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Thermoelastic coupling vibration and
stability analysis of rotating circular
plate in friction clutch

Yongqiang Yang1,2 , Zhongmin Wang3 and Yongqin Wang1,2

Abstract

Rotating friction circular plates are the main components of a friction clutch. The vibration and temperature field of

these friction circular plates in high speed affect the clutch operation. This study investigates the thermoelastic coupling

vibration and stability of rotating friction circular plates. Firstly, based on the middle internal forces resulting from the

action of normal inertial force, the differential equation of transverse vibration with variable coefficients for an axisym-

metric rotating circular plate is established by thin plate theory and thermal conduction equation considering defor-

mation effect. Secondly, the differential equation of vibration and corresponding boundary conditions are discretized by

the differential quadrature method. Meanwhile, the thermoelastic coupling transverse vibrations with three different

boundary conditions are calculated. In this case, the change curve of the first two-order dimensionless complex

frequencies of the rotating circular plate with the dimensionless angular speed and thermoelastic coupling coefficient

are analyzed. The effects of the critical dimensionless thermoelastic coupling coefficient and the critical angular speed on

the stability of the rotating circular plate with simply supported and clamped edges are discussed. Finally, the relation

between the critical divergence speed and the dimensionless thermoelastic coupling coefficient is obtained. The results

provide the theoretical basis for optimizing the structure and improving the dynamic stability of friction clutches.
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Introduction

Friction clutch is an important part of the transmission system of mineral locomotives. Considering the mining

industry background, the friction clutch of Shaanxi XUST-18 explosion-proof mineral locomotive (shown in

Figure 1) is used as the sample. By considering friction circular plate as the thin plate (shown in Figure 2), the

clutch active shells can be regarded as the boundary supports. Friction circular plates in clutch often work in a

varying temperature field; thus, the transverse vibration originated from the varying temperature generally has a

significant influence on the operation of the mineral locomotive. Therefore, a study on the thermoelastic coupling

transverse vibration of the friction circular plates in clutch is important.
Transverse vibration of the rotating circular plate has been extensively studied over the past few decades, and

numerous representative results have been achieved. Some research work focus on the effects of angular speed on

transverse vibration. For example, Khorasany and Hutton1 and Shojaeefard et al.2 investigated the variation of

1School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, China
2College of Mechanical & Electrical Engineering, Shaanxi University of Science & Technology, Xi’an, China
3School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an, China

Corresponding author:

Zhongmin Wang, School of Civil Engineering and Architecture, Xi’an University of Technology, No. 5 South Jinhua Road, 710048 Xi’an, China.

Email: wangzhongm@xaut.edu.cn

Journal of Low Frequency Noise,

Vibration and Active Control

2019, Vol. 38(2) 558–573

! The Author(s) 2018

DOI: 10.1177/1461348418817465

journals.sagepub.com/home/lfn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.

creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission

provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

http://orcid.org/0000-0002-1625-7148
mailto:wangzhongm@xaut.edu.cn
http://dx.doi.org/10.1177/1461348418817465
journals.sagepub.com/home/lfn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1461348418817465&domain=pdf&date_stamp=2018-12-22


the natural frequency with the angular speed of the rotating circular plate by the modal expansion method and the
Galerkin method, respectively. Maretic3 used the Galerkin method to analyze the relationship between the natural
frequency of the eccentric rotating circular plate and angular speed. Wang et al.4,5 analyzed the change situation
of the complex frequencies of the rotating circular plate under three boundary conditions with the change of the
angular speed. The aforementioned research works have not considered the transverse deflections and dynamic
responses. Gupta et al.6 utilized Rayleigh-Ritz method to calculate the deflections of the first two modes in
orthotropic viscoelastic circular plates and discussed the effect of nonhomogeneous value and taper coefficient
on the transverse vibration of the circular plate. Heo and Chung7 studied the dynamic responses of a flexible
rotating plate by finite element method and examined the relationship between the vibration characteristics and
angular misalignment of the circular plate. On the other hand, some researchers focus on the dynamic stability of
the circular plate. Bauer and Eidel8 analyzed the effects of angular speed on natural frequency and stability by the
Galerkin method. Hochlenert et al.9 studied the instability problem of the circular plate caused by the friction in
the brake system. Mottershead and Chan10 examined the flutter instability of the circular plate under the frictional
follower load. Hu and Wang11 and Li et al.12 established the magnetoelastic vibration equations of a conductive
rotating circular plate by Hamilton principle. They investigated the critical condition of stability of the rotating
circular plate by the Galerkin method.

All of the aforementioned studies do not involve the varying temperature. In fact, the circular plate is under the
condition of varying temperature environment in actual engineering applications (e.g. the engaging process of
friction clutch), so the varying temperature needs to be considered. Sepahi et al.13 analyzed the effect of varying
temperature on the large deflection of the FGM plate. Shu and Zhang14 used the Galerkin method to discuss the
nonlinear thermoelastic vibration of the circular plate with clamped edge. Trajkovski and Cukic15 studied
the vibration problem of the circular plate under the boundary of free and clamped edges with varying temper-
ature. Sun and coworkers16,17 analyzed the thermoelastic coupling vibration of micro-circular plates and discussed
the effect of component size and different temperatures on the thermal bending moments and vibration amplitude.
Salajeghe et al.18 examined the thermoelastic vibration of micro-circular resonators by von Karman theory and
explored the effect of linear and nonlinear analysis on thermoelastic damping. Hao19 investigated the vibration of

Figure 1. Friction clutch in Shaanxi XUST-18 explosion-proof mineral locomotive.

Figure 2. Three-dimensional model of friction clutch: 1, driving shaft; 2, clutch active shell; 3, friction plate combination; 4, hinge
mechanism; 5, pin; 6, clutch member; 7, clutch driven member; and 8, driven shaft.
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circular thin plate micrometer and nanometer electromechanical exciters under heat-elastic damping. Kumar
et al.20 studied a two-dimensional axisymmetric vibration in a homogeneous isotropic micropolar porous
thermoelastic circular plate by using the eigenvalue approach and analyzed the displacements, microrotations,
volume fraction fields, temperature distributions and stresses in the transformed domain subjected to thermo-
mechanical sources. Bhada et al.21 used integral transform technique to investigate the thermally induced
vibration of an elliptical disk and discussed the thermal moment, normal stresses and normal deflection of
disk. The above research works on the thermoelastic coupling vibration of circular plates are mainly focused
on the analysis of the coupled term and dynamic term, but the research on the differential equation of
thermoelastic coupling vibration is not that much. The differential equation of thermoelastic coupling vibra-
tion of the circular plate is a fourth-order partial differential equation with complex variable coefficient, which
involves solving a complex eigenvalue problem. Some research work on a high-order partial differential
equation had been carried out by the Galerkin method and finite element method.1,3,7,8,11,12,22 Yayli23–27

used the Fourier sine series and Stoke transformation to analyze the high-order partial differential equation
of vibration. The computation in these methods is complicated. In recent years, the differential quadrature
method (DQM) has also been applied to compute the high-order partial differential equation of transverse
vibration because of its high efficiency and accuracy.28–32 However, few works have been presented the study
of the high-order partial differential equation of thermoelastic coupling vibration by DQM. In this paper, we
mainly use the DQM to solve the differential equation of thermoelastic coupling vibration in order to
improve the solving efficiency and accuracy.

This study aims to construct the differential equation of thermoelastic coupling transverse vibration of the
rotating circular plate in friction clutch in accordance with the thermal conduction equation and on the basis of
the action of linearly distributed normal inertial force along the radial direction. The dimensionless complex
frequencies of the rotating circular plate with variable temperature are analyzed by DQM. The change curve of
the first two-order dimensionless complex frequencies of the rotating circular plate with the dimensionless angular
speed and the dimensionless thermoelastic coupling coefficient are analyzed, which can provide the theoretical
basis for optimizing the structure and working condition of friction clutch.

Differential equation of thermoelastic coupling transverse vibration

Differential equation of transverse vibration with varying temperature

Figure 3 shows a circular plate with thickness h and radius R. The plate is rotating around its axis with a
constant angular speed X. Meanwhile, q denotes the density of materials, r is the radius of the polar coordinate
and q ¼ qhX2r indicates the inertial force per unit area in the middle plane.

The strain–displacement relation of the rotating circular plate can be given by

er ¼ @ur
@r

¼ �z
@2w

@r2

eh ¼ ur
r
¼ � z

r

@w

@r

8>><
>>: (1)

where ur is the displacement field component along the r axis, z represents the rotation axis and w ¼ wðr; tÞ refers
to the transverse displacement.

Ω

o

R
qr

Figure 3. Schematic diagram for the rotating circular plate.
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The constitutive equation with the varying temperature T can be written as

rr ¼ E

1� l2
ðer þ lehÞ � 1þ lð ÞaT� �

rh ¼ E

1� l2
ðeh þ lerÞ � 1þ lð ÞaT� �

8>><
>>: (2)

where E is the elastic modulus, l is Poisson’s ratio, and a denotes the linear thermal expansion coefficient.
Substituting equation (1) into equation (2) results in

rr ¼ �zE

1� l2
@2w

@r2
þ l

r

@w

@r

� �
� EaT
1� l

rh ¼ �zE

1� l2
1

r

@w

@r
þ l

@2w

@r2

� �
� EaT
1� l

srh ¼ 0

8>>>>><
>>>>>:

(3)

By using equation (3), the bending and twisting moments per unit length are given by

Mr ¼
Z h

2

�h
2

rrzdz ¼ �D
@2w

@r2
þ l

r

@w

@r

� �
� Ea
1� l

MT

Mh ¼
Z h

2

�h
2

rhzdz ¼ �D
1

r

@w

@r
þ l

@2w

@r2

� �
� Ea
1� l

MT

Mrh ¼ 0

8>>>>>><
>>>>>>:

(4)

where D ¼ Eh3

12ð1�l2Þ is the flexural rigidity and MT ¼
Z h

2

�h
2

Tzdz indicates the thermal moment.

The force and moment balance condition in the axisymmetric circular plate are given by

@Nr

@r
þNr �Nh

r
þ q ¼ 0

@Mr

@r
þMr �Mh

r
�Qr ¼ 0

1

r
Qr þ @Qr

@r

� �
þ Nr

@2w

@r2
þ 1

r
Nr

@w

@r
þ @Nr

@r

@w

@r

� �
� qh

@2w

@t2
þ p ¼ 0

8>>>>>><
>>>>>>:

(5)

where NR and Nh represent the normal in-plane forces, p is the lateral load per unit area and Qr refers to the

lateral shear.
Based on equations (1)–(5), by using the Kirchhoff theory and D’Alembert’s principle, the differential equation

of transverse vibration is given as follows

Dr4wþ Ea
1� l

r2MT þ qh
@2w

@t2
�Nr

@2w

@r2
� 1

r
Nh

@w

@r
þ q

@w

@r
� p ¼ 0 (6)

Given that the varying temperature T along the lateral direction is considerably larger than that along radial

direction, the thermal conduction equation can be described as follows

@T

@t
� k

qCv

@2T

@z2
þ EaT0

ð1� 2lÞqCv

@

@t
�z

@2w

@r2
� z

1

r

@w

@r

� �
¼ 0 (7)

where T ¼ Tðz; tÞ is the varying temperature, k denotes the thermal conductivity, Cv indicates the specific heat at a

constant volume and T0 represents the initial temperature of the circular plate.
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MT in the differential equation (6) is related to Tðz; tÞ, and the thermal conduction equation (7) involves the

deflection function w ¼ wðr; tÞ. It can be seen that the temperature and deflection fields are coupled together. In

this way, equations (6) and (7) must be solved simultaneously.

Solution of the normal in-plane forces

In order to solve equations (6) and (7), the normal in-plane forces Nr and Nh need to be solved firstly. The stress

function u is introduced

u ¼ rrr

rh ¼ du
dr

þ qX2r2

8<
: (8)

Based on equation (1), the strain compatibility equation is obtained

er ¼ @ðrehÞ
@r

(9)

Considering that the varying temperature T along the radial direction is ignored, the compatibility equation

is obtained

r2
d2u
dr2

þ r
du
dr

� u ¼ �ð3þ lÞqX2r3 (10)

From equation (10), the solution of u rð Þ can be obtained as

u rð Þ ¼ Arþ B

r
� 3þ l

8
qX2r3 (11)

where A and B are integral constants. Integral constant B must be zero since the stress at the center of the circular

plate (r ¼ 0) is a finite value.
The displacement field component ur along the radial direction of the plate is as follows

ur ¼ r

E
ð1� lÞA� ð1� lÞ B

r2
þ l2 � 1

8
qX2r2

� �
(12)

The boundary conditions of clamped and simply supported edges are given by

ur r¼R ¼ 0j (13)

The boundary condition of free edge is given by

rr r¼R ¼ 0j (14)

Substituting equations (11) and (12) into equations (13) and (14), respectively, results in

A ¼
1þ l
8

qX2R2 clamped and simply supported edges

3þ l
8

qX2R2 free edge

8>><
>>: (15)

For clamped and simply supported edges, based on equations (8), (11) and (15), Nr and Nh can be obtained as

Nr ¼ hrr ¼ qX2h
1þ l
8

R2 � 3þ l
8

r2
� �

(16)
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Nh ¼ hrh ¼ qX2h
1þ l
8

R2 � 1þ 3l
8

r2
� �

(17)

For free edge, based on equations (8), (11) and (15), NR and Nh are given by

Nr ¼ hrr ¼ qX2R2h 3þ lð Þ
8

1� r2

R2

� �
(18)

Nh ¼ hrh ¼ qX2R2h

8
3þ lð Þ � 1þ 3lð Þ r

2

R2

� �
(19)

Dimensionless differential equation and boundary conditions

The following dimensionless quantities are introduced as follows

�r ¼ r

R
; �z ¼ z

h
; �w ¼ w

h
; �T ¼ T

T0
; s ¼ th

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12qð1� l2Þ

s
; c ¼ qR4X2

Eh2

Considering that p ¼ 0, equations (6) and (7) take the form of

@4 �w

@�r4
þ 2

�r

@3 �w

@�r3
� 1

�r2
@2 �w

@�r2
þ 1

�r3
@ �w

@�r

� �
þ A1

@2 �MT

@�r2
þ 1

�r

@ �MT

@�r

� �
þ @2 �w

@s2
� g N1

@2 �w

@�r2
þN2

1

�r

@ �w

@�r
� c�r

@ �w

@�r

� �
¼ 0 (20)

@2 �T

@�z2
� A2

@ �T

@s
þ A3

@

@s
@2 �w

@�r2
þ 1

�r

@ �w

@�r

� �
�z ¼ 0 (21)

where �MT ¼
Z 1=2

�1=2

�T�zd�z, g ¼ 12 1� l2
	 


, A1 ¼ 12ð1þlÞR2aT0

h2
, A2 ¼ Cvh

3

kR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qE

12ð1�l2Þ
q

, A3 ¼ Eah5

ð1�2lÞkR4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12qð1�l2Þ
q

For simply supported and clamped edges, N1 and N2 are as follows

N1 ¼ c

8
1þ lð Þ � 3þ lð Þ�r2

� �
(22)

N2 ¼ c

8
1þ lð Þ � 1þ 3lð Þ�r2

� �
(23)

For free edge, N1 and N2 are as follows

N1 ¼ c

8
3þ lð Þ � 3þ lð Þ�r2

� �
(24)

N2 ¼ c

8
3þ lð Þ � 1þ 3lð Þ�r2

� �
(25)

The solution of equations (20) and (21) is assumed in the following form

�wð�r; sÞ ¼ Wð�rÞejxs �Tð�z; sÞ ¼ T�ð�zÞejxs (26)

where j ¼ ffiffiffiffiffiffiffi�1
p

, x denotes the dimensionless complex frequency of the rotating circular plate.
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Substituting equation (26) into equations (20) and (21), differential equations of the rotating plate are
obtained as

d4W

d�r4
þ 2

�r

d3W

d�r3
� 1

�r2
d2W

d�r2
þ 1

�r3
dW

d�r

� �
þ A1

d2

d�r2
þ 1

�r

d

d�r

� �Z 1=2

�1=2

T��zd�z

� x2W� g N1
d2W

d�r2
þN2

1

�r

dW

d�r
� c�r

dW

d�r

� �
¼ 0

(27)

d2T�

d�z2
� A2jxT

� þ A3jx
d2W

d�r2
þ 1

�r

dW

d�r

� �
�Z ¼ 0 (28)

From equation (28), the solution of T� can be obtained as

T� ¼ a1e
b�z þ a2e

�b�z þ Eah2

ð1� 2lÞqCvR2

d2W

d�r2
þ 1

�r

dW

d�r

� �
�z (29)

where a1 and a2 are two integral constants and b ¼ ffiffiffiffiffiffiffiffiffiffiffi
A2jx

p
.

Substituting equation (29) into equation (27) results in

ð1þ wÞ d4W

d�r4
þ 2

�r

d3W

d�r3
� 1

�r2
d2W

d�r2
þ 1

�r3
dW

d�r

� �
� x2W� g N1

d2W

d�r2
þN2

1

�r

dW

d�r
� c�r

dW

d�r

� �
¼ 0 (30)

where w ¼ ð1þlÞEa2T0

ð1�2lÞqCv
is the dimensionless thermoelastic coupling coefficient and indicates the coupling degree

between the temperature and strain.
The dimensionless thermoelastic coupling coefficient w is composed of five parameters, which are the elastic

modulus E, Poisson’s ratio l, the linear thermal expansion coefficient a, the density of material q and the initial
temperature T0 of the circular plate. The dimensionless thermoelastic coupling coefficient is related to the initial
temperature for a given material. With the increase of initial temperature, the dimensionless thermoelastic cou-
pling coefficient increases. Generally, the dimensionless thermoelastic coupling coefficient w of most materials is
between 0 and 0.5, but w of new materials may be higher.33 When the plate material in the friction clutch is
selected as No. 45 steel, the initial temperature of the friction plate is related to the number of engagement during
the working process. With greater number of engagement, the initial temperature will be higher and the dimen-
sionless thermoelastic coupling coefficient is larger. Based on the material and number of engagement of the
friction plate, the study range of w in this paper is assumed to be 0–1.

Considering that the edge of the plate is held at a constant temperature, the three dimensionless boundary
conditions are given as follows.

(1) Simply supported edge

Wj�r¼1 ¼ 0

d2W

d�r2
þ l

1

�r

dW

d�r

� �
�r¼1 ¼ 0j

8<
: (31)

(2) Clamped edge

Wj�r¼1 ¼ 0
dW

d�r
�r¼1 ¼ 0j

8<
: (32)

(3) Free edge

d2W

d�r2
þ l

1

�r

dW

d�r

� �
j�r¼1 ¼ 0

d3W

d�r3
þ 1

�r

d2W

d�r2
� 1

�r2
dW

d�r

� �
�r¼1 ¼ 0j

8>>><
>>>:

(33)
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The dimensionless boundary conditions at the center of the plate are given as follows

dW

d�r
j�r¼0 ¼ 0

lim
�r!0

d3W

d�r3
þ 1

�r

d2W

d�r2
� 1

�r2
dW

d�r

� �
¼ 0

8>><
>>: (34)

Discretization method of vibration equation

DQM is used to solve equation (30). DQM34–36 approximates the derivatives of the function at the given nodes by

weighted sums of the function at the total nodes.
The nodes are calculated by the following formula

�r1 ¼ 0 ; �rN ¼ 1; �ri ¼ 1

2
1� cos

2i� 3ð Þp
2N� 4

� �
i ¼ 2; 3; . . . ;N� 1ð Þ (35)

Based on the Lagrange interpolation polynomial, the weight coefficients of the first derivative A
ð1Þ
ij are obtained

A
ð1Þ
ij ¼

YN
k¼1
k 6¼i;j

ðxi � xkÞ=
YN
k¼1
k 6¼j

ðxj � xkÞ ði; j ¼ 1; 2; . . . ;N; i 6¼ jÞ

XN
k¼1
k 6¼j

1

ðxi � xkÞ ði; j ¼ 1; 2; . . . ;N; i ¼ jÞ

8>>>>>>><
>>>>>>>:

(36)

The weight coefficients of the second, third and fourth derivatives are determined by matrix multiplication

A
ð2Þ
ij ¼

XN
k¼1

A
ð1Þ
ik A

ð1Þ
kj

A
ð3Þ
ij ¼

XN
k¼1

A
ð2Þ
ik A

ð1Þ
kj ði; j ¼ 1; 2; . . .;NÞ

A
ð4Þ
ij ¼

XN
k¼1

A
ð3Þ
ik A

ð1Þ
kj

8>>>>>>>>>><
>>>>>>>>>>:

(37)

Equation (30) can be discretized into the following form by DQM

ð1þ wÞ
XN
k¼1

A
ð4Þ
ik Wk þ 2

�ri

XN
k¼1

A
ð3Þ
ik Wk � 1

�ri2

XN
k¼1

A
ð2Þ
ik Wk þ 1

�ri3

XN
k¼1

A
ð1Þ
ik Wk

 !

�g N1i

XN
k¼1

A
ð2Þ
ik Wk þN2i

1

�ri

XN
k¼1

A
ð1Þ
ik Wk � c�ri

XN
k¼1

A
ð1Þ
ik Wk

 !
� x2Wi ¼ 0

(38)

The discretization of equations (31) to (33)can be can be expressed as follows.
(1) Simply supported edge

WN ¼ 0XN
k¼1

A
ð2Þ
ðN�1ÞkWk þ l

1

�rðN�1Þ

XN
k¼1

A
ð1Þ
ðN�1ÞkWk ¼ 0

8><
>: (39)

(2) Clamped edge

WN ¼ 0XN
k¼1

A
ð1Þ
ðN�1ÞkWk ¼ 0

8><
>: (40)
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(3) Free edge

XN
k¼1

A
ð2Þ
NkWk þ l

1

�rN

XN
k¼1

A
ð1Þ
NkWk ¼ 0

XN
k¼1

A
ð3Þ
ðN�1ÞkWk þ 1

�rðN�1Þ

XN
k¼1

A
ð2Þ
ðN�1ÞkWk � 1

�r2ðN�1Þ

XN
k¼1

A
ð1Þ
ðN�1ÞkWk ¼ 0

8>>>>><
>>>>>:

(41)

The discretization of equation (34) can be expressed in the following form

XN
k¼1

A
ð1Þ
1k Wk ¼ 0

XN
k¼1

A
ð3Þ
2k Wk þ 1

�r2

XN
k¼1

A
ð2Þ
2k Wk � 1

�r22

XN
k¼1

A
ð1Þ
2k Wk ¼ 0

8>>>>><
>>>>>:

(42)

Equation (38), the boundary condition (equation (42)), and one of the boundary conditions (equations

(39)–(41)) can be expressed in the matrix form as

ðx2½I� þ ½K�ÞfWg ¼ 0 (43)

where ½I� is identity matrix, the matrix ½K� involves the dimensionless angular speed c and the dimensionless

thermoelastic coupling coefficient w.

Numerical analysis

Equation (38) is simplified to the differential equation of transverse vibration of the nonrotating plate at a

constant temperature when w ¼ 0 and c ¼ 0. The first four-order natural frequencies of the nonrotating plate

with three boundary conditions are calculated when the number of nodes N ¼ 9; 10; 11; 13; 15. The calculation

results are in good agreement with those exhibited by Ni,37 which can be seen in Table 1. It shows when the

number of nodes N is greater than 13, the value of the natural frequency has stabilized. In addition, Han and

Liew31 also mentioned when N is greater than 13, it can obtain the converged results by DQM. Therefore, N ¼ 13

is selected in this study by considering the accuracy and stability of DQM.

Rotating circular plate in friction clutch with simply supported edge

Figures 4 and 5 show the variation of the first two-order dimensionless complex frequencies x of the rotating

circular plate in friction clutch with the dimensionless angular speed for w1 ¼ 0, w2 ¼ 0:1 and w3 ¼ 0:3. When the

Table 1. First four-order dimensionless natural frequencies of the nonrotating plate with different boundary conditions.

Boundary condition

Natural

frequency N ¼ 9 N ¼ 10 N ¼ 11 N ¼ 13 N ¼ 15 Results in Ni37

Simply supported x1 4.943 4.943 4.943 4.943 4.943 4.997

x2 29.782 29.776 29.775 29.774 29.774 29.76

x3 73.126 74.469 74.291 74.294 74.293 74.20

x4 151.833 134.344 139.770 138.611 138.578 –

Clamped x1 10.226 10.226 10.226 10.225 10.225 10.21

x2 39.803 39.810 39.810 39.811 39.811 39.78

x3 89.955 89.134 89.192 89.194 89.194 89.10

x4 170.414 160.884 158.051 158.351 158.352 158.13

Free x1 0 0 0 0 0 0

x2 9.026 9.023 9.024 9.023 9.023 9.084

x3 38.609 38.583 38.523 38.523 38.523 38.55

x4 84.729 88.412 88.289 87.915 87.935 87.80
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angular speed c ¼ 0, the first two-order dimensionless complex frequencies x1 and x2 are real numbers, as shown

in Table 2. The first two-order dimensionless natural frequencies of the nonrotating circular plate in the case of

thermoelastic coupling are larger than those in the case of the uncoupling. The reason is that the dimensionless

thermoelastic coupling coefficient w > 0 is equivalent to the increasing of the flexural rigidity of the plate. As the

dimensionless angular speed increases, the real parts of x become smaller, while their imaginary parts are zero.

When the dimensionless angular speed reaches a certain critical speed shown in Table 3, the real parts in the first-

order and second-order modes become zero, but their imaginary parts have two branches. The result shows that

the divergence instability appears in the first-order and second-order modes of the rotating circular plate when the

dimensionless angular speed is larger than the critical divergence speed.
Figure 6 indicates the variation of the first-order complex frequency of the rotating circular plate in friction

clutch with the dimensionless thermoelastic coupling coefficient w for c ¼ 3:96 (the critical divergence speed in

first-order mode when w ¼ 0), c ¼ 2 and c ¼ 6. In the case of c ¼ 3:96, the real part increases gradually from zero

to positive values as w increases, while its imaginary part is zero. This result is consistent with the critical diver-

gence speed in Wang et al.,5 which proves the correctness of the calculation in this study. In the case of

c ¼ 2 < 3:96, the increase in w leads to the increase of the real part of the first-order complex frequency,

while its imaginary part is zero. In the case of c ¼ 6 > 3:96 and w < 0:51, the real part of the first-order complex

frequency remains zero with the increase of w, while two branches appear in its imaginary part. The rotating

circular plate exhibits divergence instability until the two branches of the imaginary part merge with each other at

w ¼ 0:51. In the case of c ¼ 6 > 3:96 and w > 0:51, Re xð Þ > 0 and Im xð Þ ¼ 0 indicate the stability of the rotating
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Table 2. First two-order dimensionless natural frequencies of the rotating circular plate in friction clutch (c ¼ 0).

w1 ¼ 0 w2 ¼ 0:1 w3 ¼ 0:3

x1 4.943 5.184 5.642

x2 29.774 31.272 33.915
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circular plate in the first-order mode. w ¼ 0:51 is the critical dimensionless thermoelastic coupling coefficient in

the first-order mode for c ¼ 6.
Figure 7 presents the variation of the second-order complex frequency of the rotating circular plate in friction

clutch with the dimensionless thermoelastic coupling coefficient for c ¼ 101:9 (the critical divergence speed in

second-order mode when w ¼ 0), c ¼ 50 and c ¼ 150. By comparing Figures 7 and 6, we can see that the effect of

the angular speed on the second-order complex frequency is similar to that on the first-order complex frequency.

In the case of c ¼ 101:9 and c ¼ 50 < 101:9, the real part remains positive values, while its imaginary part is zero.

This result indicates that the rotating circular plate is stable. In the case of c ¼ 150 > 101:9, w ¼ 0:47 is the critical

dimensionless thermoelastic coupling coefficient in the second-order mode for c ¼ 150 and denotes the critical

point from the instability and stability.
Figure 8(a) and (b) shows the effects of the dimensionless thermoelastic coupling coefficient on the first two-

order critical divergence speeds. It can be seen in Figure 8 that, with the increase of the dimensionless thermo-

elastic coupling coefficient, the first two-order critical divergence speeds of the rotating circular plate with simply

supported edge increase.

Rotating circular plate in friction clutch with clamped edge

Figures 9 and 10 show the variation of the first two-order dimensionless complex frequencies x of the rotating

circular plate in friction clutch with the dimensionless angular speed for w1 ¼ 0, w2 ¼ 0:1 and w3 ¼ 0:3.

Table 3. Critical divergence speed of the circular plate in the first-order and second-order modes (simply
supported edge).

w1 ¼ 0 w2 ¼ 0:1 w3 ¼ 0:3

c1 3.96 4.32 5.16

c2 101.9 112.1 132.5
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An increase in the dimensionless angular speed causes the real parts of x to increase firstly and then decrease;

subsequently, their imaginary parts become two branches. The result notes that the first two-order modes exhibit

the divergence instability. This instability of the rotating circular plate in clutch with clamped edge is similar to

that with simply supported edge. Table 4 presents the critical divergence speeds in the first-order and second-

order modes.
Figures 11 and 12 indicate the variation of the first two-order dimensionless complex frequencies x of the

rotating plate in clutch with the dimensionless thermoelastic coupling coefficient for a certain angular speed,

respectively. By comparing Figures 11 and 12 with Figures 6 and 7, we can see that the change curve of x with the

dimensionless thermoelastic coupling coefficient of the clamped plate is similar to that of the simply supported

plate. When the angular speed (c ¼ 39:1, c ¼ 20, c ¼ 205:9 and c ¼ 100) is less than or equal to the critical angular

speed (w1 ¼ 0), the first-order and second-order modes of the rotating circular plate in clutch remain stable. When

the angular speed (c ¼ 100 and c ¼ 250) is larger than the critical angular speed, the first-order and second-order
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modes change from divergence instability to stability with the increase of the dimensionless thermoelastic coupling

coefficient. The critical dimensionless thermoelastic coupling coefficients existing in the first-order and second-

order modes are not only dependent on the boundary condition but also affected by the angular speed.
Figure 13(a) and (b) shows the variation of the first two-order critical divergence speed with the dimensionless

thermoelastic coupling coefficient. With the increase of the dimensionless thermoelastic coupling coefficient, the

first two-order critical divergence speeds of the rotating circular plate with clamped edge increase.

Rotating circular plate in friction clutch with free edge

Figures 14 and 15 show the variation of the first two-order dimensionless complex frequencies x of the rotating

circular plate in friction clutch with the dimensionless angular speed for w1 ¼ 0, w2 ¼ 0:1 and w3 ¼ 0:3. As shown

in Figures 14 and 15, the real parts of the first two-order complex frequencies of the rotating circular plate increase

with the increase of the dimensionless angular speed. In addition, the real parts increase with the increase of the

dimensionless thermoelastic coupling coefficient for the same angular speed, while their imaginary parts are zero.

Therefore, the critical divergence speed and critical dimensionless thermoelastic coupling coefficient do not exist,

and the instability does not occur. The reason is that the normal in-plane forces Nr and Nh for a completely free

plate subject to a linearly distributed radial inertial force are tensile stresses. With the increase of the angular

speed, Nr and Nh increase linearly, and the deflection of circular plate decease; thus the real parts increase.

Table 4. Critical divergence speed of the rotating circular plate in the first-order and second-order modes
(clamped edge).

w1 ¼ 0 w2 ¼ 0:1 w3 ¼ 0:3

c1 39.1 43.0 50.8

c2 205.9 226.5 267.5
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Conclusions

The rotating circular plate in friction clutch of the Shaanxi XUST-18 explosion-proof mineral locomotive is
selected to examine. The thermoelastic coupling transverse vibration and stability of the rotating circular plate
in friction clutch with three boundaries are investigated by DQM. The effects of the dimensionless angular speed,
the dimensionless thermoelastic coupling coefficient and the boundary condition on transverse vibration and
stability are discussed. The results are listed as follows:

1. As the dimensionless angular speed increases, the real parts of the first two-order dimensionless complex
frequencies decrease to zero under the boundary condition of simple supported edge. However, the real
parts increase firstly and then decrease to zero under the boundary condition of clamped edge and increase
in the range of positive values under the boundary condition of free edge.

2. The first two-order modes exhibit divergence instability under the boundary conditions of simple supported
and clamped edges, and the corresponding critical divergence speed in the case of thermoelastic coupling is
larger than that in the case of uncoupling. With the increase of the dimensionless thermoelastic coupling

0 0.1 0.2 0.3 0.4 0.5
35

40

45

50

55

60
(a) (b)

ψ

1s
t c

rit
ic

al
 d

iv
er

ge
nc

e 
sp

ee
d

0 0.1 0.2 0.3 0.4 0.5
200

220

240

260

280

300

320

ψ

2n
d 

cr
iti

ca
l d

iv
er

ge
nc

e 
sp

ee
d

Figure 13. First two-order critical divergence speeds versus dimensionless thermoelastic coupling coefficient: (a) first order and (b)
second order.

0 20 40 60
0

10

20

30

40

50

c

R
e 

(ω
)

ψ
ψ
ψ

=0

=0.1

=0.3

10 12 14
20

25

0 20 40 60
-1

-0.5

0

0.5

1

c

Im
 (

 ω
 )

ψ =0

ψ =0.1

ψ =0.3

Figure 14. First-order dimensionless complex frequency versus dimensionless angular speed (free edge).

R
e 

(ω
)

0 20 40 60
20

40

60

80

100

c

=0

=0.1

=0.3

ψ
ψ
ψ

0 20 40 60
-1

-0.5

0

0.5

1

c

Im
 (

 ω
 )

ψ =0

ψ =0.1

ψ =0.3

Figure 15. Second-order dimensionless complex frequency versus dimensionless angular speed (free edge).

Yang et al. 571



coefficient, the critical divergence speed increases under the boundary conditions of simple supported and

clamped edges. However, the instability does not occur under the boundary condition of free edge, and the

critical divergence speed does not exist.
3. When the dimensionless angular speed is larger than the critical divergence speed (w ¼ 0), the critical dimen-

sionless thermoelastic coupling coefficient exists under the simple supported and clamped edge boundary

conditions. The critical dimensionless thermoelastic coupling coefficient is affected not only by the boundary

conditions but also by the angular speed.

From these results, this study provides a theoretical basis for optimizing the structure of the friction circular

plate in clutch and improving working condition stability for friction clutch.
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