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Abstract

An axially moving printing web with variable density in a printing process causes a geometric nonlinear vibration, and a

nonlinear vibration system is established using the von Karman nonlinear plate theory and the D’Alembert principle. The

time and displacement variables are separated using the Galerkin method. The ordinary differential equation of a web is

solved using the method of multiple scales. The amplitude–frequency response equation of a moving web is obtained.

The time histories, phase–plane portraits, and amplitude–frequency curves of the system are obtained by numerical

calculations. The influence of different dimensionless speeds and variable density coefficients on the nonlinear vibration

characteristics of the printing web is analyzed. The results show that the overprinting accuracy can be ensured by making

a reasonable choice of web speed in the stable region.
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Introduction

In printing, each printout varies in its image distribution. As a result, the surface density of the printing web that

corresponds to each printout is different. In addition, the ink and fountain solution used during the printing

process will affect the density of the web, and the vibration characteristics of a rapidly moving web will change.

In this manner, the web is prone to wrinkling, tearing, and surface scratches. As a result, the overprinting

precision and printing quality will decrease.1 Therefore, to establish an efficient and stable form of vibration

control for a web during printing, it is of vital importance to investigate the nonlinear vibration characteristics of a

web with varying density.
Many researchers have published articles on nonlinear vibration characteristics and stability of an axially

moving system. Chen et al.2,3 analyzed a system of strings in axial motion. Kesimli et al.4 analyzed the character-

istics of nonlinear vibration produced by an axially moving string with multiple supports. Additional investiga-

tions were performed on variable speed using the multi-time scaled method. Ghayesh and Amabili5,6 examined the

nonlinear vibration of an axially moving beam with an intermediate spring support and a time-dependent axial

speed. Tang et al.7 investigated the steady-state and oscillating responses and the stability and bifurcation of a
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beam using the method of multiple scales. Liu et al.8 developed an optimal delayed feedback control method to

mitigate the primary and superharmonic resonances of a flexible simply supported beam using piezoelectric

sensors and actuators. Nonlinear vibration control of electrostatically actuated nanobeams with nanocapacitive

sensors was studied, and the primary and superharmonic resonances were considered by Gong et al.9 Iman et al.10

presented his findings with regard to free vibrations and rotational dynamics of rotating annular circular thin

plates, and the research used the von Karman nonlinear plate theory as a basis. Yuan et al.11 studied precise

solutions with regard to non-axisymmetric vibrations of radially inhomogeneous circular Mindlin plates with

variable thickness. The method of multiple scales was used by Tang et al.12 to study the dynamic stability of

accelerated plates with longitudinally varying tensions. The translating speed, aspect ratio, and boundary con-

ditions had significant effects on the free in-plane vibration, and the out-of-plane vibration of a moving membrane

was investigated by Shin et al.13,14 Banichuk et al.15 studied the dynamics and stability of a moving web subjected

to tension that was not homogeneous. The results showed that tension inhomogeneities can reduce the critical

velocity, and even a slight inhomogeneity in the tension may largely affect the divergence forms. Marynowski16,17

applied the Galerkin method and fourth-order Runge–Kutta method to analyze the nonlinear vibration and

stability of an axial paper web. Kulachenko et al.18 studied the dynamic behavior of a paper web by considering

transport velocity and the surrounding air by a finite element procedure. Lin and Mote19 investigated the vibra-

tion produced by an axial web with a small bending stiffness subjected to transverse loading based on membrane

theory and linear plate theory. Soares and Gonçalves20 examined the nonlinear vibration of a pre-stretched hyper-

elastic annular web under finite deformations by the shooting method and the finite element method. Gajbhiye

et al.21 studied a large deflection vibration of a rectangular, flat thin membrane using the finite element method. Li

et al.22 presented findings on the stochastic dynamic response and reliability of a web structure subjected to impact

load by using the perturbation method and the moment method.
Of the studies reported in the literature, only a few have studied the nonlinear vibration characteristics of a

moving printing web with varying density. Recently, there have been many publications dealing with linear

vibration of a membrane with variable density. Subrahmanyam and Sujith23 investigated the vibration of an

annular membrane with continuously changing density. Jabareen and Eisenberger24 applied the dynamic stiffness

method to analyze the transverse vibration of a non-homogeneous membrane with variable density. Willatzen25

established a general quasi-analytical model based on the Frobenius power series expansion method to analyze the

vibrations of solid circular and annular membranes with continuously varying density. Buchanan26 analyzed the

stability of a circular membrane with linearly varying density in the radial direction. Ma et al.27 employed a sub-

optimal control method to control the linear vibration of a moving web with variable density.
In addition, many studies have developed advanced methods of nonlinear equations, such as the homotopy

perturbation method. El-Dib28 developed the multiple scales homotopy perturbation method, and the method

could solve various nonlinear oscillators effectively. He29–31 investigated some advanced asymptotic techniques to

solve nonlinear equations, such as the variational iteration method and the homotopy perturbation method. The

asymptotic techniques were valid not only for weakly nonlinear equations but also for strongly nonlinear equa-

tions. Li and He32 investigated the enhanced perturbation method, and the results showed that very high accuracy

of the solution was obtained by the higher-order homotopy perturbation method, and the obtained frequency was

valid for the whole solution domain. Yu et al.33 applied the homotopy perturbation method to solve the homo-

topy equation with one or more auxiliary parameters; this method can be extended to other nonlinear problems.

Wang and An34 used fractional oscillators to describe noise in nonlinear vibration systems, and they discussed

that fractional nonlinear oscillators can also be solved by the homotopy perturbation method.
In the following research, nonlinear vibration and stability of a moving printing web with variable density

based on von Karman nonlinear plate theory are investigated. The method of multiple scales is adopted to solve

the differential equations, and the effects of the density coefficient and moving speed on the nonlinear vibration of

a web with variable density are analyzed.

Nonlinear vibration model of a moving printing web

Figure 1 shows the principle model of a moving paper web. The web is soft and has no bending stiffness. The web

moves in the x direction with a speed of v; the width direction of the web is in the y direction; and the transverse

vibration direction is in the z direction. Supposing �w x; y; tð Þ represents the displacement of transverse vibration of the

web, Tx and Ty denote the pulling or dragging forces acting along the length of the web at the boundaries in the x and

y directions, respectively, a is the web length, and b is the web width.
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Figure 2 shows the law of a moving paper web with varying density, where q yð Þ is the surface density of the web
changing in the y direction. Supposing b is the density coefficient, the initial value of the surface density is q0, and
the density function of the web is defined as

qðyÞ ¼
q0 1þ 2b

y

b

� �
0 � y � b

2

� �

q0 1þ 2b� 2b
y

b

� �
b

2
� y � b

� �
8>>>><
>>>>:

(1)

Another form of q (y) is

q yð Þ ¼ q0 1þ bð Þ � 2bq0
y

b
� 1

2

����
���� (2)

According to von Karman nonlinear plate theory,35 nonlinear vibration equations can be stated as follows, and
nonlinear oscillation equations can also be obtained by the variational principle36–38
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Substituting equation (2) into equation (3), the differential equations of the nonlinear vibration of a moving
paper web with varying density are obtained
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Figure 2. Moving paper web with varying density in the lateral direction.
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Figure 1. The mechanical model of an axially moving paper web.
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The dimensionless quantities are defined as

n ¼ x

a
; g ¼ y

b
; w ¼ �w

h
; s ¼ t

ffiffiffiffiffiffiffiffiffi
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q0a4

s
;
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ffiffiffiffiffiffiffiffiffi
q0a

2
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b
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Eh3

(5)

The dimensionless form of equation (4) is
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The boundary conditions of a moving web can be given as

n ¼ 0; 1 :
@2f

@g2
¼ 1;

@2f

@n@g
¼ 0; x ¼ 0 (7)

g ¼ 0; 1 :
@2f

@n2
¼ 1;

@2f

@n@g
¼ 0; x ¼ 0 (8)

Separation of variables by the Galerkin method

When considering partial differential equations of a nonlinear system, the Galerkin method can be used to

separate the time variable and displacement variables. Respectively, they are as follows

w n; g; tð Þ ¼ W n; gð Þq tð Þ (9)

f n; g; tð Þ ¼ F n; gð Þq2 tð Þ (10)

The displacement function that satisfies the boundary conditions is defined as

W n; gð Þ ¼ sinpn sinpg (11)

Substituting equation (11) into equation (4) yields
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2
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The solution of equation (12) is
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32
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32r2
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Substituting equations (9) to (13) into equation (6) by adopting the Galerkin method, we obtain
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The state equation of the nonlinear vibration of a printing web with varying density is obtained

A€q þ B _q þ CqþDq3 ¼ 0 (15)

where
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Equation (15) can be written as

€q � p2c2qþ p6 1þ r4ð Þ
16p2 þ 8p2bþ 32b

q3 ¼ 0 (17)

The method of multiple scales analysis

The method of multiple scales3,28 is used to solve the ordinary differential equation of the nonlinear free vibration

of a printing web with variable density.
Equation (17) can be written as

€q þ x0
2q ¼ �kq3 (18)

where

x0
2 ¼ �p2c2

�k ¼ � p6 1þ r4ð Þ
16p2 þ 8p2bþ 32b

(19)

Suppose that T0 ¼ t and T1 ¼ et represent the fast and slow time scales, respectively. Supposing �k ¼ ek, where
e is a small parameter, then introducing a small parameter to equation (18)

€q þ x0
2q ¼ ekq3 (20)

Supposing the solution of equation (20) is

q ¼ q1 T0;T1Þ þ eq2 T0;T1ð Þ�
(21)

Substituting equation (21) into equation (20) yields

D0
2 þ 2eD0D1

� �
q1 þ eq2½ � þ x0

2 q1 þ eq2ð Þ ¼ ek q1 þ eq2ð Þ3 (22)
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The same power coefficients of e are equal, and linear differential equations of each order are obtained

D0
2q1 þ x0

2q1 ¼ 0 (23a)

D0
2q2 þ x0

2q2 ¼ kq1
3 � 2D0D1q1 (23b)

The solution of equation (23a) is written in the plural form28

q1 ¼ A T1ð Þeix0T0 þ �A T1ð Þe�ix0T0 (24)

where A is the pending plural, and �A is the conjugate plural. Substituting equation (24) into equation (23b),
we obtain

D0
2q2 þ x0

2q2 ¼ 3kA2 �A � 2ix0D1A
� 	

eix0T0 þ kA3e3ix0T0 þ cc (25)

To eliminate the secular terms, the function A should satisfy

3kA2 �A � 2ix0D1A ¼ 0 (26)

The solution of equation (25) can be expressed as

q2 ¼ � k

8x0
2
A3e3ix0T0 þ cc (27)

The derivative of the amplitude A with respect to t is expressed as

dA

dt
¼ D0Aþ eD1A (28)

where D0A ¼ 0, and D1A is determined by equation (26). Then, we obtain

dA

dt
¼ � 3eik

2x0
A2 �A (29)

The amplitude function A can be written in exponential form

A tð Þ ¼ 1

2
a tð Þeih tð Þ (30)

Substituting equation (30) into equation (29) yields

1

2
_aeih þ 1

2
ai _heih ¼ � 3eik

2x0
� 1
4
a2e2ih � 1

2
ae�ih ¼ � 3iek

16x0
a3eih (31)

Then first-order ordinary differential equations of aðtÞ and hðtÞ can be obtained

_a ¼ 0 (32a)

_h ¼ � 3eka2

8x0
(32b)

Equations (32a) and (32b) are integrated to obtain
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a ¼ a0 (33a)

h ¼ � 3eka02

8x0
tþ h0 (33b)

The integral constants a0 and h0 in equation (33) depend on the initial conditions, and then substituting
equation (33) into equation (30), we have

A tð Þ ¼ 1

2
a0e

i �3eka2
8x0

tþh0


 �
(34)

Substituting equation (34) into equations (24) and (27) yields

q1 ¼ 1

2
a0e

i �3eka0
2

8x0
tþh0


 �
eix0t þ cc ¼ a0cosu (35)

q2 ¼ � ka0
3

64x0
2
a0e

3i �3eka0
2

8x0
tþh0


 �
e3ix0t þ cc ¼ � ka0

3

32x0
2
cos3u (36)

where

u ¼ � 3eka02

8x0
þ x0

� �
tþ h0 (37)

An approximate solution of the nonlinear differential equation of a printing moving web is obtained by
substituting equations (35) and (36) into equation (21)

q ¼ q1 þ eq2 ¼ a0 cosu� eka03

32x0
2
cos3u (38)

Therefore, the frequency formulation is

x ¼ x0 � 3ek
8x0

a2 (39)

Comparing the equation (39) to the variational iteration method given by He29 and using the same method to
calculate equation (18), the frequency formulation is the same as equation (39), and the results are given in
Appendix 1. The results show that the present method in this paper gives exactly the same results as the
method of He.29

In addition, the method of multiple scales gives exactly the same results as the Lindstedt–Poincare method in
Chen and Cheung.39

The amplitude–frequency response equation of the system can be expressed as

as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sð Þ 8x0

2

3eka02

s
(40)

where

as ¼ a

a0
; s ¼ x

x0
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Analysis of results

The nonlinear free vibration characteristics of the printing web are calculated and analyzed. The basic parameters

of the paper web are those commonly used in printing.

Amplitude–frequency characteristics

Nonlinear free vibration amplitude–frequency curves of the axially moving printing web with variable density are

shown in Figure 3, when a0¼ 1, h0¼ 0, r¼ 0.5, c¼ 0.8, and the density coefficients are 0.3, 0.6, and 0.9. Figure 3

shows that when the frequency s � 1, the real part of the amplitude of as is zero; when s > 1, the amplitude of as
increases gradually. The amplitude of the system increases with increasing the density coefficient. As a result, the

system is more stable with a decrease in the density coefficient.
Figure 4 shows the nonlinear free vibration amplitude–frequency curves of the axially moving printing web

with variable density when a0¼ 1, h0¼ 0, r¼ 1, b ¼ 0:6, and the dimensionless speeds are 0.3, 0.5, and 1. Figure 4

shows that the amplitude of the system increases with increasing dimensionless speed. This indicates that the

system is more stable with decreasing dimensionless speed.
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1.5
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Figure 3. The amplitude–frequency curves of the system for different density coefficients.
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Figure 4. The amplitude–frequency curves of the system for different speeds.
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Time histories and phase–plane portraits

Figure 5 shows the time histories and phase–plane portraits of the axially moving printing web with variable
density when a0¼ 1, h0¼ 0, c¼ 0.5, b¼ 0.6, and the aspect ratio is 0.5, 1.3, and 1.5. It can be seen from Figure 5
that when the dimensionless speed c remains constant and the aspect ratio r gradually increases, the system moves
from single periodic motion into multiple periodic motion.

Figure 6 shows the time histories and phase–plane portraits of the axially moving printing web with variable
density when a0¼ 1, h0¼ 0, r¼ 0.3, b¼ 0.6, and the dimensionless speed is 0.5, 1.5, and 2.5. It can be seen from
Figure 6 that when the aspect ratio r remains constant and the dimensionless speed c increases, the system
gradually moves from single periodic motion to multiple periodic motion.
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Figure 5. The time histories and phase–plane portraits for different aspect ratios: c¼ 0.5, r¼ 0.5; c¼ 0.5, r¼ 1.3; c¼ 0.5, r¼ 1.5.
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Conclusions

In this paper, the nonlinear vibration characteristics and stability of a moving printing web with variable density
are studied by applying the method of multiple scales. The conclusions are as follows:

1. The system becomes more and more stable with decreasing density coefficient and dimensionless speed.
2. When the dimensionless speed c remains constant and the aspect ratio r gradually increases, the system moves

from single periodic motion into multiple periodic motion.
3. When the aspect ratio r remains constant and the dimensionless speed c increases, the system gradually moves

from single periodic motion into multiple periodic motion.
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Figure 6. The time histories and phase–plane portraits for different dimensionless speeds: r¼ 0.3, c¼ 0.5; r¼ 0.3, c¼ 1.5;
r¼ 0.3, c¼ 2.5).
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According to the above analysis, it can be concluded that to reduce the influence of transverse vibration on the

overprint accuracy and quality of a printing web, we can make a reasonable choice of web speed in the

stable region.
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Appendix 1

Here, the method of multiple scales is compared to the variational iteration method given by He29

Equation (17) can be written in the following form

€q þ x0
2q ¼ ekq3 (41)

The equation (41) can be expressed as

€q þ x0
2qþmq3 ¼ 0 (42)

where

m ¼ �ek

The initial conditions are q 0ð Þ ¼ A; _q 0ð Þ ¼ 0 .
Supposing that the frequency of the system is x, equation (42) can be expressed as

€q þ x2qþg qð Þ ¼ 0 (43)

where
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g qð Þ ¼ x0
2 � x2

� 	
qþmq3

The following equation is obtained by using the variational iterational method

qnþ1 tð Þ ¼ qn tð Þ þ
Z t

0

k qn
00 sð Þ þ x2qn sð Þ þ ~g qnð Þ

n o
ds (44)

where ~g is considered as a restricted variation, i.e. d~g¼0.
Calculating the variation with respect to qn and noting that d~g qnð Þ¼0, the following equations are obtained

k00 sð Þþx2k sð Þ¼0

k sð Þ s¼t ¼ 0j
1� k0 sð Þ s¼t ¼ 0j

8><
>: (45)

The solution of equation (45) is identified as

k ¼ 1

x
sinx s� tð Þ (46)

Equation (44) is changed to the following formula

qnþ1 tð Þ ¼ qn tð Þ þ 1

x

Z t

0

sinx s� tð Þ qn
00 sð Þ þ x0

2qn sð Þ þmqn
3 sð Þ

� 

ds (47)

The initial solution is assumed to be

q0 tð Þ ¼ A cosxt (48)

Substituting equation (48) into equation (42) yields

R0 tð Þ ¼ x0
2 � x2 þ 3

4
mA2

� �
A cosxtþ 1

4
mA3cos 3xt (49)

According to equation (47), we obtain

q1 tð Þ ¼ A cosxtþ 1

x

Z t

0

R0 sð Þsinx s� tð Þds (50)

The secular terms must be avoided

x0
2 � x2 þ 3

4
mA2 ¼ 0 (51)

The first-order approximate solution is expressed as

q1 tð Þ ¼ A cosxtþmA3

4x

Z t

0

cos 3xt sinx s� tð Þds ¼ A cosxtþ mA3

32x2
cos 3xt� cosxtð Þ (52)

1108 Journal of Low Frequency Noise, Vibration and Active Control 38(3–4)



The frequency formulation is obtained as follows

x ¼ x0 þ 3m

8x0
A2 (53)

Because A ¼ a and m ¼ �ek

x ¼ x0 � 3ek
8x0

a2 (54)

Therefore, equation (54) displays excellent agreement with the equation (39) in this paper. The method gives
exactly the same results as the method of multiple scales in our paper.
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