm

Nominal radius of liner, r 42 mm
Young’s modulus of ring, E1 250 GPa
Young’s modulus of liner, E2 120 GPa

Poisson’s ratio of ring, τ1 0.3 -
Poisson’s ratio of liner, τ2 0.3 -

Surface roughness of ring, σ1 0.42 µm
Surface roughness of liner, σ2 0.48 µm
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In this study, liner deformation was considered. To describe the radius variation of the deformed
liner from its ideal circular shape ∆Rcir, a Fourier series was used. The Fourier series can be written
as follows [27,28]:

∆Rcir =
N∑

n=0

[An cos(nϕ) + Bn sin(nϕ)], (4)

To simplify the calculation, Equation (4) can be expressed as follows [28]:

∆Rcir =
N∑

n=0

{∆cn

2
cos[n(ϕ−ϕn)]

}
, (5)

with

∆cn = 2
√

A2
n + B2

n, (6)

ϕn =
1
n

arctan
Bn

An
, (7)

where n is the order of liner deformation, N is the maximum order of liner deformation, ϕ is the
angular position in the circumferential direction, ϕn is the angle of maximum liner deformation in
the circumferential direction for the order n, ∆cn is the maximum liner deformation for the order n,
and An and Bn are the Fourier coefficients for the order n.

Therefore, the variation of liner radius from its inscribed circle ∆R can be written as [21,28,29]:

∆R = ∆Rcir − ∆Rmin, (8)

where ∆Rmin is the minimum variation in the liner radius.
In generally, ∆Rcir can be modeled accurately by using a Fourier series with first few orders (i.e., n =

0, 1, 2, 3, 4 or N = 4) [27]. However, under working conditions, due to tension force and backpressure,
the ring also elastically deforms to accommodate the radial radius variation of the liner when the
liner is deformed, and the clearance between the ring and liner caused by the liner deformation
after considering the elastic deformation of ring is mainly the outcome of the liner deformation with
n = 4 [21]. Therefore, only n = 4 was considered in this and previous studies [21,25,28–30]. Figure 2
shows the deformed liner with n = 4.Energies 2019, 9, x FOR PEER REVIEW 5 of 22 
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Figure 2. Schematic diagram of the deformed liner for any cross section in the axial direction.

It should be noted that the maximum liner deformation ∆cn (or the values of the Fourier coefficients
An and Bn) must be known in advance to model the liner deformation. Generally, the values of
An and Bn can be obtained from a Fourier analysis on the measured profile of the deformed liner
or on the simulated profile of the deformed liner (e.g., finite element simulation) [27]. However,
the measurement and finite element simulation on the deformed liner profile is relatively complex
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and time consuming [27,28]. Furthermore, according to the work of Zhu et al. [31], for the liner
deformation with n = 4, there is a small variation of the profile in the axial direction under some
conditions. Therefore, in the simulation of liner deformation by using the Fourier series, it is usually
assumed that the profile shape of the deformed liner remains the same in the axial direction for analysis
convenience and time saving [22,25,29]. Hence, the profile of the deformed liner can be modeled
by a Fourier series with a given value of ∆cn [21,25,28–30]. In this study, according to the previous
works [28,30], ∆cn with a maximum value of 30 µm was considered for n = 4.

In general, ring elastic deformation reduces the clearance between the ring and liner caused by
liner deformation. Therefore, a clearance in the RLC caused by a 4th order deformation of liner hliner

can be expressed as [21,25,29]:
hliner= ∆R|n=4 − ∆δ (9)

where ∆δ is the elastic deformation of the ring when the order n is 4, and it can be written as [25,29]:

∆δ =
3
(
Ft + Fbp

)
r2(2r− ar)

2

225E1ba3
r

(10)

where ar is the axial thickness of ring, Ft and Fbp are the tension force and back pressure of ring,
E1 represents the Young’s modulus of ring, and r is the nominal liner radius.

2.2. Governing Equation

For the groove textured RLC, the average Reynolds equation and the JFO
(Jacoboson–Floberg–Olsson) cavitation boundary condition are combined to analyze frictional behaviors.
It is written as follows [32]:

∂
∂x

(
φx
ρh3

µ

∂p
∂x

)
+ ∂

∂y

(
φy
ρh3

µ

∂p
∂y

)
= 6Uφc

∂[(1−ε)ρh]
∂x + 6Uσ∂[(1−ε)ρφs]

∂x + 12φc
∂[(1−ε)ρh]

∂t (11)

with 
p > pc ⇒ ε = 0
ε > 0⇒ p = pc
0 ≤ ε ≤ 1

(12)

where ρ is the density of lubricant, µ is the lubricant viscosity, p is the lubricant pressure, t is the time,
σ is the composite roughness of the RLC, U is the ring velocity, and h is the thickness of lubricant
between the groove textured ring and liner. ε is the cavity fraction, and more discussion on the cavity
fraction ε is provided in the work of Gu et al. [32]. pc is the cavity pressure, and it was assumed
to be zero according to the reported works [2,20,23]. φx and φy are the pressure flow coefficients
in the x and y directions, φs and φc are the coefficients of shear flow and contact flow; they can be
calculated by using the classic P and C (Patir and Cheng) method [33,34] and W and Z (Wu and Zheng)
method [35], respectively. These methods have been widely used in the simulation of RLCs with rough
surfaces because they have the advantages of low cost in computation time and easy realization [20,36].
According to the P and C method and the W and Z method, the pressure flow, shear flow, and contact
flow coefficients can be written as follows:

φx = 1− 0.9e−0.56λ if λ > 0.5 (13)

φy = 1− 0.9e−0.56λ if λ > 0.5 (14)

φs =

 1.899λ0.98(σ2
1/σ2

− σ2
2/σ2)e(−0.92λ+0.05λ2) if λ ≤ 5

1.126(σ2
1/σ2

− σ2
2/σ2)e−0.25λ if λ > 5

(15)

φc =

 e−0.6912+0.782λ−0.304λ2+0.0401λ3
if 0 ≤ λ < 3

1 if λ ≥ 3
(16)
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with
σ =

√
σ2

1 + σ
2
2 (17)

λ = h/σ (18)

where σ1 and σ2 are the surface roughness of ring and liner and λ is the ratio of lubricant thickness.
The thickness of lubricant between the groove textured ring and liner h can be written as follows:

h = h0 + hgroove + hliner + hring (19)

where h0 is the minimum clearance in the RLC, hgroove is the clearance caused by the groove, hring is the
clearance related to the ring profile, and their expressions have been given in the reported works [3,16,25].

2.3. Lubrication Condition

Besides the fully flooded condition of lubrication, the starved condition of lubrication can be also
observed at some crank angles in the engine cycle because the lubricant supplied to the RLC is usually
insufficient [18,19]. Figure 3 shows the different conditions of the lubrication for the RLC. It should be
noted that different lubrication conditions mean different boundary positions of the lubrication zone.
Therefore, in order to solve the instant boundary positions (i.e., inlet position and outlet position) and
then determine the instant lubrication condition, an oil transport model has been proposed, as shown
in Figure 4. In Figure 4, two control volumes at the inlet and outlet of lubrication zone (i.e., front control
volume and back control volume) are presented. For the front control volume, the average inflow
rate of lubricant qin_ave and the average outflow rate of lubricant qen_ave within a time step ∆t can be
expressed as:

qin_ave =
Uhin + U0h0

in

2
(20)

qen_ave =
qen + q0

en

2
(21)

where hin is the lubricant entry height, superscript 0 represents the variables at the previous moment,
and qen is the outflow rate of lubricant for the front control volume [18].
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It should be noticed that the lubricant which flows into the front control volume is usually less
than the lubricant which flows out of the front control volume [23]. Hence, the flow rate of lubricant in
the front control volume changes within a time step ∆t. The average variation of the lubricant flow
rate in the front control volume qfront_ave can be written as [23]:

qfront_ave =
(VABCD −VA0B0C0D0)

∆t
(22)

where VABCD is the area for the front control volume. It can be given by:

VABCD =
hin+hen

2
[k(hf − h0) + xin] (23)

where hen and xin are the inlet clearance and width, k is the aspect ratio, and hf represents the clearance
at the leading edge of ring.

According to the principle of flow conservation, a flow balance equation should be satisfied for
the front control volume [37]. The flow balance equation is given as:

qin_ave − qen_ave = qfront_ave (24)

By submitting Equations (20)~(22) into Equation (24), the following expression can be obtained.(
Uhin+U0h0

in

)
−

(
qen+q0

en

)
2

∆t = VABCD −VA0B0C0D0 (25)

For the back control volume, a similar flow balance equation can be also written as follows:

qout_ave − qex_ave = qback_ave (26)

where qout_ave and qex_ave are the average inflow rate and average outflow rate of lubricant for the back
control volume, qback_ave is the average variation of lubricant flow rate in the back control volume,
and their expressions can be written as follows:

qout_ave =
qout+q0

out

2
(27)

qex_ave =
Uhex+U0h0

ex

2
(28)

qback_ave =
VWXYZ −VW0X0Y0Z0

∆t
(29)
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where qout and hex are the inflow rate and exit height of lubricant for the back control volume. VWXYZ is
the area of the back control volume, and its expression is written as [37]:

VWXYZ =


k(hb − h0)(

hb+hex
2 ) if hex ≥ h0

k(hout − hex)(
hout+hex

2 ) if h0
10 ≤ hex < h0

[k(hb − h0) + xout]hex +
k
2 (hout −

h0
10 )

2
if hex <

h0
10

(30)

where hout and xout are the outlet clearance and outlet width and hb represents the clearance at the
trailing edge of ring.

By submitting Equations (27)~(29) into Equation (26), the following expression can be obtained.(
qout+q0

out

)
−

(
Uhex+U0h0

ex

)
2

∆t = VWXYZ −VW0X0Y0Z0 (31)

By solving Equations (25) and (31), the inlet width xin and outlet width xout can be obtained,
and the instant lubrication condition can be determined. In details, the lubrication condition is fully
flooded when xin and xout are zero. Otherwise, the lubrication condition is starved. Furthermore,
the boundary condition of the governing equation (i.e., Equation (11)) can be also given as follows: p

∣∣∣
x= b

2−xin
= pin

p
∣∣∣
x=− b

2+xout
= pout

(32)

where pin and pout are the pressures of lubricant at the boundary positions of the lubrication zone.
On the intake stroke and power stroke, pin is the gas pressure under the ring and pout is the pressure in
cylinder. However, on the compression stroke and exhaust stroke, pin is the pressure in cylinder and
pout is the gas pressure under the ring.

2.4. Thermal Effect of Lubricant

During the working process of the RLC, the generated friction heat will raise the lubricant
temperature. The temperature rise of the lubricant changes the density and viscosity, and it then greatly
affects the frictional characteristics of the RLC. To determine the temperature rise of the lubricant,
an analytical thermal model [38] was used in the current study. According to the model, the temperature
of lubricant Toil can be written as follows:

Toil =
RlinerRoilTring + RlinerRringT0 + RringRoilTliner + RlinerRringRoilQ

RringRoil + RlinerRoil + RlinerRring
(33)

where Rliner is the thermal conductive flow barrier of the liner, Rring is the thermal conductive flow
barrier of the ring, and Roil is the thermal conductive flow barrier of the lubricant. Tring and Tliner are
the temperatures on the ring surface and liner surface. T0 is the lubricant temperature at the inlet of
lubrication zone, Q is the flow rate of friction heat, and the expressions of T0 and Q can be written as [38]:

T0 =
TlinerUliner + TringU

Uliner + U
(34)

Q = |ftotalU| (35)

where Uliner is velocity of the liner and ftotal is the total friction force of the RLC.
After calculating the lubricant temperature Toil (Equation (33)) and pressure p (Equation (11)),

the lubricant density ρ and viscosity µ can be evaluated by [38]:

µ =

[
α0 exp

(
α1

α2 + Toil

)]
exp

{(
ln

[
α0 exp

(
α1

α2 + Toil

)]
+ 9.67

)[
−1 +

(
1 + 5.1× 10−9p

)0.68
]}

, (36)
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ρ = ρ0(1 +
0.6× 10−9p

1 + 1.7× 10−9p
)
[
1− 6.5× 10−4(Toil − Tref)

]
, (37)

where Tref is reference temperature, α0, α1, and α2 are the correlation factors, and ρ0 is the reference
density of lubricant. The lubricant parameters are given in Table 2.

Table 2. Parameters of lubricant.

Parameters Value Unit

correlation factor, α0 0.06782 mPa·s
correlation factor, α1 880.29 ◦C
correlation factor, α2 103.08 ◦C

Reference density of lubricant at 40 ◦C, ρ0 771.02 kg·m−3

Reference viscosity of lubricant at 40 ◦C, µ0 31.87 mPa·s

2.5. Frictional Characteristics

The total friction force in the RLC ftotal can be written as follows [25]:

ftotal = foil+fasp, (38)

with

foil =
x

Ω

(1− ε)
{
−
µU
h

(ϕf +ϕfs) +
h
2
∂p
∂x
ϕfp

}
dΩ, (39)

fasp = τ0Ac + αaFasp (40)

where foil and fasp are the hydrodynamic and boundary friction forces; Ω represents the zone of
lubrication; ϕf, ϕfs, and ϕfp represent the coefficients related to the friction; τ0 and αa are the factors of
asperity shear stress and boundary friction; and Ac and Fasp represent the apparent area and force of
asperity contact. In the current study, the GT (Greenwood and Tripp) model was used to calculate the
apparent contact area Ac and contact force Fasp. [16,19]:

Ac = π2(κβσ)2AF2(λ), (41)

Fasp =
x

Ω

16
√

2
15

π(κβσ)2E′
√
σ

β
F2.5(λ)dΩ, (42)

where A is the area of asperity contact, κ represents the density of asperities, β represents the mean
radius of asperity curvature, and the values of κβσ and σ/β are 0.04 and 0.001, respectively. F2.5(λ) and
F2(λ) are the distribution functions of the asperity heights, and their expressions can be referred to in
the work of [19]. E’ is the equivalent elastic modulus, and it can be expressed by:

E′ =
1

1−τ2
1

E1
+

1−τ2
2

E2

(43)

where τ1 is the Poisson’s ratio of ring, E2 and τ2 are the Young’s modulus and Poisson’s ratio of liner,
and their values are provided in Table 1.

Furthermore, the power dissipation Ploss and friction mean effective pressure (FMEP—adopted to
predict the friction dissipation) were also evaluated, and their expressions are as follows [19]:

Ploss = |ftotalU|, (44)

FMEP =

∫
ftotaldls

Vd
, (45)
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where ls is length of stroke and Vd is the distance between the ring and top dead center of piston.

3. Numerical Procedure

In order to simulate the frictional performance of the RLC with grooves, a Matlab program was
developed to solve the presented numerical model. Figure 5 shows the calculation flow chart for the
numerical model of the RLC.Energies 2019, 9, x FOR PEER REVIEW 11 of 22 
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At any crank angle, the average Reynolds equation (i.e., Equation (11)) can be solved by the finite
difference method (FDM) [39,40]. The central and backward difference schemes were used to discrete
the left and right terms of the average Reynolds equation. More detailed discussions on the solving
procedure of the average Reynolds equation with the JFO cavitation boundary condition can be seen
in the works of Pu et al. [39] and Wang et al. [40]. In the simulation, the axial boundary positions
of lubrication zone could be determined by the oil transport model (i.e., Equations (25) and (31)),
and then the simulation domain in the axial direction could be expressed as xout − b/2 ≤ x ≤ b/2− xin.
In the circumferential direction, the entire length of ring was considered as the simulation domain.
Furthermore, a mesh grid of 600 × 200 was adopted to simulate frictional performance. To illustrate the
rationality of the mesh grid, the FMEP values of the RLC with grooves were calculated for two mesh
grids (i.e., the mesh grid of 600 × 200 and the mesh grid of 800 × 300), and only about 1.0% difference
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in the FMEP values between the two mesh grids was observed. This indicates that the mesh grid of
600 × 200 could be used to simulate the frictional performance of the RLC with grooves.

4. Results and Discussion

4.1. Validation of Model

To illustrate the reasonability of the presented numerical model, the minimum clearance in the
RLC was calculated by the present model, and this was compared with the published result from Gu
et al. [41], as shown in Figure 6. The parameters adopted in the calculation were consistent with the
reference of [41]. In Figure 6, the minimum clearance calculated by the current model matches well
with the result of Gu et al. [41], and the maximum difference in the minimum clearance was about
1.0%. This indicates that the presented model can be adopted to reasonably simulate the frictional
behaviors of the RLC. Therefore, the frictional characteristics of the textured RLC were analyzed by
using the presented model in the following sections. In the simulation, the pressure in cylinder and the
sliding velocity of ring are given in Figure 7.
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4.2. Effect of Liner Deformation

To study the effects of liner deformation on the frictional characteristics of the groove textured RLC,
the friction force, power dissipation, and friction dissipation were calculated for different maximum liner
deformations. Moreover, the inlet width of lubrication zone was also calculated to evaluate the inlet
condition of the lubrication because it significantly affected the frictional characteristics of the RLC [18,19].

Figure 8 shows the hydrodynamic friction force and boundary friction force in the groove textured
RLC for different maximum liner deformations. Compared with the groove textured RLC with ideal
circular liner (i.e., the value of ∆c is 0 µm), small hydrodynamic friction force and large boundary
friction force were observed for the groove textured RLC with the deformed liner. Furthermore,
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the hydrodynamic friction force decreased and the boundary friction force increased with the increase
of the maximum liner deformation. It is also observed from Figure 8 that the decrease of hydrodynamic
friction force is obvious when the crank angles were 90, 270, 450, and 630º (i.e., at the middle of the
strokes). The results in Figure 8 indicate that the hydrodynamic friction force and boundary fiction
force in the groove textured RLC were greatly affected by the liner deformation.Energies 2019, 9, x FOR PEER REVIEW 13 of 22 
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Figure 8. Friction forces in the groove textured RLC for different maximum deformations of liner: (a)
Hydrodynamic friction force; (b) boundary friction force.

Figure 9 shows the power dissipation and inlet width of lubrication zone. The result shows that
the maximum liner deformation had a great influence on the power dissipation, especially at the
middle of the strokes. Moreover, it can be also seen that the leading edge of ring was fully flooded
(i.e., the inlet width xin was 0 mm) when the ring was near the dead centers or on the power stroke
(i.e., the crank angle 360º ≤ θ ≤ 540º). However, when the ring operated near the middle of intake stroke
(i.e., the crank angle θ = 90º), compression stroke (i.e., the crank angle θ = 270º), and exhaust stroke
(i.e., the crank angle θ = 630º), the lubrication condition at the leading edge of the ring was starved,
and the degree of starved lubrication was a decreasing function of the maximum liner deformation.
This is because that the inlet width of the lubrication zone is a decreasing function of the maximum
liner deformation.
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The friction-reducing effect of the grooves on the ring was also evaluated for different maximum
liner deformations. Figure 10 gives the hydrodynamic friction forces in the groove textured RLC and
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untextured RLC. The hydrodynamic friction force decreased significantly when the grooves were
textured on the ring. Furthermore, a large reduction of hydrodynamic friction force was obtained at the
middle of the strokes, and the reduction percentages are shown in Table 3. From Table 3, it is observed
that the difference in the reduction percentage of the hydrodynamic friction force among different
maximum liner deformations was small. Relatively, a large reduction percentage in the hydrodynamic
friction force was observed when the maximum liner deformation was 10 µm or the ring operated on
the power stroke. This means that the reduction of hydrodynamic friction force after texturing was less
affected by the liner deformation. Figure 11 shows the boundary friction forces in the groove textured
RLC and untextured RLC for different maximum liner deformations when the crank angle θ was 360º.
Different from the results in Figure 10, the grooves on the ring were observed to increase the boundary
friction force, and the increase percentages of peak boundary friction force were about 63.57%, 62.17%,
47.06%, and 45.83% when the maximum liner deformations were 0, 10, 20, and 30 µm.

Figure 12 shows the reductions of the average power dissipation and the FMEP value after
texturing the grooves on the ring for various maximum liner deformations. It was observed that the
ring grooves reduced the average power dissipation and FMEP value effectively. In detail, when the
maximum liner deformations were 0, 10, 20, and 30 µm, the decreased percentages of the average
power dissipation were about 7.93%, 7.94%, 7.45%, and 6.93%; the decreased percentages of the FMEP
value were about 6.05%, 6.08%, 5.70%, and 5.19%. Furthermore, the decreased percentages of the
average power dissipation and FMEP value were the decreasing functions of the maximum liner
deformation when the liner deformation was considered (i.e., the value of ∆c > 0 µm).
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Table 3. Reduction percentages of the hydrodynamic friction force at the middle of strokes for different
maximum liner deformations.

Maximum Deformation
of Liner, ∆c

Reduction Percentage

Intake Stroke Compression Stroke Power Stroke Exhaust Stroke

0 µm 9.41% 8.72% 10.99% 8.54%
10 µm 9.45% 8.82% 11.06% 8.80%
20 µm 9.18% 8.47% 10.20% 8.67%
30 µm 9.11% 8.27% 9.15% 8.64%
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Figure 13 shows the average power dissipation caused by the hydrodynamic friction and the
boundary friction for different maximum liner deformations. It was observed that the average
power dissipation caused by the hydrodynamic friction was larger than that caused by the boundary
friction. Furthermore, after texturing grooves on the ring, the average power dissipation caused by
the hydrodynamic friction was reduced, and the average power dissipation caused by the boundary
friction was increased. In details, when the maximum liner deformations were 0, 10, 20, and 30 µm,
the decreased percentages of the average power dissipation caused by the hydrodynamic friction were
about 8.07%, 8.10%, 7.70%, and 7.20%, and the increase percentages of the average power dissipation
caused by the boundary friction were about 111.5%, 109.9%, 98.81%, and 99.82%.
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4.3. Effect of Liner Temperature

The hydrodynamic and boundary friction forces in the groove textured RLC for different liner
temperatures are shown in Figure 14. It was observed that the difference of hydrodynamic friction
force among different liner temperatures was large, especially when the crank angles θ were 90,
270, 450, and 630◦. Furthermore, when the crank angles θwere 360 and 540◦, the boundary friction
force appeared, and the boundary friction force was an increasing function of the liner temperature.
The results demonstrate that the liner temperature has significant effect on friction.

To evaluate the friction-reducing effect of the grooves at different liner temperatures, the friction
forces in the textured RLC and untextured RLC were calculated. Figure 15 shows the hydrodynamic
friction forces when the liner temperatures were 60, 80, 100, and 120 ◦C. It can be seen that the
grooves on the ring reduced the hydrodynamic friction force, and a large reduction was observed
when the crank angles θwere 90, 270, 450, and 630◦. Compared with the liner temperature of 60 ◦C,
the differences of hydrodynamic friction force between the textured RLC and untextured RLC were
relatively small when the liner temperature was greater than or equal to 80 ◦C. Furthermore, when the
liner temperature was 120 ◦C, the reduction of hydrodynamic friction force after texturing grooves
on the ring was mainly observed on the power stroke and the exhaust stroke. Figure 16 shows the
boundary friction forces for various liner temperatures. The grooves on the ring were observed to
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increase the boundary friction force, and the increase percentages of peak boundary friction force were
about 92.23%, 50.43%, 26.84%, and 14.30% when the liner temperatures were 60, 80, 100, and 120 ◦C.

Energies 2019, 9, x FOR PEER REVIEW 16 of 22 

Figure 13 shows the average power dissipation caused by the hydrodynamic friction and the 
boundary friction for different maximum liner deformations. It was observed that the average power 
dissipation caused by the hydrodynamic friction was larger than that caused by the boundary friction. 
Furthermore, after texturing grooves on the ring, the average power dissipation caused by the 
hydrodynamic friction was reduced, and the average power dissipation caused by the boundary 
friction was increased. In details, when the maximum liner deformations were 0, 10, 20, and 30 μm, 
the decreased percentages of the average power dissipation caused by the hydrodynamic friction 
were about 8.07%, 8.10%, 7.70%, and 7.20%, and the increase percentages of the average power 
dissipation caused by the boundary friction were about 111.5%, 109.9%, 98.81%, and 99.82%. 

  

(a) (b) 

Figure 13. Average power dissipation caused by the hydrodynamic friction and boundary friction for 
different maximum deformations of liner: (a) Average power dissipation caused by the 
hydrodynamic friction; (b) average power dissipation caused by boundary friction. 

4.3. Effect of Liner Temperature 

The hydrodynamic and boundary friction forces in the groove textured RLC for different liner 
temperatures are shown in Figure 14. It was observed that the difference of hydrodynamic friction 
force among different liner temperatures was large, especially when the crank angles θ were 90, 270, 
450, and 630°. Furthermore, when the crank angles θ were 360 and 540°, the boundary friction force 
appeared, and the boundary friction force was an increasing function of the liner temperature. The 
results demonstrate that the liner temperature has significant effect on friction. 

  

(a) (b) 

Figure 14. Friction forces in the groove textured RLC for different liner temperatures: (a) 
Hydrodynamic friction force; (b) boundary friction force. 

Figure 14. Friction forces in the groove textured RLC for different liner temperatures: (a) Hydrodynamic
friction force; (b) boundary friction force.

Energies 2019, 9, x FOR PEER REVIEW 17 of 22 

To evaluate the friction-reducing effect of the grooves at different liner temperatures, the friction 
forces in the textured RLC and untextured RLC were calculated. Figure 15 shows the hydrodynamic 
friction forces when the liner temperatures were 60, 80, 100, and 120 °C. It can be seen that the grooves 
on the ring reduced the hydrodynamic friction force, and a large reduction was observed when the 
crank angles θ were 90, 270, 450, and 630°. Compared with the liner temperature of 60 °C, the 
differences of hydrodynamic friction force between the textured RLC and untextured RLC were 
relatively small when the liner temperature was greater than or equal to 80 °C. Furthermore, when 
the liner temperature was 120 °C, the reduction of hydrodynamic friction force after texturing 
grooves on the ring was mainly observed on the power stroke and the exhaust stroke. Figure 16 
shows the boundary friction forces for various liner temperatures. The grooves on the ring were 
observed to increase the boundary friction force, and the increase percentages of peak boundary 
friction force were about 92.23%, 50.43%, 26.84%, and 14.30% when the liner temperatures were 60, 
80, 100, and 120 °C. 

  

(a) (b) 

  

(c) (d) 

Figure 15. Hydrodynamic friction forces of the textured RLC and untextured RLC: (a) Tliner is 60 °C; 
(b) Tliner is 80 °C; (c) Tliner is 100 °C; and (d) Tliner is 120 °C. 

Figure 15. Hydrodynamic friction forces of the textured RLC and untextured RLC: (a) Tliner is 60 ◦C;
(b) Tliner is 80 ◦C; (c) Tliner is 100 ◦C; and (d) Tliner is 120 ◦C.



Energies 2019, 12, 2761 17 of 21
Energies 2019, 9, x FOR PEER REVIEW 18 of 22 

  
(a) (b) 

  
(c) (d) 

Figure 16. Boundary friction forces of the textured RLC and untextured RLC: (a) Tliner is 60 °C; (b) Tliner 
is 80 °C; (c) Tliner is 100 °C; (d) Tliner is 120 °C. 

Figure 17a shows the power dissipation of the groove textured RLC at different liner 
temperatures. A large difference in the power dissipation among various liner temperatures was 
observed, and the power dissipation decreased with the increase of the liner temperature. This is 
because that the hydrodynamic friction force increased with the decrease of liner temperature. This 
result indicates that the liner temperature significantly affected the power dissipation of the textured 
RLC. To evaluate the reduction of power dissipation after texturing grooves on the ring, the average 
power dissipation of the textured RLC and untextured RLC were compared, and the compared results 
are shown in Figure 17b. It can be observed that the average power dissipation of the textured RLC 
was lower than that of the untextured RLC. When the liner temperatures were 60, 80, 100, and 120 °C, 
the reductions of average power dissipation were 8.58%, 7.85%, 6.43%, and 3.93%. These results 
demonstrate that the grooves on the ring can greatly reduce the power dissipation of the RLC, and 
the reduction of average power dissipation was large when the liner temperature was low. 

  

Figure 16. Boundary friction forces of the textured RLC and untextured RLC: (a) Tliner is 60 ◦C; (b) Tliner

is 80 ◦C; (c) Tliner is 100 ◦C; (d) Tliner is 120 ◦C.

Figure 17a shows the power dissipation of the groove textured RLC at different liner temperatures.
A large difference in the power dissipation among various liner temperatures was observed, and the
power dissipation decreased with the increase of the liner temperature. This is because that the
hydrodynamic friction force increased with the decrease of liner temperature. This result indicates that
the liner temperature significantly affected the power dissipation of the textured RLC. To evaluate
the reduction of power dissipation after texturing grooves on the ring, the average power dissipation
of the textured RLC and untextured RLC were compared, and the compared results are shown in
Figure 17b. It can be observed that the average power dissipation of the textured RLC was lower than
that of the untextured RLC. When the liner temperatures were 60, 80, 100, and 120 ◦C, the reductions
of average power dissipation were 8.58%, 7.85%, 6.43%, and 3.93%. These results demonstrate that the
grooves on the ring can greatly reduce the power dissipation of the RLC, and the reduction of average
power dissipation was large when the liner temperature was low.

Figure 18 shows the average power dissipation caused by the hydrodynamic friction and boundary
friction for different liner temperatures. It was observed that the grooves on the ring decreased the
average power dissipation caused by the hydrodynamic friction, and the decrease percentage was
a decreasing function of the liner temperature. However, the grooves on the ring also increased the
average power dissipation caused by the boundary friction, and the increase percentage was also
a decreasing function of the liner temperature.
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Table 4 gives the FMEP values of the textured RLC and untextured RLC for various liner
temperatures. In Table 4, the FMEP value decreases with the increase of the liner temperature.
Moreover, the FMEP value was greatly reduced after texturing the grooves on the ring, and the reduced
percentage of the FMEP value was a decreasing function of the liner temperature. This indicates that
the grooves on the ring can significantly reduce the friction dissipation of the RLC, especially at low
liner temperature.

Table 4. FMEP values in the textured RLC and untextured RLC for different liner temperatures.

Liner Temperature,
Tliner

FMEP Value
Reduce Percentage

Textured Ring Untextured Ring

60 ◦C 21.25 23.45 9.38%
80 ◦C 16.77 18.36 8.66%

100 ◦C 13.42 14.52 7.58%
120 ◦C 11.09 11.71 5.29%

5. Conclusions

A mathematical model was proposed to investigate the frictional characteristics of the groove
textured RLC with a consideration of the liner deformation and the coexistence of different conditions
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of lubrication (i.e., fully flooded and starved). Based on the model, the effects of liner deformation
and temperature on the frictional characteristics of the textured RLC were investigated. Furthermore,
the friction-reducing effect of the ring grooves was also evaluated for different liner temperatures and
deformations. According to the numerical results obtained in this study, the main conclusions can be
made as follows:

1. Liner deformation and temperature affect the frictional characteristics of the groove textured RLC
significantly. Compared with the groove textured RLC with ideal circular liner, the groove textured
RLC with deformed liner had low friction dissipation and power dissipation. Furthermore,
the friction dissipation and power dissipation of the groove textured RLC decreased with the
increase of the liner temperature.

2. The grooves on the ring can effectively reduce the hydrodynamic friction force, power dissipation,
and friction dissipation, and the reductions of average power dissipation and friction dissipation
had a close relation to the liner deformation and temperature. In detail, for the groove textured
RLC, the reduction percentages of the average power dissipation and friction dissipation increased
with the decreases of the maximum liner deformation and liner temperature. However, when the
groove textured RLC was under the mixed regime of lubrication, the grooves on the ring increased
the boundary friction force.

It should be noted that these conclusions were made based on the numerical results in this study.
The RLC with grooves under practical working conditions will show other complex characteristics
(e.g., the dynamic liner deformation caused by piston slap). The experimental validation and
investigation on the frictional performance of the RLC with grooves need to be conducted further.
Moreover, the geometry optimization on the grooves was not considered in this study, and the asperity
heights on the RLC surfaces were assumed to be Gaussian distributed. The optimization on the groove
geometry and the frictional performance analysis on the groove textured RLC with non-Gaussian
surfaces can also be considered for future directions of this research.
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