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Tangential dynamic behaviors of the machine hydrostatic slide with a magnetorheological (MR) fluid damper are studied, and
the effect of the MR damper to control the vibration of the hydrostatic slide is discussed. The dynamic model of the hydrostatic
slide with the MR damper is established, and the tangential vibration equation of linear and nonlinear is derived. The
multidimensional incremental harmonic balance method (MIHBM) with discrete Fourier transform (DFT) is derived by which
the nonlinear response and stability of the system are studied. The resonance response of the Duffing equation under the
combined action of harmonic excitation and constant excitation is obtained. In order to investigate the vibration response of
the hydrostatic slide with the MR damper in detail, the bifurcation diagram, phase diagram, and Poincaré map are given.
Finally, the dynamic response of the machine hydrostatic slide with the MR damper is discussed, and it is verified that the MR
damper can suppress the tangential vibration of the hydrostatic slide effectively and the constant controller can control the

chaotic behavior of the system well.

1. Introduction

A hydrostatic slide is widely used in precision machines
because of the characteristic of low motion error and high
stiffness [1, 2]. The normal vibration characteristics of the
joint surface of the hydrostatic slide have been extensively
studied by scholars at home and abroad [3-5]. The dynamic
characteristics of the machine table is changed in-
stantaneously and abruptly during the start-stop, acceleration
to constant speed, and constant speed to deceleration because
of the small friction coefficient and tangential low damping of
the hydrostatic slide [6-8]. In addition, the system is forced to
vibrate under the cutting force, ground vibration, residual
vibration, and oil film nonlinear fluid fluctuation force which
lead to poor stability of the hydrostatic slide in the tangential
direction and will affect the positioning accuracy and work
effectiveness. However, there are few research reports on the
tangential vibration of the hydrostatic slide.

An MR damper and electrorheological (ER) damper are
new intelligent vibration suppressors, which have widely been
used in industrial and architectural fields in recent years. The
magnitude of the force produced by the MR damper is mainly
determined by the performance of internal MR fluid. The
magnetorheological fluids are intelligent fluids which are very
sensitive to magnetic field. When magnetic field is applied to
magnetorheological fluids, the viscosity of magneto-
rheological fluids increases significantly and the MR fluid
becomes viscoelastic solid [9]. The output damping force of
the MR damper is regulated by input current. In a certain
range, the greater the current, the stronger the electromag-
netic field and the greater the output damping force. The
working principle of the ER damper is similar to that of the
MR damper. Kishore et al. [10] developed an electro-mag-
netorheological damper that can be used to control the
process dynamics of the cutting tool and reduced cutting force
by 12.9%. Tarng et al. [11] used a piezoelectric inertia actuator
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which is mounted on the cutting tool to suppress chatter, and
it was shown that chatter can be effectively suppressed. Fei
et al. [12] experimentally verified the problem of the motion
damper to suppress chatter in milling flexible parts. Hos-
seinabadi and Altintas [13] used active damping to effectively
suppress the vibration of the machine tool and increase the
bandwidth of the drive. Mori et al. [14, 15] proposed a passive
viscoelastic damping system which can be applied to various
machine tools to reduce the residual vibration. Aoyama and
Inasaki [16] developed an electrorheological fluid damper
which improved the stability of machine tool table systems
with linear motion rolling element bearings. Chen [17]
studied the dynamic characteristics of the linear feed system
with the MR damper by virtual prototyping technology and
proved the system has shorter positioning time, more stable
speed characteristics, and better acceleration and deceleration
characteristics. Bayat and Pakar [18-20] studied the nonlinear
vibration response of beams using the Hamiltonian approach
and variational approach, and it was demonstrated that two
methods were very accurate and effective and therefore may
find wide applicability in engineering and other sciences. In
recent years, artificial neural networks were also developed for
parameter identification and vibration prediction of non-
linear models [21, 22]. Most of the above studies improved the
machining accuracy by suppressing tool chatter using
dampers. However, vibration of the hydrostatic slide is also
one of the important factors affecting the machining accuracy,
and the influence of vibration of hydrostatic guide on pro-
cessing accuracy has not been studied in the above literature.

In this paper, we studied the dynamic behaviors and
stability of the machine hydrostatic slide with the magne-
torheological damper. In the next section, the mathematical
model of the machine hydrostatic slide with the magneto-
rheological damper was described and the tangential single-
freedom dynamic model equations are derived. In Section 3,
the MIHBM with DFT was derived and its accuracy is
verified. Section 4 analyzed the linear and nonlinear dy-
namic responses and stability of the machine hydrostatic
slide with the magnetorheological damper. Suppression of
the vibration of the hydrostatic slide by using the magne-
torheological damper is studied in detail in Section 5. Finally,
some conclusions are drawn briefly in Section 6.

2. Dynamic Model of Hydrostatic Slide with
MR Damper

In this section, the dynamic theoretical models of the MR
damper and hydrostatic slide system were established, and
the single-degree-of-freedom vibration equation of the
hydrostatic slide with the MR damper is derived.

2.1. Design and Characterization of MR Damper. Figure 1
shows the structure of the MR damper, which is used to
control the vibration of hydrostatic slide. According to the
Bingham model of the MR damper [23, 24], the damping
force Fyy is equivalent to the parallel connection of viscous
damping force and Coulomb damping force, i.e.,
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FiGure 1: Structure of the MR damper.

Fygr = c.v+ Fp, (1)

where ¢, is the damping coefficient of MR fluid, F; is the
Coulomb damping force, and v is the relative velocity, which
can be deduced by the structure of the magnetorheological
damper:
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where [ is the length of the piston, D is the inner diameter
of the cylinder, A, is the effective area of the piston, Dj, is the
diameter of the piston damping hole, 7 is the yield shear
stress, 7 is the viscosity coefficient, and sgn () is the symbolic
function.

According to Ampere’s loop law and magneto-
rheological fluid properties, the relationship between yield
stress and current I is that

IN\2 IN
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where N is the number of coil, I is the input current, and u is
the magnetic permeability of the magnetorheological fluid.
The substitution of equations (2) and (3) into equation (1)
yields
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(4)

+4.743 x 10‘%%) - 1>sgn(v).

The hysteresis three-dimensional model of the MR
damper is obtained by parameter identification as shown in
Figure 2.
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FIGURE 2: Hysteresis model of the MR damper.

Damping force increases with the increase of input
current, but it does not increase linearly. When the current
reaches 1.5 A, the output force tends to be saturated, which
reflects the characteristics of nonlinear saturation of the
MR damper. When the speed changes in different di-
rections, the trajectory of the damping force is different,
which reflects the hysteresis characteristics of the mag-
netorheological damper.

2.2. Dynamic Model of Hydrostatic Slide with MR Damper.
The structure of the hydrostatic slide with the magneto-
rheological damper is shown in Figure 3. The cylinder of the
MR damper is fixed. The damper rod is connected with the
slide and generates damping force to control vibration of the
worktable. The slide moves in the X direction, and the ki-
nematics equation is as follows:

mx+F_+F+F;+F + Fyp = Fy, (5)

where F_ is the structural damping force, F, is the elastic
force, F; is the friction, F; is the load, and Fy is the driving
force.

The structural damping force is affected by the material
and internal resistance of the structure, i.e.,

F.=cx, (6)

where ¢, is the structural damping coeflicient. Assume that
the friction is linear, i.e.,

F.=¢,x, (7)

where ¢, is the linear friction coefficient.
In order to analyze the tangential dynamic character-
istics of the hydrostatic slide with the magnetorheological
damper, the system was simplified to the single-degree-of-
freedom mechanical system model as shown in Figure 4. Let
F4 - F; = Fsint, and the vibration equation of the system
is expressed as
mx +cx + F (x) = Fsinwt - F}, (8)

where ¢ = ¢, + ¢, +c..
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FIGURE 3: Structure of the hydrostatic slide system.
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FIGURE 4: Single-degree-of-freedom mechanical system.

3. MIHBM with DFT Method and
Feasibility Analysis

3.1. MIHBM with DFT. Wang et al. [25, 26] verified that the
dynamic behaviors of the NC table have chaotic characteristics.
So the system of the hydrostatic slide with the magneto-
rheological damper exhibits nonlinear properties. The elastic
force [27]: F, = k;x + k;x°. Let 7 = wt, w, = Vk/Im,w = @/
w, ( =c/2mw,, F=Flk,, andF;=F/k,, dimensionless
processing, the equation is transformed to

w'x" + 2wx’ + x + ex’ = Fsint — F,, (9)

where ¢ is the small parameter, € = ky/k;, 0<e<1.

MIHBM with DFT [28-32] is a new algorithm which
replaces the Galerkin procedure [33, 34] with DFT. Equation
(9) is a typical Duffing equation under the combined action
of harmonic excitation and constant excitation. And the
steady-state response of equation (9) is solved by the
MIHBM with the DFT algorithm, which improves the
computational efficiency.

Suppose x,, wy is the solution of the vibration equation,
and increments are introduced as follows:

x = xy + Ax,
(10)
w = wy + Aw.

By introducing equation (10) into equation (9) and
omitting higher-order small quantities, the incremental
equations with Ax and Aw are obtained:

WpAx" + 20wy Ax" +(1 + 3exg ) Ax

. 2 ! 3
:Fs1nT+FI—(w0x0 +2(w0x0+x0+£x0) (11)

- (Zwoxg + ZCwaé)Aw.



The excitation P (1), response x, (1), and its increment
Ax (1) can be expressed as the following Fourier series:

N
P(1)=Fsint—-F; = % + Z(pan cos (nt) + py, sin(nT))
n=1

= C4P,
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a N
xy(7) = ?0 + Z (a, cos(nt) + b, sin(nr)) = CgA,, (12b)
n=1
Aa I .
Ax(1) = -t (Aa,, cos (nt) + Ab, sin (n1)) = CsAA,,
n=1
(12¢)

where C¢ = (1 costsint--- cosN7sinN1), P=(F 0
F---00), Ag=((ap/2) a, by -+ ay by), AA =
((Aay/2) Aa, Ab, --- Aay Aby)', and N is the number
of harmonics.

According to reference [35], Cy is discretized to a matrix
I' and introducing the differential operator matrix D as
follows:

1 cost, sinT, cosNt1, sinT,
1 cost, sinT cosNt, sinT,
F = >
1 cost;, sint;, ... cosN7;,_, sinT;_,
1 cost;y sint;_; ... cosNt,_; sinT,_,
0
01
-10
0 2
D= ,
-2 0
0 N
-N 0

(13)

where i is the number of the data points in a period. So the
incremental equation (11) can be expressed as

W;TD*AA + 20w TDAA + (ky + 3k; (TA,)*)T
= TP —(w;TD* Ay + 20w TDA, + kT A, + k; (TA)°)
—(2wgTD* Ay + 2{TDA, ) Aw,
(14)
When equation (14) is multiplied by transpose matrix I'",
the following linearized incremental equation is obtained:
K;AA =R, Aw+R, (15)

where K = w2I"TD? + 2{w,ITTD + I (k; + 3k; (TAy)*)T,
R, =-Qw,[TTD?A, + 2{T"TD4,), R=TTTP - (w2I'T
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D?Ag + 2{w,TTTDA, + IT (k,TA, + k5 (TA,)*)), and  Krp,
R,,, and R are the Jacobian matrix, unbalance force matrix,
and corrective matrix, respectively.

Adding the constraint equation by the arc length method
[31, 35]:

AATAA = AP, (16)

where Al is the arc length parameter. Figure 5 shows the flow
chart of the algorithm.

3.2. Feasibility Analysis of MIHBM with DFT. In order to
verify the exactness and accuracy of the method proposed in
the previous section, Figure 6 shows a comparisons between
the approximate analytical solutions based on the MIHBM
with DFT and the numerical results based on the Runge-
Kutta methods. The vibration waveform and phase diagram
of primary resonance response with F = 0.5, F; = 0.006, and
w=1.0 of the hydrostatic slide with the MR damper are
shown in Figure 6. NMM represents the numerical results
based on the Runge-Kutta method. As demonstrated, the
differences between both methods are very slight, so the
MIHBM with DFT is feasible to analyze the dynamic be-
haviors of the hydrostatic slide with the MR damper.

4. Dynamic and Stability Analysis of Hydrostatic
Slide with MR Damper

In this section, the dynamic behaviors and stability of the
hydrostatic slide with the MR damper were studied by
MIHBM with DFT.

4.1. Linear System Analysis. Assume the stiffness of the
hydrostatic slide is much greater so that it can be regarded as
a constant, namely, F; = k,x. Thus, the hydrostatic slide
can be regarded as a linear system. Let 7 = wt, w, = Vk/m,
w =wlw,,{ = c/2mw,, F = F/k,, and F| = F,/k,, dimension-
less processing, the equation is transformed to

w’x" +20wx' + x = Fsint - F|. (17)

The steady-state response of equation (17) is
F

x(1) = sin(t - ¢) — Fy,
V(- @) +(200)’
(18)
B ; 2(w
go—arcanl_wz.

Figure 7 shows the vibration response.

The larger the Coulomb damping force F|, that is, the
greater the output force of the magnetorheological damper,
the better the vibration suppression effect. When F;=1.2,
the hydrostatic slide reaches a stable state quickly. However,
it is known that the force produced by magnetorheological
damping tends to be saturated when the current increases to
a certain value.

The force produced by magnetorheological damping has
a maximum value and cannot be increased indefinitely. The
amplitude-frequency curve linear system shows that the
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FIGURe 5: Algorithm of the MIHBM with DFT.

larger the damping coefficient, the smaller the amplitude of
the system, as shown in Figure 8. Therefore, the viscous
damping force of the MR damper can also reduce the vibrate
displacement of the hydrostatic slide.

4.2. Effect of MR Damper on Amplitude-Frequency.
Combined action of harmonic excitation and constant ex-
citation is a prominent feature of vibration equation (9). In
this subsection, the effects of constant excitation Coulomb
force on the response of system are investigated using the
amplitude-frequency curves. Let £=0.015, e=1, and
F=0.05, for F;=0.2, 0.6, 0.9, 1.1, 1.2, 2.0, respectively, and
the amplitude-frequency responses of the system are shown
in Figure 9.

It can be seen from Figure 9(a) that the amplitude-
frequency curve of the vibration system shows complete
hardening-type nonlinearity when F; = 0.2. With the in-
crease in Coulomb damping force F; to 0.9, the amplitude-
frequency curve of the vibration system not only shows
hardening-type nonlinearity but also exhibits slight soft-
ening-type nonlinearity. However, there is no overlap region
between hardening-type nonlinearity and softening-type
nonlinearity when F| = 0.9. The amplitude-frequency curve
of the vibration system show hardening-type nonlinearity
and softening-type nonlinearity when F; = 1.1, and there is
overlap region between hardening-type nonlinearity and
softening-type nonlinearity. When F; = 1.2, the region of
the softening-type nonlinearity covers the region of hard-
ening-type nonlinearity completely. The amplitude-fre-
quency curve of the vibration system shows the softening-
type nonlinearity and slight hardening-type nonlinearity.

5
0.4
0.2
5
=
Q)
5 o
s
I
a
-0.2
-0.4
460 470 480 490 500
Time, t (s)
— NMM
O MIHBM
(@
0.4
0.2
=
£
ks} 0
S
L
>
-0.2 . B
S e
-0.4
-02  -0.1 0 0.1 0.2
Displacement, x
— NMM
O MIHBM

(b)

FIGURE 6: Vibration waveforms and phase diagrams.
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With the increase in Coulomb damping force F to 2.0,
hardening-type nonlinearity of the amplitude-frequency
curve of the vibration system disappears completely
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and the vibration exhibits

nonlinearity.

system softening-type

4.3. Dynamic and Stability Analysis of the Hydrostatic Slide
with MRD. The Floquet method [36, 37] is an effective
method to determine whether the periodic solution of a
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nonlinear dynamic system is stable. The periodic solution x;
of the equation is obtained by MIHBM with the DFT
method, and by substituting it into equation (11), the fol-
lowing equation is obtained:

W Ax" + 20{w,Ax" + Ax + 3sx§Ax =0. (19)
Introduce
X =[Ax, Ax’]T,
0 1
(20)
T) = .
QM 1+3exg =20
Wi w,

Equation (20) can be rewritten as
X'=Q()X. (21)

According to the Hsu method proposed by Friedmann
et al. [38], periodic T is divided into g, equal-length sub-
intervals and interval size is

Ak = Tk — Tk—l = % (22)

The state transition matrix of equation (20) is

® = ﬁ exp (QuA¢) = ﬁ [I

7=k J=ak

9i i
+y L’f") } (23)

i=1

where I is the unit matrix and g; is the number of the
polynomial expanded by the exponential matrix.

The eigenvalues A, and A, of matrix @ are the Floquet
multipliers of the system. If the modulus of all the Floquet
multipliers of the system is less than 1, the solutions are
stable and unstable otherwise. Moreover, if a real Floquet
multiplier passes through the unit circle along the negative
real axis and the rest are located in the unit circle, there is
period-doubling bifurcation.

In this subsection, the steady-state solution of the hy-
drostatic slide with the magnetorheological damper system is
studied by the Floquet method. Figure 10(a) shows the
amplitude-frequency curve for F;=1.1, and it exhibits
hardening-type nonlinearity and softening-type nonlinearity
in different regions. And there is overlap region between
hardening-type nonlinearity and softening-type nonlinearity.
Each frequency value of the overlap region corresponds to five
amplitude solutions, three of which are stable and two of
which are unstable, and stable and unstable solutions alter-
nate. At the lower excitation frequency (i.e., w € [0, 1.5269]),
the change of the vibration system steady response is very
slight until the limit point at “2” (w =1.5269). With the de-
crease in frequency w, the amplitude A becomes unstable until
the second limit point reaches “7” (w=1.4803). By further
increasing the frequency w, the amplitude of the stable re-
sponse increases obviously and the response amplitude rea-
ches the peak value at point “9” (w=1.5237). With the
decrease in frequency w, the vibration system becomes
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FiGure 10: Nonlinear responses of the vibration system: (a) amplitude-frequency curves and (b) bifurcation diagram.
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FIGURE 12: Dynamic response of the system at w=1.29. (a) Phase diagram. (b) Poincaré map.

unstable until the point at “5” (w=0.5052). Then, the vi-
bration system returns to stable response once again.

With the increase of the excitation frequency w from point
“1” to point “4,” the path of the stable response is
1— 2 — 3 — 4. There appears the jumping phenomenon

of stable solutions, and the point “2” is the jumped point.
With the increase of the excitation frequency from point “4”
to point “17, the path of the stable response is
4—5— 6—7 — 8 — 1. There appears the jumping
phenomenon of stable solutions, and the points “5” and “7”
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are jumped points. The stable solution between points “6” and
“9” is achieved by the path 4 —5—6—9—10—4,
and the jumped points are “5” and “9.”

Figure 10(b) presents the bifurcation diagram of the
hydrostatic slide with the magnetorheological damper sys-
tem with the parameter w. At the lower excitation frequency
(i.e., we[0, 0.06]), the vibration system exhibits chaos
motion. In the range of w € [0.06, 1.87], the vibration system
exhibits various types of motion including periodic-n and
chaotic motions, as shown in Figures 11 and 12. With the
increasing of excitation frequency, the vibration system
exhibits chaos motion again in the range of w € [1.87, 3], as
shown in Figure 13.

5. The Effect of MR Damper to Control
Vibration of Hydrostatic Slide

The relationship between amplitude A and constant exci-
tation Coulomb damping force F; is shown in Figure 14. For

w=0.2,1,1.49, 1.6, 2.0, respectively, the A — F| curve is quite
different. At lower Coulomb damping force, there appears
the jumping phenomenon of stable solutions. With the
increase of Coulomb damping force F|, the amplitude de-
crease monotonously for the curve w=0.2, 1, 1.49, re-
spectively. The fact is that the A —F; curve decreases
monotonously as long as w < 1.49. Moreover, the amplitude
A decreases rapidly when Coulomb damping force F; in-
creases to a certain value as shown in Table 1. By further
increasing Coulomb damping force F|, the amplitude tends
to zero for the curve w=0.2, 1, 1.49, respectively. However,
there appears the jumping phenomenon of stable solutions
for the curve of w =1.6 and 2. It can be seen from the above
analysis that the MR damper can reduce the vibration
amplitude of the hydrostatic slide effectively.

Figure 15(a) presents the bifurcation diagram of the
hydrostatic slide with the magnetorheological damper sys-
tem with the parameter F;. The system exhibits chaotic
motion after a very short period-doubling bifurcation. With
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TaBLE 1: Comparison of amplitude corresponding to F;=0.1, 0.2, 0.5, 1, 2, 3.5.
c Vibration amplitude of system
ase
F;=01 F;=0.2 F,=05 F=1 F=2 F,=35
w=0.2 0.051 0.046 0.055 0.019 0.014 0.009
w=1 0.370 0.309 0.121 0.037 0.018 0.010
w=1.49 1.012 1.002 0.953 0.077 0.023 0.013
w=1.6 1.527 1.458 1.445 1.355 0.036 0.016
w=2 2.681 2113 2.049 1.975 1.904 0.017
0.4 2 2
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FIGURE 15: Dynamic response of the system. (a) Bifurcation diagram. (b) Phase diagram. (c) Poincaré map.

an increase in Fj, the vibration system displays period-
doubling bifurcation again in the interval [0.76, 1.09]. When
F;>1.47, the system present period-doubling bifurcation
stably. Figures 15(b) and 15(c) present the phase diagrams
and Poincaré diagrams, respectively, when F; = 1.7. It can be
seen that the constant controller can control the chaotic
behavior of the system well, which is consistent with that
conclusion [39]. So the effect on the magnetorheological
damper to control the vibration of the hydrostatic slide is
excellent.

6. Conclusions

In this paper, the tangential dynamic characteristics and
stability of the machine hydrostatic slide with the MR damper
are studied by using a single-freedom dynamic model. The
nonlinear responses the vibration equation are calculated
using the IHBM with DFT, and the stability of the solutions is
checked using the Floquet method. Finally, the effect of the
MR damper to control the vibration of the hydrostatic slide is
discussed, and it is verified that the constant controller can
control the chaotic behavior of the system well.

(1) The MIHBM with DFT is derived which is proven to
be feasible to analyze nonlinear dynamic behavior.

(2) For the machine hydrostatic slide with the MR
damper, the hardening- and softening-type non-
linearities are observed in amplitude-frequency curves.
There is an overlap region between hardening-type
nonlinearity and softening-type nonlinearity when
F=1.1 and each frequency value of the overlap region
corresponds to five amplitude solutions. With the
increase in frequency, hardening-type nonlinearity
disappears completely and the vibration system ex-
hibits softening-type nonlinearity. In addition, the

maximum amplitude of the machine hydrostatic slide
with the MR damper decreases obviously.

(3) The bifurcation diagram, phase diagram, and
Poincaré map for the vibration system under dif-
ferent excitation frequency are illustrated. With the
increasing excitation frequency, the vibration system
exhibits more complex dynamic behaviors including
wide variety of period motion, chaotic behavior
motion, and jumping discontinuous phenomena.

(4) The appropriate damping force provided by using
the MR damper can reduce the tangential vibration
of the hydrostatic slide effectively.

(5) Constant controller can control the chaotic behavior
of the Duffing system well.

Overall, the researches in this paper can not only un-
derstand the dynamic response of the machine hydrostatic
slide with the MR damper but also provide some reference to
suppress vibration and design and optimize the vibration
system.
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