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Nonlinear forced vibration of a moving
paper web with varying density
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Abstract
The study investigates the forced nonlinear vibration characteristics of an axially moving printing paper web with variable
density in the lateral direction. The nonlinear governing equations of the web can be obtained by the von Karman large
deflection thin plate theory. The vibration equations are discretized using the Bubnov–Galerkin method. The fourth-
order Runge–Kutta technique is used to solve the differential equations of the nonlinear system. The phase-plane dia-
grams, time histories, bifurcation graphs, Poincare maps, and power spectrum are employed to analyze the influence of
density coefficient, velocity, and aspect ratio on the nonlinear dynamic behavior of the moving paper web. The stable
working region and the divergence instability region of the web are obtained. The research provides a theoretical foun-
dation for improving the dynamic stability of a moving paper web.
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Introduction

In printing, the surface density of a printing web corre-
sponding to each printout is different. In addition, the
ink and fountain solution used during the printing pro-
cess will affect the density of the web surface, and the
uneven thickness of the substrate will change surface
density, the vibration characteristics of printing webs
will change, and in this manner, the web is prone to
wrinkling, tearing, and surface scratches; as a result, the
overprint accuracy and printing quality will reduce.1

Therefore, it is important to investigate the nonlinear
vibration characteristics of a web with variable density.

The axially moving systems include plates, beams,
strings, and webs. Many scholars have studied the
dynamics of axially moving systems. Specifically, math-
ematical modeling, solution methods, parameter vibra-
tions, external excitation systems, elastic supports, and
different boundary conditions are mainly analyzed in
axially moving systems. Mote2 first discussed the

nonlinear vibration problem of axially moving strings,
and the effect of axial velocity on vibration was empha-
sized. Wickert and Mote3 then studied the response of
moving loads on moving strings. Pakdemirli et al.4

studied the transverse vibration of axially accelerated
strings. The equation was established based on
Hamilton’s principle, and the Galerkin method was
applied to discretize partial differential equation. The
Floquet theory was used to analyze the stability of

1Faculty of Printing, Packaging and Digital Media Engineering, Xi’an

University of Technology, Xi’an, China
2Faculty of Mechanical and Precision Instrument Engineering, Xi’an

University of Technology, Xi’an, China
3Faculty of Civil Engineering and Architecture, Xi’an University of

Technology, Xi’an, China

Corresponding author:

Jimei Wu, Faculty of Printing, Packaging and Digital Media Engineering,

Xi’an University of Technology, Xi’an 710048, China.

Email: wujimei1@163.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://doi.org/10.1177/1687814019851004
https://journals.sagepub.com/home/ade
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1687814019851004&domain=pdf&date_stamp=2019-05-20


strings. Chen et al.5–7 systematically studied the non-
linear vibration characteristics of axially moving viscoe-
lastic strings based on the fourth-order Galerkin
truncation and the method of multiple scales. The
effects of average speed, speed, and speed variation fre-
quency on system stability were analyzed. Kesimli
et al.8 analyzed the characteristics of nonlinear vibra-
tion of a multi-supported axially moving string.
Pellicano and Vestroni9 investigated the nonlinear
dynamics of simply supported beams, bifurcation, and
stability analysis on the subcritical and supercritical
velocity ranges. Öz et al.10 applied the method of multi-
ple scales to study the nonlinear vibration characteris-
tics of axially moving beams. Ghayesh and
colleagues11–13 systematically studied the nonlinear
dynamics of beams with variable velocity and inter-
mediate elastic support, and the nonlinear resonance
response and global dynamics of the system at subcriti-
cal velocity were also studied. Tang et al.14 studied the
nonlinear steady-state oscillation response of axially
accelerated viscoelastic beams by the method of multi-
ple scales. Yang et al.15 applied the finite element
method to study the linear free vibration and nonlinear
forced vibration of axially moving viscoelastic plates.
Wang et al.16 studied the dynamic characteristics and
stability of a paperboard with elastic point support and
elastic edge constraint. The extended Hamilton princi-
ple was used to establish the equation of the system,
and the meshless Galerkin method was used to discre-
tize equation. The critical speeds were obtained in dif-
ferent conditions. Wang and Zu17 analyzed the effects
of some key parameters on nonlinear behaviors of func-
tionally graded rectangular plates with porosities and
moving in thermal environment using the method of
harmonic balance. Marynowski18,19 applied the
Galerkin method and the fourth-order Runge–Kutta
technique to analyze nonlinear vibration and stability
of an axially moving paper web. Lin and Mote20 inves-
tigated the nonlinear vibration of a web with little bend-
ing stiffness and subjected to a transverse load. Zhao
and Wang21 analyzed the large deflection vibration of a
web by the Galerkin method and the differential quad-
rature method. Soares and Goncxalves22 examined the
nonlinear vibration of a pre-stretched hyper-elastic
annular web under finite deformations by the shooting
method and the finite element method. Gajbhiye et al.23

studied the large deflection vibration of a rectangular,
flat thin membrane using finite element method. Li
et al.24 investigated the stochastic dynamic response
and reliability analysis of orthotropic membrane struc-
tures under impact loading by the perturbation method.
In addition, the influence of parameters such as impact
velocity, preload, and radius on structural reliability
was also analyzed.

Recently, there have been many publications dealing
with the linear vibration of the membrane with variable
density, but few publications about the forced nonlinear
vibration characteristics of a printing web with variable
density. Jabareen and Eisenberger25 investigated the
transverse vibration of a non-homogeneous membrane
with variable density by the dynamic stiffness method.
Subrahmanyam and Sujith26 analyzed the perpendicu-
lar movements resulting in vibration of annular mem-
branes with continuously variable density. Willatzen27

established a general quasi-analytical model based on
the Frobenius power series expansion method to ana-
lyze the vibration of solid circular and annular mem-
branes with continuously varying density. Ma et al.28

studied the vibration control of the moving web with
variable density by the sub-optimal control method.
Buchanan29 analyzed the stability of the circular mem-
brane with linear variation density in the diameter
direction.

In the following research, the nonlinear vibration
and stability of the moving printing paper web with
variable density in the lateral direction based on von
Karman large deflection thin plate theory are investi-
gated. The fourth-order Runge–Kutta technique is
adopted to solve the differential equations, and the
effects of the density coefficient, aspect ratio, and mov-
ing speed on the nonlinear vibration of an axially mov-
ing web with variable density are analyzed.

Establishment of vibration model of a
variable density web

Figure 1 shows the principle model of a moving paper
web; the web is soft and has no bending stiffness. The
web moves in the x-direction with a moving speed of v;
the width direction of the web is in the y-direction; and
the transverse vibration direction is in the z-direction.
Supposing �w(x, y, t) represents the displacement of
transverse vibration of the web, and Tx and Ty denote
the pulling or dragging force acting along unit length
of web at the boundaries in x and y directions, sepa-
rately; a is the web length; b is the web width; �p cos �vt

denotes the in-plane uniform external excitation; and �p
denotes the amplitude of external excitation. Figure 2
shows the law of a moving web with a variable density
in the lateral direction; the initial value of the surface
density and density coefficient is r0 and a, respectively.

Equilibrium differential equations can be
defined as30
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Elastic surface differential equation is expressed as

r
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where Nx, Ny, and Nxy denote the web inner forces per
unit length and l is the damping coefficient.

The system compatibility equation is expressed as
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where m denotes Poisson’s ratio of the web, E denotes
the elastic modulus of the web, and h is the thickness of
the web.

The inner force function of the paper web is
expressed as

Nx =
∂2u
∂y2

, Ny =
∂2u
∂x2

, Nxy =�
∂2u
∂x∂y

ð4Þ

where f corresponds to the internal force function.

The web units are independent from each other, so
the following is obtained

Nx x= 0, aj = Tx Ny y= 0, b

�� = Ty Nxy = 0 ð5Þ

According to von Karman large deflection thin plate
theory,30 the nonlinear forced vibration equations can
be stated as follows
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The density function r (y) can be denoted as

r(y)=
r0 1+ 2a

y

b
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Another form of r (y) is

r yð Þ= r0 1+að Þ � 2ar0

y

b
� 1

2

����
���� ð8Þ

Equation (8) is substituted into equation (6) to
obtain the nonlinear forced vibration equations of the
moving paper web with variable density

1+að Þr0 � 2ar0

y

b
� 1

2

����
����

� 	
∂2 �w

∂t2
+ 2v

∂2 �w

∂x∂t
+ v2 ∂

2 �w

∂x2

� �

� ∂2u
∂y2

∂2 �w

∂x2
� ∂2u

∂x2

∂2 �w

∂y2
+ l

∂�w

∂t
= �p cos �vt

ð9aÞ

∂4u
∂x4

+
∂4u
∂y4

=Eh
∂2 �w

∂x∂y

� �2

� ∂2 �w

∂x2

∂2 �w

∂y2

" #
ð9bÞ

Introduce the dimensionless quantities
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x

a
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r
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where g is the dimensionless damping coefficient.

Figure 1. Mechanical model of the axially moving web.

Figure 2. Law of a moving web with varying density.
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The dimensionless nonlinear vibration equations of
a web with variable density are obtained
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The boundary conditions can be denoted as

w j, 0ð Þ= 0

w j, 1ð Þ= 0

�
ð12Þ

w 0,hð Þ= 0

w 1,hð Þ= 0

�
ð13Þ

Separation of the variables

When considering partial differential equations of the
nonlinear system, the Bubnov–Galerkin method can be
used to separate the time variable and displacement
variable. Respectively, they are31

w j,h, tð Þ=
X‘

m= 1

X‘
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When m= n=1, we obtain

w j,h, tð Þ=W j,hð Þq tð Þ ð16Þ

f j,h, tð Þ=F j,hð Þq2 tð Þ ð17Þ

Take a displacement function to meet the boundary
conditions
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The solution of equation (19) is obtained
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Substituting equations (18) and (20) into equation
(11a) and adopting the Bubnov–Galerkin method, we
obtain
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The nonlinear vibration ordinary differential equa-
tion of the moving web with variable density can be
expressed as
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The parameter variables are introduced

X1 = q, X2 = _X1 ð28Þ

The state equation of the system is
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2p2g

2p2 +ap2 + 4a
X2 +p2c2X1

� p6

16p2 + 8p2a+ 32a
(1+ r4)X 3

1

+
32

2p2 +p2a+ 4a
p cosvt

ð29Þ

Numerical results

The fourth-order Runge–Kutta technique is used to
determine the characteristics of nonlinear vibration in a
moving printing web. The basic parameters of the print-
ing web are commonly used in the printing.

Effects of density coefficient on nonlinear vibration
characteristics

Shown in Figure 3 is the displacement bifurcation
graph of density coefficient; when the non-dimensional
excitation frequency v is 1, external excitation ampli-
tude p is 0.4, dimensionless damping coefficient g is
equal to 0.1, dimensionless speed c is 0.3, and aspect
ratio r=1, (0.01, 0) is taken as the initial value and the
range of density coefficient is 0:01 ł a ł 0:7. Figure 3
shows that when 0:01 ł a\0:405, 0:545\a\0:57, and
0:635\a ł 0:7, the bifurcation graph further illustrates
that in these regions, the web is in a state of periodic
motion, and the web is stable. When 0:405 ł a ł 0:545

and 0:57 ł a ł 0:635, the bifurcation graph shows a
stack of closely packed dense points, it is shown that
the web is in chaotic motion, and therefore, the web is
divergence instability in these regions. As a result, the
density coefficient increases, the divergence and
instability tend to occur easily, and the nonlinear
effects increase.

Figure 4 shows the bifurcation diagram of density
coefficient and displacement when the initial value is
(0.001, 0). As can be seen from Figures 3 and 4, the sys-
tem motion process is significantly different due to the
different initial values. It indicates that the nonlinear
vibration of the membrane is sensitive to the initial
conditions.

Effects of speed on nonlinear vibration characteristics

As illustrated in Figure 5, for the displacement bifurca-
tion graph of dimensionless speed, when g =0.1, r=1,
v=1, a=0.2, and p= 1, (0.01, 0) is taken as the ini-
tial value and the span of dimensionless speed is
0:1 ł c ł 0:8. Figure 5 illustrates that when
0:1 ł c ł 0:39 and 0:62\c\0:675, the bifurcation

Figure 3. Displacement bifurcation graph of density coefficient
(v = 1, g= 0.1, r = 1, c = 0.3, p = 0.4, initial value is (0.01, 0)).

Figure 4. Displacement bifurcation graph of density coefficient
(v = 1, g= 0.1, r = 1, c = 0.3, p = 0.4, initial value is (0.001, 0)).

Figure 5. Displacement bifurcation graph of speed (v = 1,
g = 0.1, r = 1, a= 0.2, p = 1).
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Figure 6. Time histories, phase-plane diagrams, Poincare maps, and power spectrum (v = 1, g= 0.1, r = 1, a= 0.2, p = 1, c = 0.36).

Figure 7. Time histories, phase-plane diagrams, Poincare maps, and power spectrum (v = 1, g= 0.1, r = 1, a= 0.2, p = 1, c = 0.42).
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graph shows only a few points, which implies the web
is in a state of periodic motion, and it is stable. When
0:39\c ł 0:62 and 0:675\c ł 0:8, the bifurcation

graph shows the irregular dense points, it is shown that
the paper web is in chaotic motion, and the web is
divergence instability in these regions. As a result, the
nonlinear effects increase with the increase in the
dimensionless speed. Therefore, we should make a rea-
sonable choice of the printing speed to avoid chaotic
motion in the printing process. Overall, the system first
from periodic motion transforms into chaotic motion,
then enters periodic motion, and finally enters chaos
motion completely.

Figures 6 and 7 show the time histories, phase-plane
diagrams, Poincare maps, and power spectrum under
different dimensionless speeds when c= 0.36 and
c= 0.42, respectively.

As seen in Figures 6 and 7, when c= 0.36, it has a
large number of regular closed graphics in the phase-
plane diagrams, the Poincare maps contain a few dis-
crete points, and power spectrum is discrete, so the sys-
tem is in multiple periodic motion. When c= 0.42, the
phase-plane diagram is not closed, the Poincare map
contains a lot of dense points, and power spectrum is
continuous, so the system is in chaotic motion.

Figure 8. Aspect ratio and displacement bifurcation graph
(v = 1, g= 0.1, c = 0.3, a= 0.2, p = 1).

Figure 9. Time histories, phase-plane diagrams, Poincare maps, and power spectrum (v = 1, g= 0.1, a= 0.2, p = 1, c = 0.3, r = 0.88).
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Figure 10. Time histories, phase-plane diagrams, Poincare maps, and power spectrum (v = 1, g= 0.1, a= 0.2, p = 1, c = 0.3, r = 0.9).

Figure 11. Time histories, phase-plane diagrams, Poincare maps, and power spectrum (v = 1, g= 0.1, a= 0.2, p = 1, c = 0.3, r = 0.98).
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Effects of aspect ratio on stability

As shown in Figure 8, for the displacement bifurcation
graph of aspect ratio, when v=1, g =0.1, c=0.3,
a=0.2, and p=1, (0.01, 0) is taken as the initial value
and 0:5 ł r ł 2. Figure 8 shows that when
0:5 ł r\1:07, 1:36\r\1:39, 1:39\r\1:5, 1:5\
r\1:57, and 1:835\r ł 2, the bifurcation graph resem-
bles to fewer points; it is specified that membrane is in
stable motion in these regions. When 1:07 ł r ł 1:36,
r = 1:39, r = 1:5, and 1:57 ł r ł 1:835, the bifurcation
graph consists of a stack of dense points, it is shown
that the web is in chaotic motion, and the web is diver-
gence instability. It is noted that when the aspect ratio
increases, the periodic motion and the chaotic motion
exchange alternately.

Figures 9–12 are all about time histories, phase-plane
diagrams, Poincare maps, and power spectrum when
r=0.88, r=0.9, r=0.98, and r=1.1, correspond-
ingly. It is clear from the figures that the aspect ratio
increases gradually, and the system transforms from a
state of double periodic motion to quadruple periodic

motion, and following this, it enters a state of multiple
periodic motion and finally ends up in a state of chaotic
motion.

Conclusion

In conclusion, the fourth-order Runge–Kutta technique
is employed to analyze the forced nonlinear vibration
of a moving paper web with variable density. The
effects of the density coefficient, speed, and aspect ratio
on the dynamic behavior of a moving paper web are
studied. It is evident that

1. When the density coefficient is the control para-
meter, the web is in a stable working region
when the density coefficient is 0:01 ł a\0:405,
0:545\a\0:57, and 0:635\a ł 0:7. When
0:405 ł a ł 0:545 and 0:57 ł a ł 0:635, the web
is in an unstable state. As a result, as the density
coefficient increases, the divergence and instabil-
ity tend to occur easily, and the nonlinear effects

Figure 12. Time histories, phase-plane diagrams, Poincare maps, and power spectrum (v = 1, g= 0.1, a= 0.2, p = 1, c = 0.3, r = 1.1).
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increase. Overall, the system has experienced
period doubling bifurcation into chaos.

2. When the dimensionless speed is the control
parameter, dimensionless speed at the regions
0:1 ł c ł 0:39 and 0:62\c\0:675 indicates the
web is stable. When 0:39\c ł 0:62 and
0:675\c ł 0:8, the web shows instability. As a
result, the nonlinear effects increase when
dimensionless speed increases. Overall, the sys-
tem first undergoes periodic motion and then
changes to chaotic motion, and following this,
it enters periodic motion again and finally
enters chaos motion completely. Therefore, it is
important to make a reasonable choice of the
printing speed to avoid divergence instability
during the printing process.

3. When the aspect ratio is the control parameter,
the aspect ratio at these regions is 0:5 ł r\1:07,
1:36\r\1:39, 1:39\r\1:5, 1:5\r\1:57, and
1:835\r ł 2, and the web is stable. When
1:07 ł r ł 1:36, r = 1:39, r = 1:5, and
1:57 ł r ł 1:835, the web is divergence instabil-
ity. Therefore, when the aspect ratio increases,
the system switches between periodic motion
and chaotic motion.
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