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For the transverse vibration problem of a fractional derivative viscoelastic rotating beam, the differential equation of the system is
obtained based on the Euler–Bernoulli beam theory and Hamilton principle. /en, introducing dimensionless quantities to
differential equations and boundary conditions, the generalized complex eigenvalue equations of the system are obtained by the
differential quadrature method. /e effects of the slenderness ratio, the viscoelastic ratio, the hub radius-beam length ratio, and
dimensionless hub speed and fractional order on the vibration characteristics of fractional derivative viscoelastic rotating beams
are discussed by numerical examples. Numerical calculations show that when the dimensionless hub speed is constant, the real
part of complex frequency increases with the increase of the fractional order, and the higher-order growth trend is more obvious.
/rough the study of displacement response at different points on the beam, it can be seen that the closer to the free end, the larger
the response amplitude. And, the amplitude of response has been attenuated, which is also consistent with the vibration law of free
vibration considering damping.

1. Introduction

With the rapid development of manufacturing industry and
mechanical structure engineering, rotating structure is more
and more widely used in mechanical engineering, such as
internal combustion engines, satellites, turbines, and CNC
machine tools.

Many scholars have made a lot of research on the dy-
namics of rotating beams. Bannerjee and Su [1] analyzed the
free vibration characteristics of Timoshenko beams by the
dynamic stiffness method and compared the results with
Euler–Bernoulli theory. In consideration of Coriolis force
and centrifugal force, Tian et al. [2] investigated the influ-
ence of hub radius, slenderness ratio, and angular velocity on
the vibration characteristics of rotating beam. Aksencer and
Aydogdu [3] studied the vibration problem of rotating
composite beams by using the Ritz method, and the effects of
several geometric factors on the vibration characteristics of
composite beams under different boundary conditions were
analyzed. Considering geometric nonlinearity, Zhang et al.
[4] studied the nonlinear vibration of a variable cross-section

viscoelastic rotating beam, which is based on Kelvin–Voigt
viscoelastic constitutive relation, and the amplitude-fre-
quency response of the rotating beam is obtained by the
multiscale method. Li et al. [5] studied the vibration char-
acteristics of a rotating FGM circular section flexible beam.
Srivatsa and Ranjan [6] solved the vibration problem of a
rotating Rayleigh beam with variable cross-section and
obtained the frequency and mode shapes of the beam by the
finite element method. Tang et al. [7] investigated the free
vibration of the rotating cone cantilever beam based on the
Hamiltonian principle, and then analyzed the effects of
angular velocity and the moment of inertia on the free vi-
bration of the system. Sofiyev and Hui [8] used FOSDT and
Donnell shell theory to study the vibration and stability of
cylindrical shells with functionally graded materials under
mixed boundary conditions and analyzed the influence of
factors such as FG distribution on the critical parameters of
FGMCSS containing MBCS. Based on FOSDTand isotropic
constitutive relation, Yao et al. [9] studied the nonlinear
dynamic response of a rotating cylindrical shell with pre-
torsion angle by using Hamilton principle, and the effects of
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excitation parameters, damping coefficient, rotational speed,
prerotation angle, and pretorsion angle on the nonlinear
dynamic response of the system were analyzed. Based on the
dynamic stiffness method, Banerjee and Jackson [10] in-
vestigated the free vibration characteristics of the rotating
cone-shaped Rayleigh beam and analyzed the effects of the
viscosity-elasticity rate on the free vibration characteristics
of the rotating conical Rayleigh beam. Based on Euler–
Bernoulli, Timoshenko, Reid, and Levison’s four different
beam theories, Chakraverty and Behera [11] used the DQM
to investigate the buckling of nanobeams and analyzed the
effects of nonlocal parameters, aspect ratio, boundary
conditions, and nonuniform parameters on the critical
buckling load parameters.

/e fractional derivative viscoelastic model is considered
to be a model that can accurately describe the constitutive
relation of viscoelastic materials, and it can describe the
mechanical behavior of materials in a wide frequency range
and determine the experimental parameters required for the
model. Based on fractional derivative theory, Gao et al. [12]
investigated the viscoelastic mechanical parameters of three
standard linear solid material properties. Tarasov [13] in-
vestigated the characteristics of fractional derivatives of
noninteger order and proposed the nonlocality principle of
fractional derivatives. Achouri et al. [14] investigated the
initial-boundary value problem of Euler–Bernoulli beam
equation with fractional derivative boundary conditions and
analyzed the existence and attenuation of its initial-
boundary value solution. Based on Euler–Bernoulli beam
theory, Ansari et al. [15] studied the geometric nonlinearity
vibration of fractional order viscoelastic nanobeams. Bah-
raini et al. [16] studied the free vibration of viscoelastic
cantilever beams with different boundary conditions under
concentrated loads and analyzed the influence of fractional
derivatives on the large deflection of viscoelastic cantilever
beams.

At present, the theory and application of the differential
quadrature method (DQM) are quite mature, and it is
mainly used to solve some problems such as high-order
differential equations with variable coefficients. Li and Ying
[17] solved the transverse vibration of elastic Euler–
Bernoulli beams under interharmonic loads by the differ-
ential quadrature method and analyzed its vibration char-
acteristics. Based on the Euler–Bernoulli beammodel, Zhang
et al. [18] studied the large deformationmechanical behavior
of members by the differential quadrature method. Cao [19]
investigated the static response of reinforced concrete (RC)
beams using the generalized differential quadrature method
by virtual work principle. /rough the differential quad-
rature method, Matbuly et al. [20] solved the free vibration
problem of functionally graded elastic beams and studied the
influence of geometric parameters on the natural frequency
of the beam. Li et al. [21] studied the dynamic properties of
viscoelastic Timoshenko beams by the differential quadra-
ture method and the nonlinear numerical method. Con-
sidering the geometric parameters, moment of inertia, and
quadratic coupling deformations of variable cross-section
beams, Wang and Li [22] studied the transverse vibration
characteristics of a rotating cone cantilever beam by using

Hamiltonian variational principle, and the DQMwas used to
solve the differential equation of motion. Based on the thin
plate theory, Zhou and Wang [23] solved the vibration
problem of variable thickness viscoelastic plates by the
differential quadrature method and studied the influence of
length to diameter ratio and thickness to diameter ratio on
the vibration of linear thickness viscoelastic plates.

In this paper, based on Euler–Bernoulli beam theory and
Hamilton principle, the vibration model and motion dif-
ferential equation of the fractional derivative viscoelastic
rotating beam are established. /e dimensionless quantity is
introduced, and the differential equations and boundary
conditions are processed in a dimensionless manner. /en,
the differential quadrature method is used to discretize the
differential equation and boundary conditions, and the
generalized complex eigenequation of the system is ob-
tained. /e effects of slenderness ratio, the hub radius-beam
length ratio, the viscoelastic ratio, dimensionless hub speed,
and fractional order on the complex frequency character-
istics of the system are analyzed.

2. One-Dimensional Fractional Kelvin–Voigt
Model Theory

/e classical Kelvin–Voigt model is composed of a spring
and a Newton viscous pot in parallel, and the stress-strain
relationship of the fractional Kelvin model is as follows:

σx(t) � Eεx(t) + ηD
α εx(t)􏼂 􏼃, (1)

where E and η are the Young’s modulus of elasticity and
damping modulus of the material, εx(t) is the Lagrange
strain of finite deformation; Dα is the Riemann-Liouville
fractional differential operator, and α is a fractional order.

Set 0≤ α≤ 1, the α order Riemann–Liouville fractional
derivative of the function f(t) defined on [0, t] is expressed
as follows [12]:

D
α
[f(t)] �

f(0)

Γ(1 − α)
t
− α

+
1
Γ(1 − α)

􏽚
t

0

f′(τ)

(t − τ)α
dτ. (2)

3. Differential Equation of Motion

3.1. Deformation Field Description. Figure 1(a) shows that
the schematic diagram of the fractional derivative visco-
elastic rotating hollow beam, which has length L of the beam,
radius a, and rotating angular velocity ω of the hub./e oxy

and OXY are the floating coordinate system and the inertial
coordinate system, respectively. /e θ represents rotation
angle of the viscoelastic beam in a wide range of motion, that
is, the rotation angle of the oxy is relative to the OXY. /e
ox-axis coincides with the axis of the viscoelastic hollow
circular section beam before deformed.

In Figure 1(b), the cross-section of the beam is a hollow
section with wall thickness h and Rn is the radius of the wall
thickness for any cross-section at the middle line. In the n − s

coordinate system, n is the normal direction and s is the
tangential direction.
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In Figure 2, ra is a radius vector of the hub, xp is the
vector diameter of any point P on the axis of a fractional
derivative viscoelastic beam relative to the point o in the
floating coordinate system when it is not deformed, and up is
a displacement vector of the point P.

/e position vector of point P relative to the point O can
be written as follows:

rp � ra + Aθ xp + up􏼐 􏼑, (3)

where

ra � a cos θ a sin θ􏼂 􏼃
T
,

xp � x 0􏼂 􏼃
T
,

Aθ �

cos θ − sin θ

sin θ cos θ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

up �

upx

upy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

u + uc + ub

w

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

�

u −
1
2

􏽚
x

0
w,x􏼐 􏼑

2
dx − yw,x

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4)

where Aθ, u, and w are the transformation matrices of the
oxy relative to the OXY, the axial displacement, and the
lateral bending deformation displacement on the beam axis,
respectively; ub � − yw,x is the axial displacement caused by
the rotation of the beam cross-section, uc � − 1/2
􏽒

x

0 (w,x)2dx is the secondary deformation coupling of the

beam, that is, the axial expansion amount caused by the
lateral bending deformation of the fractional derivative
viscoelastic rotating hollow beam, and “, x” represents the
first derivative of x.

Taking the first derivative of time for equation (3), we get
the velocity vector of point P as follows:
_rp � _ra + _θ × Aθ xp + up􏼐 􏼑 + Aθ _up

�
− a + x + uc + ub( 􏼁 _θ sin θ − w _θ cos θ + _uc + _ub( 􏼁cos θ − _w sin θ

a + x + uc + ub( 􏼁 _θ cos θ − w _θ sin θ + _uc + _ub( 􏼁sin θ + _w cos θ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

(5)

where _θ �
0 − _θ
_θ 0

􏼢 􏼣 is the antisymmetric matrix of angular

velocity _θ and “·” represents the first derivative of t.

3.2. Differential Equations of Motion. /e total kinetic en-
ergy of the system can be seen as the sum of the kinetic
energy of the hub and the kinetic energy of the fractional
derivative viscoelastic rotating beam, namely
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Figure 1: Dynamic model of fractional derivative viscoelastic rotating hollow beam. (a) Fractional derivative viscoelastic rotating hollow
beam. (b) Viscoelastic rotating hollow beam profile.

·

Y

x

O X

y

ra

A

o

rp xp

P

up

x

·

θ

Figure 2: Displacement field at any point on the beam axis.
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Ts � TH + T

�
1
2
JH

_θ
2

+
1
2
ρ􏽚

V
_rTp _rpdV

�
1
2
JH

_θ
2

+
1
3
ρI _θ

2
􏽚

L

0
w,x􏼐 􏼑

2
dx +

1
3
ρI 􏽚

L

0
_w,x􏼐 􏼑

2
dx

+
1
2

􏽚
L

0
ρA _w

2
+ _u

2
c + _θ

2
w

2
+ a + x + uc( 􏼁

2
􏽨 􏽩􏼔 􏼕dx

+ 􏽚
L

0
ρA _θ − _ucw + _w a + x + uc( 􏼁􏼂 􏼃dx,

(6)

where JH is the inertia moment of the hub with respect to the
central axis.

/e strain energy of the system can be divided into two
parts, one part is potential energy and the other part is
dissipative energy.

/e potential energy can be expressed as follows:

V0 � 􏽚
V

1
2
σxεxdV � 􏽚

V

1
2

Eε2xdV, (7)

where σx, εx, and V are the normal stress, normal strains of
the beam, and the volume of the viscoelastic beam,
respectively.

In equation (4), not considering the axial displacement
and ignoring nonlinear term, the normal strain can be
obtained by the relationship between strain and displace-
ment, namely,

εx � upx,x � −
1
2

􏽚
x

0
w,x􏼐 􏼑

2
dx − yw,x􏼔 􏼕

,x

� − y(s) − nz,s􏽨 􏽩w,xx −
1
2

w,x􏼐 􏼑
2
.

(8)

According to Figure 1(b), the geometric relations can be
obtained:

dz

ds
� − sinϕ � − sin

s

Rn

􏼠 􏼡,

dy

ds
� cos ϕ � cos

s

Rn

􏼠 􏼡.

(9)

/en, the potential energy can be expressed as follows:

Vo � 􏽚
L

0
􏽚

A

1
2

Eε2x(t)dA dx

� 􏽚
L

0
􏽚

h/2

− h/2
􏽚
πRn

0

1
2

E Rn + n( 􏼁sin
s

Rn

w,xx +
1
2
w,x􏼐 􏼑

2
􏼢 􏼣

2

·
Rn + n

Rn

ds dn dx

�
1
2

EI 􏽚
L

0
w,xx􏼐 􏼑

2
dx +

1
8

EA 􏽚
L

0
w,x􏼐 􏼑

4
dx,

(10)

where I and A are the inertia moment and the cross-sec-
tional area of the beam, respectively,

I �
1
64

π 2Rn + h( 􏼁
4

− 2Rn − h( 􏼁
4

􏽨 􏽩 �
1
4
π 4R

3
nh + Rnh

3
􏼐 􏼑,

A � π Rn +
h

2
􏼠 􏼡

2

− Rn −
h

2
􏼠 􏼡

2
⎡⎣ ⎤⎦ � 2πRnh.

(11)

/e expression of the system’s dissipative energy is

Wc � 􏽚
V

􏽚
εx(t)

0
ηD

α εx(t)􏼂 􏼃dεx(t)dV. (12)

From equation (2), the following equation can be
obtained

D
α εx(t)􏼂 􏼃 �

εx(0)

Γ(1 − α)
t
− α

+
1
Γ(1 − α)

􏽚
t

0

_εx(τ)

(t − τ)α
dτ. (13)

Substituting equation (12) into equation (13), the fol-
lowing equation can be obtained:

Wc � 􏽚
V
ηD

α εx(t)􏼂 􏼃εx(t)dV

� 􏽚
V

􏽚
εx(t)

0
η

εx(0)

Γ(1 − α)
t
− αdεx(t)dV

+ 􏽚
V

􏽚
εx(t)

0
η

1
Γ(1 − α)

􏽚
t

0

_εx(τ)

(t − τ)α
dτ dεxxdV

� ηI 􏽚
L

0
w,xxD

α
w,xx􏼐 􏼑dx +

1
4
ηA 􏽚

L

0
w,x􏼐 􏼑

2
D

α
w,x􏼐 􏼑

2
􏼔 􏼕dx.

(14)

In this paper, based on Hamiltonian variational prin-
ciple, the differential equation of fractional derivative vis-
coelastic rotating beam is derived. Hamilton’s variational
principle takes the form of

δ􏽚
t2

t1

L dt � δ􏽚
t2

t1

Ts − V0 − Wc( 􏼁dt � 0. (15)

Substituting equations (6), (10), and (14) into equation
(15) and ignoring the nonlinear term in the equation, the
vibration differential equation of the uniformly rotating
( _θ � ω0,

€θ � 0) fractional derivative viscoelastic beam can be
obtained:

− EIw,xxxx + ρA − €w + ω2
0w􏼐 􏼑 −

2
3
ρIω2

0w,xx

+
2
3
ρI €w,xx + ρAω2

0a(L − x)w,xx − ηID
α

w,xxxx􏼐 􏼑

+
1
2
ρAω2

0 L
2

− x
2

􏼐 􏼑w,xx − ρAω2
0(a + x)w,x � 0.

(16)

/e boundary conditions of the fractional derivative
viscoelastic beam are as follows:
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x � 0:

w � 0, (17a)

w,x � 0. (17b)

x � L:

EIw,xx + ηID
α
w,xx � 0, (17c)

EI
z

zx

z2w

zx2􏼠 􏼡 −
2
3
ρI

z3w

zx zt2

+
2
3
ρIω2

0
zw

zx
+ ηI

z

zx
D

α
w,xx􏼐 􏼑 � 0.

(17d)

3.3. DimensionalNormalization of the Equation. To facilitate
subsequent calculations, the following dimensionless
quantities have been introduced:

ξ �
x

L
,

W �
w

L
,

r0 �
a

L
,

r �
R

L
,

􏽥t �
t

L2
�������
(ρA/EI)

􏽰 ,

ω1 � ω0L
2

���
ρA

EI

􏽲

,

g �
η

EL2
�������
(ρA/EI)

􏽰 ,

(18)

where r0 is the hub radius-beam length ratio, r is slenderness
ratio, ω1 is dimensionless hub speed, and g is viscoelastic
ratio.

Substituting the above dimensionless quantity into
equation (16)

z4W

zξ4
+

z2W

z􏽥t
2 − ω2

1r0(1 − ξ)
z2W

zξ2
+
1
6
ω2
1r

2z
2W

zξ2

−
1
2
ω2
1 1 − ξ2􏼐 􏼑

z2W

zξ2
− ω2

1W + g
zα

z􏽥t
α

z4W

zξ4
􏼠 􏼡

−
1
6

r
2 z4W

zξ2z􏽥t
2 + ω2

1 r0 + ξ( 􏼁
zW

zξ
� 0.

(19)

/e solution of equation (19) can be set as
W(ξ,􏽥t) � W(ξ)exp(ωf

􏽥t), and the differential equation of
mode shape can be written as follows:

W,ξξξξ(ξ) + ω2
fW(ξ) − ω2

1W(ξ) +
1
6
ω2
1r

2
W,ξξ(ξ)

− ω2
1 r0(1 − ξ) +

1
2

1 − ξ2􏼐 􏼑􏼔 􏼕W,ξξ(ξ) + gωα
fW,ξξξξ(ξ)

+ ω2
1 r0 + ξ( 􏼁W,ξ(ξ) −

1
6
ω2

fr
2
W,ξξ(ξ) � 0,

(20)

where ωf is a dimensionless complex frequency.
Substituting the dimensionless quantity into equations

(17a) and –(17d), respectively, the dimensionless boundary
conditions of the fractional derivative viscoelastic beam can
be expressed as follows:

W(0) � 0, (21a)

W,ξ(0) � 0, (21b)

W,ξξ(1) + gωα
fW,ξξ(1) � 0, (21c)

W,ξξξ(1) −
1
6
r
2ω2

fW,ξ(1)

+
1
6
r
2ω2

1W,ξ(1) + gωα
fW,ξξξ(1) � 0.

(21d)

3.4. Differential Quadrature Method. When the differential
quadrature method is used to solve the equation, most of the
calculation accuracy will be determined by the selection of
the weight function. /erefore, when using this method for
calculation, the node distribution must be selected rea-
sonably. For the equations of the specific problem to be
solved, the properties of the solution region are different,
often using nonuniform node partitioning, and more mesh
points can be selected for regions close to the boundary
where the physical properties change more prominently.
And for the boundary region, the small variable δ is used for
the adjacency processing.

/e values of the nodes by nonuniform sampling
method are as follows:

ξ1 � 0,

ξ2 � δ,

ξi �
1
2

1 − cos
i − 2

N − 3
π􏼒 􏼓, i � 3, 4, . . . , N − 2,

ξN− 1 � 1 − δ,

ξN � 1,

(22)

where set δ � 1 × 10− 6 and N � 13 in subsequent
calculation.

/en the discretization of equation (20) can be written as
follows:
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􏽘

N

j�1
A

(4)
ij Wj +

1
6
ω2
1r

2
􏽘

N

j�1
A

(2)
ij Wj + gωα

f 􏽘

N

j�1
A

(4)
ij Wj

− ω2
1 r0 1 − ξi( 􏼁 +

1
2

1 − ξ2i􏼐 􏼑􏼔 􏼕 􏽘

N

j�1
A

(2)
ij Wj − ω2

1Wi + ω2
fWi

+ ω2
1 r0 + ξi( 􏼁 􏽘

N

j�1
A

(1)
ij Wj −

1
6
ω2

fr
2

􏽘

N

j�1
A

(2)
ij Wj � 0,

(23)

where A
(1)
ij , A(2)

ij , A(3)
ij , and A

(4)
ij are first-order, second-order,

third-order, and fourth-order weight coefficients,
respectively,

A
(1)
ij �

􏽑
N

k � 1
k≠i, j

xi − xk( 􏼁

􏽑
N

k � 1
k≠j

xj − xk􏼐 􏼑
, i, j � 1, 2, . . . , N; i≠ j,

􏽘

N

k�1

k≠i

1
xi − xk

, i, j � 1, 2, . . . , N; i � j,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(2)
ij � 􏽘

N

k�1
A

(1)
ik A

(1)
kj ,

A
(3)
ij � 􏽘

N

k�1
A

(1)
ik A

(2)
kj , i, j � 1, 2, . . . , N,

A
(4)
ij � 􏽘

N

k�1
A

(2)
ik A

(2)
kj .

(24)

/e discretization of the boundary conditions is

W1 � 0, (25a)

􏽘

N

j�1
A

(1)
2j Wj � 0, (25b)

1 + gωα
f􏼐 􏼑 􏽘

N

j�1
A

(2)
N− 1,jWj � 0, (25c)

􏽘

N

j�1
A

(3)
NjWj −

1
6
r
2ω2

f 􏽘

N

j�1
A

(1)
NjWj

+
1
6
r
2ω2

1 􏽘

N

j�1
A

(1)
NjWj + gωα

f 􏽘

N

j�1
A

(3)
NjWj � 0.

(25d)

Equations (23), (25a) and –(25d) can be written in
matrix form:

ω2
fM + ωα

fC + K􏼐 􏼑W � 0, (26)

where M, C, and K are all (N − 1) square matrix and
W � W2 W3 · · · WN− 1 WN􏼂 􏼃

T is column matrix.
/us, the generalized characteristic equation corre-

sponding to equation (26) can be obtained as follows:

ω2
fM + ωα

fC + K
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0, (27)

whereM, C andK contain the hub radius-beam length ratio,
the slenderness ratio, the viscoelastic ratio, the di-
mensionless hub speed, fractional order, and dimensionless
complex frequency of the system.

4. Numerical Results and Analyses

4.1. Comparison and Verification. /e correctness and fea-
sibility of the differential quadrature method used in this
paper are analyzed by comparing the numerical results with
reference [7]. In the case when g � 0, α � 0, r � 0, and
r0 � 0.125, set the dimensionless hub speed at 0, 5, and 10,
the result of the compared first three-order natural fre-
quency with reference [7] is shown in Table 1:

It can be seen from the Table 1 that when the di-
mensionless hub rotational speed ω1 is 0, 5, and 10 re-
spectively, the dimensionless natural frequency of the system
is basically the same as that of reference [7], and all errors are
below 2%.

4.2. Numerical Calculation and Analysis. Considering the
influence of moment of inertia, the effects of slenderness
ratio r, the hub radius-beam length ratio r0, viscoelastic ratio
g, dimensionless hub speed ω1, and fractional order α on the
first three-order dimensionless Im(ωf) (imaginary part of
complex frequency) and Re(ωf) (real part of complex
frequency) of the fractional derivative rotating viscoelastic
beam are analyzed.

Figure 3 plots the curves of complex frequency of the
system with the hub radius-beam length ratio at r � 1/30,
g � 0.025, ω1 � 10, and α � 1/2. And we can see that the
complex frequency of the system vary linearly with r0, and r0
is positively correlated with the Im(ωf), but negatively
correlated with the Re(ωf). With the increase of the order,
the effect of r0 on the Re(ωf) is more obvious.

Figure 4 plots the curves of complex frequency of the
system with slenderness ratio at r0 � 0.25, g � 0.025,
ω1 � 10, and α � 1/2.

And we can see that when the slenderness ratio is be-
tween 0 and 0.08, slenderness ratio has less influence on the
complex frequency of the system, and when slenderness
ratio is between 0.08 and 0.10, the Im(ωf) of the system is
negatively correlated with slenderness ratio, and the Re(ωf)

increases first and then decreases. With the increase of the
order of the system, the peak value of the Re(ωf) moves
forward.

Figure 5 plots the curves of complex frequency of the
system with viscoelastic ratio at r0 � 0.25, r � 1/30, ω1 � 10,
and α � 1/2.
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And we can see that the viscoelastic ratio has slight effect
on the Im(ωf) of the system, and with the increase of the
viscoelastic ratio, the Im(ωf) hardly changes. Meanwhile,
the viscoelastic ratio has a great influence on the Re(ωf), and

there is a positive correlation between them, and with the
increase of order, the Re(ωf) increases more obviously.
/erefore, the viscoelastic ratio can be used to describe the
damping characteristics of materials.

Table 1: Comparison of the first three dimensionless natural frequencies of elastic cantilever rotating beams at g � 0, α � 0, r � 0, and
r0 � 0.125.

ω1
0 5 10

Present Reference [7] Present Reference [7] Present Reference [7]

1st 3.515 3.507 6.302 6.425 10.953 11.159
2nd 22.029 21.647 24.951 24.973 32.122 32.965
3rd 60.673 59.207 65.011 63.539 73.672 71.497
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Figure 3: Variation curves of complex frequency of the system with the hub radius-beam length ratio at r � 1/30, g � 0.025, ω1 � 10, and
α � 1/2.
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Figure 4: Variation curves of complex frequency of the system with slenderness ratio at r0 � 0.25, g � 0.025, ω1 � 10, and α � 1/2.
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Figure 6 plots the curve of complex frequency of the
system with dimensionless hub speed at different fractional
order α � 1/10, α � 1/5, and α � 1/2 at r0 � 0.25, r � 1/30,
and g � 0.025. And we can see that the dimensionless hub
speed has a significant influence on the complex frequency of
the system, and as the speed of the dimensionless hub in-
creases, the Im(ωf) increases, the Re(ωf) decreases, and the
attenuation of higher-order Re(ωf) becomes more obvious.

Meanwhile, fractional order has little effect on the
Im(ωf) of the system, but the influence on the Re(ωf) is
great, and the influence of fractional order on the high-order
Re(ωf) is obvious. When α � 1/2, the attenuation rate of the

Re(ωf) is faster than α � 1/5. /us, viscoelastic materials
with larger fractional order will be more conducive to the
stability of the system.

4.3.ResponseofViscoelasticRotatingBeamswithKelvin–Voigt
Fractional Derivatives. For the system, set the number of
mesh points N � 13, small variables δ � 1 × 10− 6, and
nonuniform meshing of Kelvin–Voigt viscoelastic material
beam with fractional derivative, when ξ3 � 0.02447, ξ7 � 0.5,
ξ11 � 0.97553, and ξ13 � 1, and the response curve of dif-
ferent points on the viscoelastic beam is as follows Figure 7:
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Figure 5: Variation curves of complex frequency of the system with viscoelastic ratio at r0 � 0.25, r � 1/30, ω1 � 10, and α � 1/2.

1st
2nd
3rd

Im
 (ω

f)

0 5 10 15 20 25 30

20

40

60

80

100

120

140

160

Dimensionless hub speed

α = 1/10 α = 1/5
α = 1/2

(a)

1st
2nd
3rd

Re
 (ω

f) α = 1/10
α = 1/5 α = 1/2

5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Dimensionless hub speed

(b)

Figure 6: Variation curves of complex frequency of the systems at dimensionless hub speed with different fractional order at r0 � 0.25,
r � 1/30, and g � 0.025.
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Figure 7 plots the curves of response of the Kelvin–Voigt
viscoelastic beam with fractional derivative when r0 � 0.25,
r � 1/20, g � 0.025, ω1 � 10, and α � 1/2. And we can see
that the response at different points of the Kelvin–Voigt
viscoelastic material beam.

As ξi increases, the corresponding response amplitude
also increases, which indicates that the closer to the free end,
the greater the response amplitude. Moreover, the amplitude
of the system’s response decreases with time, which is due to
the damping effect in the material.

5. Conclusion

Based on Hamilton principle and Euler–Bernoulli beam
theory, the influence of slenderness ratio, the hub radius-
beam length ratio, dimensionless hub speed, viscoelastic ratio,
and fractional order on the vibration characteristics of vis-
coelastic rotating beams with fractional derivatives is in-
vestigated by the differential quadrature method. /e
calculation results in this paper have little error with the
existing literature, which shows the feasibility and correctness

of the differential quadrature method. Compared with other
methods, the solving process of the differential quadrature
method is more intuitive and easier to program.

When the dimensionless hub speed is constant, the di-
mensionless Im(ωf) and Re(ωf) of the system both increases
slightly with the hub radius-beam length ratio increase. For a
fractional derivative viscoelastic rotating hollow beam at a
constant velocity, when slenderness ratio is about 0.08, the
Im(ωf) and Re(ωf) have a sudden change; the former has
been attenuating, while the latter has increased first and then
decreased rapidly. /e viscoelastic ratio has little effect on the
Im(ωf) of the system, but it has a great influence on the
Re(ωf), and at high order, the Re(ωf) increases rapidly.

With the increase of dimensionless hub speed, the
Im(ωf) of the system decreases, while the Re(ωf) increases,
and the attenuation of higher-order Re(ωf) is more sig-
nificant. Fractional order has little effect on the Im(ωf) of
the system, but it has great influence on the Re(ωf), and the
effect on the higher-order Re(ωf) is more obvious.

/rough the study of response at different points on a
fractional derivative Kelvin–Voigt viscoelastic beam, we can
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Figure 7: Vibration response curve of fractional derivative Kelvin–Voigt viscoelastic beam at r � 1/30, r0 � 0.25, g � 0.025, ω1 � 10, and
α � 1/2. (a) ξ3 � 0.02447, (b) ξ7 � 0.5, (c) ξ11 � 0.97553, and (d) ξ13 � 1.
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see that the response at different points on a viscoelastic
beam varies with time in a wave function, and the closer to
the fixed end, the smaller the amplitude of response. When
near the free end, the amplitude of response is larger but the
amplitude of the system’s response decreases with time.
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