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According to the performance degradation problem of feature extraction from higher-order statistics in the context of alpha-
stable noise, a new feature extraction method is proposed. Firstly, the nonstationary vibration signal of rolling bearings is
decomposed into several product functions by LMD to realize signal stability. ,en, the distribution properties of product
functions in the time domain are discussed by the comparison of heavy tails and characteristic exponent estimation. Fractional
lower-order p-function optimization is obtained by the calculation of the distance ratio based on K-means algorithms. Finally, a
fault feature dataset is established by the optimal FLOS and lower-dimensional mapping matrix of covariation to accurately and
intuitively describe various bearing faults. Since the alpha-stable noise is effectively suppressed and state described precisely, the
presented method has shown better performance than the traditional methods in bearing experiments via fractional lower-order
feature extraction.

1. Introduction

Accurate conditionmonitoring of the key equipment parts is
the main objective of intelligent diagnosis. As the most
common and vulnerable support components of rotating
machinery, rolling bearings have become the major moni-
toring objects. ,erefore, feature extraction of bearing sig-
nals is a decisive factor for intelligent monitoring and
diagnosis at present [1, 2].

,e dynamic parameters, such as the driving force,
damping force, and elastic force of the mechanical system,
always demonstrate the nonlinear variation signals, espe-
cially during the emergency stage of equipment failure.,eir
vibration signals are non-Gaussian and nonstationary.
Meanwhile, the complexity of institutions makes serious
superimposing problems and same frequency interference
phenomenon. ,us, the frequency of test signals is difficult
to match the faulty frequency.

Aiming at this problem, the adaptive time-frequency
analysis method is becoming the research hotspot of the
existing vibration signal processing methods [3–5]. By

further studying the relevant literatures, we have summa-
rized the main types of traditional features. ,ey include
dimensionless parameters and various entropy values in the
time domain [6–10], spectrum analysis in the frequency
domain [11–14], and adaptive time-frequency analysis in the
time-frequency domain [3, 15].

However, the conventional feature statistics usually ig-
nores the distributing models of the adaptive signal com-
ponents in engineering practice. For example, variance and
high-order statistics of signal components are unbounded
under alpha-stable noise conditions. Based on this finite
statistics, the statistics mentioned above would show deg-
radation performance of state description [16, 17].

,erefore, a new feature extractionmethod is introduced
in this paper. ,e alpha-stable distribution model and signal
processing method LMD are introduced in Sections 2 and 3.
On the basis of further investigation of signal component
distribution in Section 4, a new feature extraction method in
fractional lower order is proposed in Section 5 and com-
parative analysis in Sections 6 and 7. Section 8 presents the
analysis of computational complexity.
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,is new approach has three steps: First, LMD is chosen
as the decomposition method of the nonstationary signals to
achieve signal stability. ,en, the signal pulse of the alpha-
stable noise is effectively reduced by the optimal FLOS and
lower-dimensional mapping matrix. Finally, the classifica-
tion and identification of various faulty bearings are carried
out precisely and intuitively. ,is new method solves the
inaccurate description problem of various states in tradi-
tional methods by avoiding the infinite variance hypothesis.

2. Fractional Lower-Order Alpha-
Stable Distribution

,e alpha-stable distribution is an essential part of the non-
Gaussian random distribution. ,e most striking charac-
teristic is many samples far away from the mean value or the
median, resulting in more peak pulses on the waveform in
the time domain and thicker algebraic tails of those curves of
probability density function PDF [18, 19].

Having four parameters, including characteristic expo-
nent 0< α≤ 2, symmetry parameter −1≤ β≤ 1, dispersion
c≥ 0, and location parameter a, the impulsive signal X could
be conveniently depicted by the characteristic function [20]:

φ(u) � exp jaμ− c|u|
α
[1 + jβ sgn(u)ω(u, α)]􏼈 􏼉, (1)

where

ω(u, α) �
tan πα/2, α≠ 1,

(2/π)log|u|, α � 1,
􏼨

sgn(u) �

1, u> 0,

0, u � 0,

−1, u< 0.

⎧⎪⎪⎨

⎪⎪⎩

(2)

,e degree of the pulse characteristics is decided by
characteristic exponent α. ,e smaller the value of α, the
thicker the tails and the stronger the signal pulse. Figure 1
shows different PDF curves with different values of α.
Gaussian distribution is the limiting case with α � 2, when
φ(u) � exp jaμ− σ2 ∣u ∣ 2􏼈 􏼉; in addition, when 0< α< 2, the
random variable X is said to have fractional lower-order
alpha-stable distribution, including Cauchy distribution
(α � 1, β � 0) and Pearson distribution (α � 1/2, β � −1).

Undoubtedly, it is impossible that the probability density
function PDF of fractional lower-order alpha-stable signals has
the same convergence property of Gaussian signals. Because of
the property ofE|X|2 � EX2 � +∞, signal variance Var(X) �

E(X2)− (EX)2 is divergent. ,is is the basic reason for
degradation performance of state description and the difficulty
of intelligent monitoring of mechanical equipment.

In recent years, the alpha-stable noise and FLOS
processing methods have shown better performance than
the traditional methods. As a hottest research topic in the
field of signal processing, FLOS processing methods have
more extensive applicability in the processing of un-
derwater sound, radar signals, and speech signals, time
delay estimation, and biomedicine domain, for example, a
new diagnosing method of noisy Greek folk music

excerpts based on the alpha-stable noise assumption [21],
description of various faulty bearing statuses through
alpha-stable parameters and kurtosis values [22], a novel
fault diagnosis model for axle box bearings based on
symmetric alpha-stable distribution feature extraction
and LS-SVM [23], the LOD fractional lower order
matched filters and improved local optimum detector
[24], and analytical parameter estimation by a hierarchical
framework based on the skewed alpha-stable character-
istic function [25].

3. Nonstationary Signal Processing

Local mean decomposition (LMD) is an adaptive time-
frequency analysis method. LMD could solve the short-
comings of traditional methods: the false time-frequency
information from the fixed basis functions, a great deal of
calculation from the multiparameter optimization, the
Heisenberg limitation in the time-frequency domain, and
the overenvelope and underenvelope problems of the EMD
method. ,us, LMD has potential application in bearing
signal processing, becoming the research hotspot of the
existing adaptive time-frequency analysis methods [26–30].

LMD could decompose a vibration signal x(t) into a
series of components PFi(t) and remainders ui(t) through
three loops:

x(t) � 􏽘PFi(t) + ui(t). (3)

Signal components PFi(t) represent the main frequency
components of x(t). Combining with themaximum kurtosis
criterion, PF1(t) is often chosen as the main feature of the
faulty bearings, which may imply abundant bearing fault
state information [31].

To a certain extent, the LMD algorithm transforms the
feature extraction problem of nonstationary signals into that
of stationary components, increasing the description ac-
curacy and reliability of various equipment states.
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4. Analysis of Time-Domain
Distribution Characteristics

However, when the noise is impulsive andmodeled as a non-
Gaussian process, variance and second- and higher-order
statistical characteristics of PF1(t) are infinite. ,is may
reduce the accuracy and reliability of above statistics for the
description of equipment states.

In order to investigate the distribution characteristics of
bearing vibration signals, Yu et al. had contrasted the validity of
the proposed statistical models [32]. It can be concluded that
the alpha-stable distributed model is sufficient to thoroughly
describe the statistical characteristics of faulty bearing signals
with impulsive behaviors. In this paper, we have researched the
noise-reducing ability of LMD in terms of tail heaviness and
characteristic exponent α values of PF components.

4.1. Analog Vibration Signals. Vibration signal model of
bearings (with the outer race fixed) is [33]

S � sin 2πfbt( 􏼁 1 + β sin 2πfrt( 􏼁􏼂 􏼃 + vz, (4)

where fb is the frequency of the rolling ball passing through
the inner race, fr is the rotational frequency, β is the
modulation ration, and vz is the added noise. When the
characteristic exponent is z � 2, vz becomes the Gaussian
noise. Assuming fb � 100Hz, fr � 25Hz, β � 1, z1 � 1.5,
and z2 � 2, we establish the vibration signals S1 and S2 under
alpha-stable noise and Gaussian noise, respectively.

,e vibration signals S1 and S2 are processed through
the LMD algorithm to calculate the frequency function
PDF of PF1(t). Figure 2 shows the comparison of PDF tail
heaviness.

It is clear that PF1(t) of S1 has more evident pulse
characteristics and thicker algebraic tails than that of S2.,is
phenomenon proves the fact that LMD cannot effectively
deal with the alpha distributed noise.,e PDF tail still shows
the characteristics of alpha distribution. ,erefore, the
adaptive time-scale decomposition of vibration signals ex-
hibits a performance degradation problem.

4.2. Actual Vibration Signals. SKF6205-2RS bearing data-
base from Case Western Reserve University is used as an
example to study the distribution properties of the practical
bearing signal component PF1(t). ,is database includes
normal bearings and faulty bearings with three faulty de-
grees ((a) 0.178mm, (b) 0.356mm, and (c) 0.533mm): (A)
normal condition, (B) rolling ball fault, (C) inner race fault,
and (D) outer race fault. We record this database as
X � A,M.n{ }, where M.n represents the fault state M with
the fault size n. It is clear that M ∈ B,C,D{ } and n ∈ a, b, c{ }.
In this test, the rotational frequency fr � 29.167Hz, the
sampling frequency fs � 12000Hz, the sample length
Nh � 1024, and the number of samples N � 117.

,e most striking characteristic of the alpha-stable
distributed signals is more peak pulses in the time do-
main and thicker algebraic tails of probability density
function PDF. As shown in Figure 3, the dotted lines present

the PDF tail heaviness of faulty bearing components PF1(t)

and the full lines of Gaussian components PF1(t) (with the
same parameters except characteristic exponents α). It can
be seen that the PDF curve of normal bearings has a thicker
tail than the Gaussian curve, meaning that the background
noise obeys the fractional lower-order alpha distribution. In
this context, both the faulty vibration signals display the
same characteristics, including rolling ball fault, inner race
fault, and outer race fault.

Furthermore, the mean values of characteristic expo-
nents α of PF1(t) components are estimated by the Kou-
trouvelis regression method, as shown in Table 1 [34]. It can
be seen that the corresponding characteristic exponents α of
the bearings are distinguished obviously.,e value of rolling
ball fault is in the range of 1.61–1.99, the inner race fault is in
1.43–1.53, and the outer race fault, except for D.b samples, is
in 1.01–1.2. ,is phenomenon basically accords with the
change law of PDF tails in Figure 3.

Figure 3 and Table 1 could easily prove the following:

(1) ,ere is no doubt that the alpha-stable distributed
noise exists in the vibration signals under both
normal and fault conditions.

(2) When the noise is impulsive and modeled as a non-
Gaussian process, PF1(t) components fail to describe
the vibration signals accurately, which has been a
major drawback to the use of LMD.

,erefore, using the fractional lower-order features is
more adaptive than the conventional second- and higher-
order statistical moments to describe various signal states,
effectively avoiding the invalid hypothesis.

5. Fractional Lower-Order Characteristics of
Bearing Vibration Signals

Due to the impulsive noise and the nonstationary property, a
fractional lower-order feature extraction method is in-
troduced in this study. ,is new method adopts LMD to
realize signal stability and obtains signal components with
impulsive characteristic in the time domain.,en, the alpha-
stable noise is weakened by the optimal fractional lower-
order statistics (FLOS) and lower-dimensional mapping
matrix. Finally, the feature matrix is constructed to effec-
tively suppress the impulsive noise and accurately describe
the equipment operational conditions. ,e algorithm flow is
as follows (Figure 4).

5.1. 3e Optimal FLOS. Unlike most statistical models, the
α-stable distribution does not have closed-form probability
density functions, except for a few known cases. In terms of
the theory of alpha-stable distribution, the random variable
X does not have finite second- or higher-order moments,
when its statistic order is less than the value of characteristic
exponent α. ,e formula of FLOS is

E ∣X∣p􏼂 􏼃 �
C(p, α)cp/α, 0<p< α,

∞, p≥ α,

⎧⎨

⎩ (5)
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where Γ(·) is the gamma function and C(p, α) � 2p+1Γ
(p + 1/2)Γ(−p/α)/α

��
π

√
Γ(−p/2).

From formula (5), the selection of parameter p directly
affects the estimation of FLOS, which is important for
bearing state monitoring. In this paper, the optimal order
value popt selection method is based on “maximum class
separation distance and minimum intraclass distance.” First,
we calculate FLOS with different p values to be the eigen-
value of each sample, described as

E
i,j

(p) �
2p+1Γ(p + 1/2)Γ(−p/α(i, j))

α(i, j)
��
π

√
Γ(−p/2)

c(i, j)
p/α(i,j)

. (6)

,e range of i is i ∈ 1, 2, ..., N{ } and j is j ∈ 1, 2, ..., J{ }.
Here, N is the number of sample groups and J is the number
of state types. ,en, the best clustering center
(x1, x2, . . . , xJ) of each state type is obtained by theK-means
clustering algorithm. Finally, we could calculate the distance
between Ei,j(p) and (x1, x2, . . . , xJ) in order to obtain the
class separation distance Db and intraclass distance Di of

each sample. At last, the optimal order popt could be selected
by the maximum distance ratio Db/Di.

5.2. Lower-Dimensional Mapping Matrix of Covariation.
According to the infinite variance of alpha-stable signals, Miller
put forward the concept of covariation in 1978. For the random
variables X and Y of simultaneous distribution, the covariation
of variables X and Y is given by formula (7), with characteristic
exponents 1< z≤ 2 and dispersion coefficient cy:

[X, Y]α �
E XY〈p−1〉( 􏼁

E |Y|p( 􏼁
cy, 1≤p< z. (7)

Under certain conditions, the validity is similar to the
covariance of the random variables of Gaussian signals,
which could strengthen the common components of the
signals to a certain extent. For the high-dimensional co-
variant matrix, the Laplacian eigenmaps algorithm is used to
carry out the lower-dimensional mapping matrix. LE is
suitable for nonlinear feature mining and dimensionality
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Figure 2: PF1(t) components and comparison of PDF tail heaviness. Product function of the analog signal when (a) z1 � 1.5 and (b) z2 � 2.
(c) Comparison of PDF tails.
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reduction of high-dimensional data, based on the principle
that “the weight of the connection edge between the sub-
graphs is as low as possible and the weight of the connection
edge in the subgraph is as high as possible.” Finally, it could
easily realize the optimal embedding of high-dimensional
manifolds by the mapping theory.

If there is an edge connection between the ith node xi

and the jth node xj, the weight of the edge determined by the
thermonuclear method is as follows:

Wij � exp −
xi − xj

�����

�����
2

σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠. (8)

,e Laplace matrix is constructed by L � D−W. If the
constructed nearest neighbor graph is connected, the

problem of finding lower-dimensional embedding can be
reduced to solve the generalized eigenvector problem:

Ly � λDy, (9)

where D is a diagonal weight matrix which satisfies
Dij � 􏽐jWij. ,e low-dimensional embedded coordinate
consists of the eigenvectors p1, p2, . . . ,pd+1, corresponding
to the minimum d + 1 eigenvalues. ,e target dimension is
determined by the number of fault types [35, 36].

6. Feature Accuracy Comparisons

Take the SKF6205-2RS bearing signals as an example to
compare the fractional lower-order features proposed in this
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Figure 3: PDF curve comparison of different signal components PF1(t). (a) Normal A. (b) Rolling ball B.a. (c) Rolling ball B.b. (d) Rolling
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Table 1: Mean values of grouped samples (SKF6205-2RS).

Samples A B.a B.b B.c C.a C.b C.c D.a D.b D.c
Mean values 1.8971 1.9970 1.6187 1.9679 1.5221 1.5363 1.4333 1.1703 1.9899 1.0081
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Figure 4: Fractional lower-order feature extraction method.
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paper with the multidimensional features in reference [30]. In
reference [30], the same bearing signals, SKF6205-2RS
bearing signals from the Case Western Reserve University
Bearing Data Center, were processed by the same method
LMD. ,en, 23 conventional features such as variance,
skewness, and kurtosis were considered to describe the status
of bearings. As we know, they belong to second- and high-
order statistics.,e difference between reference [30] and this
paper is the calculation of mappingmatrix of PF1(t). ,ey are
calculated from 23-dimensional time-domain characteristics
in reference [30] and fractional low-order features proposed
in this paper, respectively. Faulty bearing samples are divided
into 6 groups in Table 2.

,e range of parameter p is determined according to the
minimum value of α. Take the variation of p as 0.1 and
calculate the ratio value of Db/Di. As shown in Table 3, the
maximum ratio is 319.68 when the value p � 0.1.

,e covariation matrices CN×N of components PF1(t) are
calculated according to formula (7). Taking CN×N to be the
input matrix, we construct the Laplace characteristic matrix to
enhance the fault components.,us, we could obtain the lower-
dimensional mapping matrix CN×2′ of each type of samples.

,e characteristic 3D matrix CEN×3 is formed by CN×2′
and Ep matrices. ,e scattered plots are drawn in three-
dimensional spaces with the feature matrix as the x, y, and z
coordinate. Figure 5 shows the 3D scattered plots from 23-
dimensional features in reference [30], except for the normal
samples A. Figure 6 shows fractional lower-order features
proposed in this paper. Lowercase roman letters (a)–(f)
represent sample groups 1–6, respectively. ,rough 3D
scattered plot comparisons of 6 fault sets between Figures 5
and 6, the effect of these two methods is quantified, re-
spectively. ,ere are some conclusions for different types of
faulty bearings as follows:

(1) ,e extracted features are constructed by just two
types of statistics which are much fewer than those in
reference [30].

(2) ,ese fault set samples are absolutely separated by
the new features. It is proved that the fractional
lower-order feature extraction proposed in this
paper is more accurate for different state
descriptions.

7. Feature Extractions of Form Roller Bearings

Offset printing press is a piece of high-precision industrial
equipment that is designed to reproduce text and image at a
high rate of speed and low cost. Accurate ink transfer is

completed through the inking system and three-cylinder
printing system. Form rollers ensure that the ink will uni-
formly overprint the image area of the plate. When their
supporting bearing fails, it may cause oversize printing dots
and inferior quality. Figure 7 shows different states of 6001
bearings.We had processed the inner race fault and outer race
fault by line cutting. ,e fault sizes are 0.1mm and 0.3mm.

LMS test lab system is used to test and store the vibration
signals of 6001 bearings (with the outer ring fixed). ,e
model of acceleration sensors is PCB 333B30 (range is ±50 g
and sensibility is 99.3mV/g). In this real test, the rotational
frequency of the form roller fr � 4Hz, the sampling fre-
quency fs � 6400Hz, the sample length Nh � 2048, and the
number of samples N � 190.

PDF curve comparison of normal and faulty signal
components PF1(t) is shown in Figure 8. Table 4 shows the
mean estimation of characteristic exponent α. It could easily
prove that the alpha-stable distributed noise exists in the vi-
bration signals of form rollers, and signal components PF1(t)

yield the fractional lower-order alpha-stable distribution.
In order to fully compare and analyze the characteristics

of each sample, these five kinds of bearing samples are
divided into four groups in Table 5. ,en, the optimal FLOS
and mapped covariation matrices are calculated by algo-
rithm flow in Figure 4 and formulas (5)–(9). Finally, frac-
tional lower-order features are constructed to classify
different fault types through 3D scattered plots. Figures 9
and 10 show the 3D scattered plots of the mapping matrix
from 23-dimensional features in reference [30] and frac-
tional lower-order features proposed in this paper. Lower-
case roman letters (a)–(d) represent sample groups 1–4,
respectively. In consideration of chaotic and rambling form
bearing samples in Figure 9, the traditional feature extrac-
tion method degrades obviously in actual equipment status
monitoring. On the contrary, with fractional lower-order
noise suppressed by the new method in Figure 10, this vi-
bration samples are distinguished much clearer in the three-
dimensional space.

Table 2: Faulty samples divided into 6 groups.

No. Groups Description
1 X � M.n|M � B,C,D, n � a{ } ,ree fault types in fault size a
2 X � M.n|M � B,C,D, n � b{ } ,ree fault types in fault size b
3 X � M.n|M � B,C,D, n � c{ } ,ree fault types in fault size c
4 X � M.n|M � B, n � a, b, c{ } Rolling fault in different sizes
5 X � M.n|M � C, n � a, b, c{ } Inner race fault in different sizes
6 X � M.n|M � D, n � a, b, c{ } Outer race fault in different sizes

Table 3: Ratio of different fault sets.

p Ratio
0.1 319.68
0.2 288.63
0.3 85.61
0.4 253.99
0.5 195.63
0.6 126.25
0.7 205.08
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8. Analysis of Computational Complexity

Tables 6 and 7 show the computational complexity of
programs. O(•) represents the time complexity of each
algorithm. Here, l is the length of parameter p with the
variation as 0.1. h is the iteration number of clustering
centers. d is the complexity of distance calculation.

t(23, 3) is the complexity of the LE program in the ref-
erence, which has changed the dimension from 23 to 3. In
a parallel manner, t(N, 2) represents the complexity of
dimensional optimization from N to 2 via the LE pro-
gram. It is obvious that O(max(J × Nh × N × l, N × l × h ×

d))>O(J × Nh × N) and O(max(J∗Nh ∗N2, t(N, 2)))>O
(t(23, 3)). ,e running time is almost three times that of the
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Figure 5: 3D scattered plots from 23-dimensional features in reference [30]. (a) Fault set 1. (b) Fault set 2. (c) Fault set 3. (d) Fault set 4.
(e) Fault set 5. (f ) Fault set 6.
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comparison method in reference [30]. ,is phenomenon in-
dicated that the proposed method is more complex.

Significantly, this paper focuses on the description ac-
curacy of bearing status. Figures 5 and 6 have shown the

advantages of the proposed method in terms of description
accuracy. ,en, monitoring people could autonomously
choose the adequate method according to time tolerance or
description accuracy.
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Figure 6: 3D scattered plots from fractional lower-order features proposed in this paper. (a) Fault set 1. (b) Fault set 2. (c) Fault set 3.
(d) Fault set 4. (e) Fault set 5. (f ) Fault set 6.
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(a) (b) (c) (d)

Figure 7: Real faulty bearings. (a) Inner race fault 0.1mm. (b) Inner race fault 0.3mm. (c) Outer race fault 0.1mm. (d) Outer race fault
0.3mm.

x
0.4 0.5 0.6 0.7

f(
x)

–0.1
0

0.1
0.2
0.3

PDF tail of Gaussian
signal component PF1
PDF tail of bearing
signal component PF1

(a)

x
0.4 0.5 0.6 0.7

f(
x)

–0.1
0

0.1
0.2
0.3

PDF tail of Gaussian
signal component PF1
PDF tail of bearing
signal component PF1

(b)

x
0.4 0.5 0.6 0.7

f(
x)

–0.1
0

0.1
0.2
0.3

PDF tail of Gaussian
signal component PF1
PDF tail of bearing
signal component PF1

(c)

x
0.4 0.5 0.6 0.7

f(
x)

–0.1
0

0.1
0.2
0.3

PDF tail of Gaussian
signal component PF1
PDF tail of bearing
signal component PF1

(d)

x
0.4 0.5 0.6 0.7

f(
x)

–0.1
0

0.1
0.2
0.3

PDF tail of Gaussian
signal component PF1
PDF tail of bearing
signal component PF1

(e)

Figure 8: PDF curve comparison of real faulty bearings and Gaussian signals. (a) Normal. (b) Inner race fault 0.1mm. (c) Inner race fault
0.3mm. (d) Outer race fault 0.1mm. (e) Outer race fault 0.3mm.

Table 4: Mean values of parameter α.

Sample Normal Inner race 0.1mm Inner race 0.3mm Outer race 0.1mm Outer race 0.3mm
Mean 1.8192 1.7555 1.7307 1.7970 1.7960

Table 5: Faulty samples divided into 4 groups (6001).

No. Description
1 Normal, inner race fault 0.1mm, and inner race fault 0.3mm bearings
2 Normal, outer race fault 0.1mm, and outer race fault 0.3mm bearings
3 Normal, inner race fault 0.1mm, and outer race fault 0.1mm bearings
4 Normal, inner race fault 0.3mm, and outer race fault 0.3mm bearings
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Figure 9: Mapping matrix from 23-dimensional features in reference [30]. (a) Fault set 1. (b) Fault set 2. (c) Fault set 3. (d) Fault set 4.
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Figure 10: Continued.
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9. Conclusions

In this paper, a kind of fractional lower-order feature ex-
traction method is specifically introduced so as to solve the
degradation problem of conventional methods. According
to the optimal FLOS and low-dimensional mapping matrix,
the equipment operational conditions are described pre-
cisely and effectively.

,e proposed method is validated by the bearing sam-
ples, and the results demonstrated the following:

(1) ,e mixed vibration signal of the operation is an
important class of α-stable distributed signals. On
the basis of the aforementioned fact, the signals of
faulty bearings, including rolling ball fault, inner race
fault, and outer race fault, yield the characteristics of
alpha-stable distribution.

(2) When the noise is impulsive and modeled as a non-
Gaussian process, the LMD algorithm does not
process the vibration signals effectively for impulsive
noise still existing in PF components. Especially in
the actual equipment status-monitoring process, the
noise interference in conventional methods becomes
more obvious.

(3) ,e improved performance is clearly demonstrated
both theoretically and experimentally. In compari-
son with traditional methods related to Gaussian
models, fractional lower-order features make more
accurate description of bearings status. Monitoring
people could autonomously choose the adequate
method according to time tolerance or description
accuracy.

,is newmethod gives more insight into the distribution
characteristics of the adaptively decomposed PF compo-
nents. ,e present work could be applied to feature ex-
traction of all signal components, and it would provide a
certain theoretical support for further study of intelligent
monitoring and diagnosis of the whole machine.

Data Availability

Data related to this paper have been given in Supple-
mentary Materials. ,e SKF6205-2RS bearing fault da-
tabase from Case Western Reserve University is from
“http://csegroups.case.edu/bearingdatacenter/home.” Form
roller bearing vibration data are from the offset printing
press PZ650.
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Figure 10: Fractional lower-order features proposed in this paper. (a) Fault set 1. (b) Fault set 2. (c) Fault set 3. (d) Fault set 4.

Table 6: Computational complexity of programs in reference [30].

Program Calculation of 23-
dimensional features

Feature optimization program of 23-
dimensional features

Running time (s)
(SKF6205-2RS)

Running time (s)
(6001)

Method in
reference [31] O(J × Nh × N) O(t(23, 3)) 21.227 43.729

Table 7: Computational complexity of programs in this paper.

Program Calculation of the optimal FLOS Feature optimization program of
covariation

Running time (s)
(SKF6205-2RS)

Running time (s)
(6001)

Proposed
method O(max(J × Nh × N × l, N × l × h × d)) O(max(J∗Nh ∗N2, t(N, 2))) 69.711 158.839
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