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In order to study the stability of the wind turbine drivetrain in further depth, we present a nonlinear relative rotation mathematical
model considering the nonlinear time-varying stiffness and the nonlinear damping force.Meanwhile, the nonlinear dynamics of the
model under combined harmonic excitation are studied in detail. And some interesting dynamic phenomena are observed visually.
Furthermore, to suppress chaotic oscillation within bounded time independent of initial conditions, a novel adaptive fixed-time
terminal sliding mode controller is proposed. The stability of the final closed loop system is guaranteed according to Lyapunov
stability theory. Rigorous mathematical analyses are used to prove the validity of the presented approach. Finally, compared with
the existing finite-time stability method, simulation results are given to highlight the effectiveness and superiority of the proposed
method and verify the theoretical analyses.

1. Introduction

Two basic goals for wind energy conversion system (WECS)
can be summarized as increasing its annual energy yield and
extending its service life. Generally, in order to achieve the
more annual energy production in a wide range of wind
speeds, most of the research works regarding maximum
power point tracking (MPPT) algorithms have been devoted
to the main control strategies [1–3]. Boukhezzar et al. [4]
used a two-mass wind turbine model to deal with the
wind power capture optimization problem while restricting
transient loads on the drivetrain components. However,
from the operational lifetime of a wind turbine point of
view, failure of the drivetrain components is currently listed
among the most problematic failures. Hence, the stability
and operational characteristics of wind turbine drivetrain
have significant impact on the dynamics of the wholeWECS,
especially as it bears the amount of dynamic loads [5]. To
prevent excessive drivetrain load and avoid the resonance, it
is mentioned in [6] that a power-electronics-based controller

was used to temporarily shift the closed loop eigenfrequency
of the drivetrain through the addition of virtual inertia.
Some effort has been dedicated to the small signal stability
of wind turbine drivetrain with the two-mass model. Geng
et al. [7] presented a torque compensation strategy and an
active-damping strategy to improve the system stability in
wind turbine drivetrain based on small-signal analysis. Chen
et al. [8] proposed a power control strategy with damping
injection for the suppression of natural resonant mode and
the aerodynamic load, which is proportional to the small-
signal value of the generator speed. Rahimi [9] analyzed small
signal stability of the full WECS, designed corresponding
controller elaborately, and theoretically examined impact of
speed controller on the stability of the system connected to
the power grid. Xie et al. [10] developed unified small-signal
models to find out all types of oscillation modes and analyze
the dynamic and steady-state behaviors in a two-mass shaft
model for the mechanical system. Regarding torsional elec-
tromechanical oscillations, a wind turbine stabilizer (WTS)
adding positive damping to suppress torsional vibrations in
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the drivetrain system was implemented in [11]. Even though
the dynamic behaviors of drivetrain systemwere described in
the mentioned publications [12–14], due to highly fluctuating
wind power generation, unpredictable demand, nonlinear
power characteristics, etc., a fixed value of inertia gain may
not contribute a satisfactory inertial response during each
system event [15]. In addition, the existent contributions were
basically modeled by linearized average dynamics. It should
be noted that, with the help of nonlinear dynamics theory,
Meng et al. [16] investigated bifurcation phenomenon of a
kind of nonlinear-relative rotational system with combined
harmonic excitation and did not offer a control approach to
eliminate bifurcation features. Therefore, to our best knowl-
edge, few works regarding the issue of the stability have
been investigated in wind turbine drivetrain with combined
harmonic excitation based on nonlinear dynamics theory.
What is more is that it is of great significance to design an
advanced control scheme with strong antidisturbance ability
as well as being independent of the system’s mathematical
model.

The effective control of uncertain nonlinear dynamic sys-
tems has been a hot issue of academia. The various advanced
control methods including feedback control [17], fuzzy con-
trol [18], adaptive control [19], and sliding mode control
[20] have been studied to drive the dynamic system to the
expected orbit or achieve these synchronization problems.
Among these control strategies, the stability and secure
operation of dynamic systems with uncertainties can all be
guaranteed. In addition, all the previous methods cannot
achieve system stability in finite time and only accomplish the
asymptotic stability, whichmeans that convergence time can-
not be estimated in advance. Finite-time control [21] with bet-
ter robustness, stronger anti-interface, and higher precision
performance can ensure the system stability within bounded
time. Sun et al. [22] applied the finite-time theory to deal with
real combination synchronization problem between three
complex-variable chaotic systems with unknown parameters.
Yang et al. [23] studied the incorporation of periodically
intermittent memory feedback control into finite-time stabil-
ity theory to synchronize two chaotic systems with discrete
and distributed delays.

However, an important limitation of finite-time control is
that its stable time depends mainly on the initial condition of
the system in the practical application. To compensate this
drawback, Polyakov [24] pioneered the fixed-time stability
method. In particular, Zuo further proposed the fixed-
time stability theory in [25]. Compared with the finite-time
stability, fixed-time stability possesses a faster convergence
rate, higher precision estimation, and stronger disturbance
rejection. The fixed-time stability of nonlinear systems with
uncertain parameters, unmodeled dynamics, and unknown
disturbances has been a well-established area [26–28]. Ma et
al. [29] proposed an adaptive fixed-time fast terminal sliding
mode control method for the second-order chaotic oscil-
lation power system. In second-order uncertain dynamical
system, Boukattay et al. [30] presented a robust and adaptive
nonsingular fast terminal sliding mode (RANFTSM) control
strategy for the tracking problem. At present, Hu et al.
[31] investigated a new fixed-time stability theorem with
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Figure 1: Two-mass drivetrain scheme.

high-precision estimation for dynamical systems. Therefore,
motivated by the above analysis, we have proposed an
adaptive fixed-time terminal sliding mode control method
to handle the complex control problem in a better way.
Furthermore, to the best of our knowledge, there is little
literature on the control method of wind turbine drivetrain
with combined harmonic excitation.

The main innovations of this paper are summarized as
follows. First, the wind turbine drivetrain model with the
nonlinear time-varying stiffness and the nonlinear damping
force is demonstrated in detail. Second, stability of wind
turbine drivetrain is analyzed with and without considering
external excitation according to Lyapunov stability theory.
Dynamic characteristics of the system are depicted concretely
by the aid of nonlinear dynamical theory. Third, an adaptive
fixed-time terminal sliding mode controller is proposed
for the suppression of chaotic oscillation in wind turbine
drivetrain with combined harmonic excitation. The proposed
control scheme can guarantee the system stabilization within
fixed-time independent of initial value and have advantages
in convergence rate and chattering problem. Finally, simula-
tion results are given to demonstrate the effectiveness of the
proposed approach.

The rest of this paper is organized as follows. In Section 2,
we recall the two-mass model of wind turbine, and a new
mathematical model of a typical wind energy drivetrain
with nonlinear terms is presented. Stability of wind turbine
drivetrain is comprehensively analyzed with and without
considering external excitation in Section 3. The adaptive
fixed-time terminal sliding mode controller is designed and
the stability is analytically proved in Section 4.The numerical
simulations are used to illustrate the validity of the obtained
scheme in Section 5. The conclusions are given in Section 6.

2. Mathematical Model of Wind Turbine

The purpose of this section is to introduce the two-mass
model based wind turbine drivetrain. Then, the wind turbine
system including the blade, wind rotor, drivetrain, and
generator is illustrated in Figure 1. The two-mass model can
be commonly used in accommodating flexible modes that
cannot be achieved by using the one-mass model in previous
studies. In order to study the nonlinear characteristic of
wind turbine on the grid, further modeling of wind turbine
dynamics should receive great attention.

A typical configuration of variable-speed wind turbine
drivetrain is illustrated in Figure 2. A two-mass model rep-
resentation of the drivetrain is essential in order to correctly
illustrate the dynamic impact of wind turbines on the grid [7].
In the two-mass model, the low speed mass of the turbine is
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Figure 2: Two-mass model of drivetrain.

connected to the high speed mass of the generator through
a flexible shaft modeled as a spring and damper [13]. In
industrial practices, all values in the stated equations are
converted to per unit system. The inertia moment of the
rotor 𝐽 can be represented by the per unit inertia constant 𝐻
customarily in [15]:

2𝐻 = 2𝑊𝐸𝑆𝑚 = 20.5𝐽𝜔2𝑠0𝑆𝑚 ≈ 𝐽 (1)

where WE, Sm, 𝜔s0 denote the energy stored, the installed
capacity, and the synchronous angular frequency in the per
unit system, respectively.

Therefore, the inertia moment of turbine rotor 𝐽𝑡 and
generator rotor 𝐽𝑔 can be, respectively, represented by the
per unit inertia constants 𝐻𝑡, 𝐻𝑔. From Figure 2, the lin-
earized mathematical expression of the two-mass drivetrain
is described as follows:

2𝐻𝑡𝜔̇𝑡 = 𝑇𝑡 − 𝑇𝑠h2𝐻𝑔𝜔̇𝑔 = 𝑇𝑠h − 𝑇𝑔
𝑇𝑠h = 𝑘𝑠𝜑 + 𝐵𝑠 (𝜔𝑡 − 𝜔𝑔)
𝜑̇ = 𝜔𝑏 (𝜔𝑡 − 𝜔𝑔)

(2)

where superscript − denotes per unit (pu) value and 𝐻𝑔,𝐻𝑡, 𝜔𝑡, 𝜔𝑔, 𝑇𝑔, 𝑇𝑡, 𝑇𝑠ℎ denote the inertia constants of the
generator and turbine (in sec), the turbine and generator
speeds (in rad/sec), the generator electrical torque and the
turbine mechanical torque (in pu), and the shaft torsional
torque (in pu), respectively. And 𝜑, 𝑘𝑠, 𝐵𝑠, 𝜔b denote the shaft
twist angle (in rad), the shaft stiffness coefficient (in pu/elec.
rad), the damping coefficient of the shaft (in pu), and the
reference speed (𝜔𝑏 = 314 rad/sec), respectively.

From (2), the shaft twist angle can then be obtained:

𝜑̈ + 𝐵𝑠( 12𝐻𝑡 + 12𝐻𝑔) 𝜑̇ + 𝜔𝑏𝑘𝑠 ( 12𝐻𝑡 + 12𝐻𝑔)𝜑
= 𝜔𝑏 ( 𝑇𝑡2𝐻𝑡 +

𝑇𝑔2𝐻𝑔)
(3)

Considering (3) and according to the above explanations,
the shaft natural oscillation frequency and damping ratio in
the absence of external torque can be written as

𝜔𝑛 = √𝑘𝑠𝜔𝑏 ( 12𝐻𝑡 + 12𝐻𝑔),
𝜍 = 𝐵𝑠 (1/2𝐻𝑡 + 1/2𝐻𝑔)2𝜔𝑛

(4)

The drivetrain of the 2 MW turbine generator has the
following partial parameters [9]: 𝐻𝑔 = 0.6𝑠𝑒𝑐, 𝐻𝑡 = 4𝑠𝑒𝑐,𝑘𝑠 = 0.6pu/elec. rad, 𝐵𝑠 = 1pu, 𝜔𝑏 = 314 rad/sec; the natural
oscillation frequency of the torsional modes is obtained equal
to 𝜔𝑛 = 13.437 rad/sec (𝑓𝑛 = 2.139Hz) with damping ratio
of 𝜍 = 0.0357. Since the damping ratio is far less than 1, the
system is a typical underdamped system, and the torsional
vibration of the shaft can be easily excited.

In the existing literatures [6, 8, 15, 32], there is a common
approach to mitigate excessive drivetrain load through the
addition of virtual inertia or damping ratio in the dynamic
model. The dynamic of turbine speed is much slower and
more difficult to control than that of the generator speed
because of the huge turbine and generator inertias, and the
main source of torsional vibration is electromagnetic torque.
The transfer function from torsional angular velocity (𝜑̇) to
electromagnetic torque can be easily established in the small
signal model of the drivetrain. And the neighborhood of the
quasisteady operation point can be deduced (𝜔𝑔 = 𝜔𝑡) by
the small signal model. However, different initial values of
the small signal model can influence both frequency and
damping ratio of the oscillation mode [10]. What is more
is that, according to the above explanations, all dynamic
behaviors are described under the linearized model.

In order to further study the dynamic characteristics,
nonlinear time-varying stiffness and damping are used by
equivalent principle in Figure 2, given by

𝑇𝑠h = 𝑘𝜑 + 𝐵𝑠 (𝜔𝑡 − 𝜔𝑔) + 𝐵󸀠𝑠 (𝜔𝑡 − 𝜔𝑔)3 (5)

where 𝑘 = 𝑘𝑠(1 + 𝑘󸀠 sin(Ω𝑡)), 𝐵󸀠𝑠 is the nonlinear damping
coefficient, Ω is the nonlinear stiffness excitation frequency,
and 𝑘󸀠 is the nonlinear stiffness amplitude.

Combining (2) and (3), the Lagrangian dynamics equa-
tion after nonlinear terms injection can then be rewritten as

𝜑̈ + 𝜔2𝑛𝜑 + 𝑘𝜑 cos (Ω𝑡) + 𝑎𝜑̇ + 𝑏𝜑̇3 = 𝐹 (𝑡) (6)

where 𝑎 = 𝐵𝑠(1/2𝐻𝑡 +1/2𝐻𝑔), 𝑏 = (𝐵󸀠𝑆/𝜔2𝑏)(1/2𝐻𝑡 +1/2𝐻𝑔),𝜔𝑛 = √𝑘𝑠𝜔𝑏(1/2𝐻𝑡 + 1/2𝐻𝑔), 𝑘 = 𝜔2𝑛𝑘󸀠, 𝜔𝑏 = 2𝜋𝑓 =2𝜋× 50, 𝐹(𝑡) = (𝑇𝑡/2𝐻𝑡 +𝑇𝑔/2𝐻𝑔)𝜔𝑏, and 𝐹(𝑡) is the lumped
disturbance excitation.

From (6), this is a general equation of nonlinear dynamics
and the basic principle of the two-mass relative rotation
system in the wind turbine drivetrain. And it will be the basis
for further study of the dynamic characteristics.
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Table 1: The running state of system (11).

Number Parameter Eigenvalue Root Notes
1 𝑎 < 0, 𝑎2 − 4𝜔2𝑛 ≥ 0 𝑎 ≤ −2𝜔𝑛, Re 𝜆 > 0 Two positive real roots Instability
2 𝑎 < 0, 𝑎2 − 4𝜔2𝑛 < 0 −2𝜔𝑛 < 𝑎 < 0, Re 𝜆 > 0 Two positive real roots Instability
3 𝑎 > 0, 𝑎2 − 4𝜔2𝑛 ≥ 0 𝑎 ≥ 2𝜔𝑛, Re 𝜆 < 0 Two negative real roots Stability
4 𝑎 > 0, 𝑎2 − 4𝜔2𝑛 < 0 0 < 𝑎 < 2𝜔𝑛, Re 𝜆 < 0 Two negative real roots Stability

3. Stability Analysis of
Wind Turbine Drivetrain

When the wind turbine operates in rated conditions, an
external disturbance excitation, such as the fluctuation of
the random energy frequency or amplitude, will affect the
stability of the system. Subsequently, the system will enter a
new operating state. And there will be a complex transient
process because of the nonlinearity of every part. The non-
linear dynamical behaviors along with the fluctuation of the
amplitude of the shaft twist angle are particularly focused on.

3.1. Dynamic Characteristics of the Autonomous System.
From (6), 𝑥 = 𝜑, the Euler equation of the natural oscillation
(without external torque) can be listed:

𝑥̈ + 𝑎𝑥̇ + 𝑏𝑥̇3 + 𝜔2𝑛𝑥 + 𝑘𝑥 cos (Ω𝑡) = 0 (7)

According to the properties of the autonomous system
[33], the system is an autonomous system without consider-
ing the time-varying stiffness of parameters. Then we have𝑥̈ + 𝑎𝑥̇ + 𝑏𝑥̇3 + 𝜔2𝑛𝑥 = 0, let 𝑥 = 𝑥1, 𝑥̇ = 𝑥2. Equation (7) is
rewritten as 𝑥̇1 = 𝑥2

𝑥̇2 = −𝑎𝑥2 − 𝑏𝑥32 − 𝜔2𝑛𝑥1 (8)

Theorem 1. For system (11), when 𝑎 < 0, 𝑏 < 0, it is unstable
at the origin O(0; 0); when 𝑎 > 0, 𝑏 > 0, it is asymptotically
stable at the origin O(0; 0).
Proof. According to system (11), the origin O (0; 0) is the only
equilibrium point. Let 𝑥1 = 𝑝, 𝑥2 = −𝜔𝑛𝑞; one has𝑝̇ = −𝜔𝑛𝑞

̇𝑞 = −𝑎𝑞 − 𝑏𝜔2𝑛𝑞3 + 𝜔𝑛𝑝 (9)

Consider the following Lyapunov positive definite func-
tion as (𝑝, 𝑞) = (1/2)(𝑝2 + 𝑞2); the time derivative of 𝑉(𝑝, 𝑞)
can be obtained as

𝑉̇ (𝑝, 𝑞) = 𝜕𝑉𝜕𝑝 𝑝̇ + 𝜕𝑉𝜕𝑞 ̇𝑞 = −𝑞2 (𝑎 + 𝑏𝜔2𝑛𝑞2) (10)

If 𝑎 < 0, 𝑏 < 0, 𝑉̇(𝑝, 𝑞) > 0, it is unstable at the origin O(0;
0); when a > 0, b > 0, 𝑉̇(𝑝, 𝑞) < 0, it is asymptotically stable
at the origin O(0; 0).

Theorem2. For system (11), when 𝑏 = 0, 𝑎 < 0, it is unstable at
the origin O(0; 0); when 𝑏 = 0, 𝑎 > 0, it is stable at the origin
O(0; 0); when 𝑏 = 0, 𝑎 = 0, closed trajectory bifurcation occurs
at the origin O(0; 0).

Proof. According to system (11), when 𝑏 = 0, thus, it is
rewritten as

𝑥̇1 = 𝑥2
𝑥̇2 = −𝑎𝑥2 − 𝜔2𝑛𝑥1 (11)

The Jacobi matrix of system (14) can be further written as

𝐽 = [ 0 1
−𝜔2𝑛 −𝑎] (12)

The corresponding characteristic equation of Jacobi
matrix J is 𝜆2 + 𝑎𝜆 + 𝜔2𝑛 = 0. It is clear that 𝜆1,2 =(−a ± √a2 − 4𝜔2n)/2 is the eigenvalue. Specific stability state
is summarized in Table 1.

As shown in Figures 3 and 4, for system (11), when 𝑏 = 0,𝑎 < 0, it is unstable at the origin O(0; 0); when 𝑏 = 0, 𝑎 > 0,
it is stable at the origin O(0; 0); when 𝑏 = 0, 𝑎 = 0, closed
trajectory bifurcation occurs at the origin O(0; 0).

3.2. Dynamic Characteristics of the Nonautonomous Sys-
tem. Considering the combination harmonic excitation with
unequal frequency, assume (𝑡) = 𝑓1 cos(V1𝑡)+𝑓2 cos(V2𝑡); the
differential equation of system (7) can be rewritten as

̈𝑥 + 𝑎 ̇𝑥 + 𝑏𝑥̇3 + 𝜔2𝑛𝑥 + 𝑘𝑥 cos (Ω𝑡)
= 𝑓1 cos (V1𝑡) + 𝑓2 cos (V2𝑡) (13)

Adding a small parameter 𝜁 to the nonlinear item, we get

̈𝑥 + 𝜁𝑎𝑥̇ + 𝜁𝑏𝑥̇3 + 𝜔2𝑛𝑥 + 𝜁𝑘𝑥 cos (Ω𝑡)
= 𝑓1 cos (V1𝑡) + 𝑓2 cos (V2𝑡) (14)

The system (14) is analyzed using the multiscale method
[34], and the solution of the system is assumed as

𝑥 (𝑡, 𝜁) = 𝑥0 (𝑇0, 𝑇1) + 𝜁𝑥1 (𝑇0, 𝑇1) (15)

where 𝑇0 = 𝑡, 𝑇1 = 𝜁𝑡 denote the fast time-varying scale
and the slow time-varying scale, respectively. Substituting
(15) into (14), the coefficients of 𝜁0, 𝜁1 for the two sides of
the equation can be recognized as equal. The perturbation
equation can be obtained as

𝐷20𝑥0 + 𝜔2𝑛𝑥0 = 𝑓1 cos (V1𝑇0) + 𝑓2 cos (V2𝑇0) (16)

𝐷20𝑥1 + 𝜔2𝑛𝑥1 = −2𝐷0𝐷1𝑥0 − 𝑎𝐷0𝑥0 − 𝑏 (𝐷0𝑥0)3
− 𝑘𝑥0 cos (Ω𝑇0) (17)
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Figure 3: Time domain diagrams and phase portrait when 𝑎 > 0.
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Figure 4: Time domain diagrams and phase portrait when 𝑎 < 0.

where 𝐷𝑖 = 𝜕/𝜕𝑇𝑖(𝑖 = 0, 1) denotes the partial differential
operator. General solution of (16) can be constructed:

𝑥0 = 𝐴 (𝑇1) 𝑒𝑖𝜔𝑛𝑇0 + Λ 1𝑒𝑖V1𝑇0 + Λ 2𝑒𝑖V2𝑇0 + c.c.. (18)

where 𝐴, 𝑐.𝑐. denote the pending complex function and
conjugate items, respectively. Λ 𝑖 = 𝑓𝑖/2(𝜔2𝑛 − V2𝑖 ) (𝑖 = 1, 2).

In order to simplify the calculation process without loss
of generality, substituting (18) into (17), let Ω = 𝜔𝑛, we
found that there are simultaneous superharmonic response,

subharmonic response, and combined harmonic response for
wind turbine drivetrain, any of which can be combined with
any two harmonic responses. By using 𝜔𝑛 ≈ 2V1 − V2 , and a
tuning parameter 𝜎, one has

2V1 − V2 = 𝜔𝑛 + 𝜁𝜎 (19)

The secular term can be removed by setting the coefficient
to zero; then the real part and the imaginary part of the
derivative for the complex function are opened and set to
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Figure 5: Bifurcation diagram and Lyapunov exponential spectrum.

zero separately; the response amplitude equation is finally
expressed as

𝜎2𝑟2 + [12𝛼𝑟 − 38𝛽𝑟 (𝜔2𝑛𝑜2 + 8Γ21 + 8Γ22 )]
2

= ( 3𝜔𝑛𝛽Γ1Γ22)
2

(20)

where 𝑟 denote the response amplitude, and Γ1 = V1Λ 1, Γ2 =
V2Λ 2, 𝛼 = 𝑎𝜁, 𝛽 = 𝑏𝜁.

From (20), it can be concluded that the response ampli-
tude 𝑟 under the combined harmonic excitation is not only
related to the damping coefficient a, b, the amplitude 𝑓𝑖, and
the frequency V𝑖 of the external disturbance excitation, but
also related to the tuning parameter 𝜎. so the stability of
wind turbine drivetrain ismiscellaneous according to various
combined excitations.

The Bifurcation diagram and Lyapunov exponent are
used to observe the dynamical characteristics of the nonlinear
system as the system parameter varies. For a periodic steady
state, all Lyapunov exponents of the nonlinear dynamical
system are less than zero, whereas at least one more than
zero is the signature of a chaotic behavior. Transparently, it is
known that, as the amplitude 𝑓𝑖 of the external disturbance
excitation changes all the time, the running state of the
system changes consequentially. As shown in Figure 5, the
Bifurcation diagramandLyapunov exponential spectrumcan
be described by plotting the maxima of the coordinate 𝜑with
parameter 𝑓𝑖 varying. Here, 0 < 𝑓 = 𝑓1 = 𝑓2 < 5, 𝑎 =−0.15, 𝑏 = 0.1, 𝑘 = 1, V1 = 1, 𝜁 = 0.02, 𝜎 = 5, and the initial
state are selected as [0.05 0.06].

In accordance with the setting values of the abovemen-
tioned system parameters, various numerical computations
of the timing diagrams and phase portraits were procured as
illustrated in Figure 6, which further validate the occurrence
of routes to chaos described in advance. From Figures 5 and
6, the nonlinear dynamical behaviors of the wind turbine
drivetrain with combined harmonic excitation are complex,

and the system goes through a series of operating states.
Although in the sense that chaos is sensitive to initial values
and quasirandom and is a transient process in the system, it is
still a disadvantage to the stability and security of the whole
system. Therefore, in order to assure the system stability, it
is very necessary to turn up an approach for controlling the
chaotic system to a steady state.

4. Design of Adaptive Fixed-Time
Terminal Sliding Mode Controller and
Stability Analysis

4.1. Preliminaries. For the global stability analysis, we intro-
duce some necessary lemmas in advance.

Lemma 3 (see [31]). Assume that there exists a continuous
positive definite and radially unbounded function 𝑉(𝑒(𝑡)) and
its right directional derivative satisfies the differential inequal-
ity:

𝑉̇ (𝑒 (𝑡)) + 𝜆𝑉𝑝 (𝑒 (𝑡)) + 𝜂𝑉𝑞 (𝑒 (𝑡)) ≤ 0,
∀𝑡 ≥ 𝑡0, 𝑒 (0) = 𝑒0 (21)

where 𝜆, 𝜂 > 0, 𝑝 > 1, 𝑞 < 1; then the origin of (7) is globally
fixed-time stable and the upper bound of settling time𝑇(𝑒0) can
be estimated by

lim
𝑒0󳨀→∞

[𝑇 (𝑒0)] ≤ T1max

= 1𝜂 (𝜂𝜆)(1−𝑞)/(𝑝−𝑞) ( 11 − 𝑞 + 1𝑝 − 1)
(22)

Lemma 4 (see [19]). Based on Lemma 3, if 𝑞 = 1, the
continuous positive definite and radially unbounded function𝑉(𝑒(𝑡)) can be written as follows:

𝑉̇ (𝑒 (𝑡)) + 𝜆𝑉𝑝 (𝑒 (𝑡)) + 𝜂𝑉 (𝑒 (𝑡)) ≤ 0,
∀𝑡 ≥ 𝑡0, 𝑉 (𝑒0) ≥ 0 (23)



Mathematical Problems in Engineering 7

5 10 15 20 25 30 35 40 45 50 55 600
t (s)

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Ｒ 2

(r
ad

/s
)

0 0.02 0.04 0.06 0.08−0.02
Ｒ1 (rad)

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Ｒ 2
(r

ad
/s

)

(a)

−1

−0.5

0

0.5

1

Ｒ 2
(r

ad
/s

)

5 10 15 20 25 30 35 40 45 50 55 600
t (s)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25−0.15
Ｒ1 (rad)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ｒ 2
(r

ad
/s

)

(b)

Figure 6: Time domain waveform and phase portrait for different 𝑓 (a) 𝑓 = 0.1; (b) 𝑓 = 5.

where 𝜆, 𝜂 > 0, 1 > 𝑝 > 0; it meets 𝑉(𝑡) ≡ 0, ∀𝑡 >
T2max.The convergence time T2max is given by T

2
max = 𝑡0+(1/(1−𝑝)𝜂)In((𝜆 + 𝜂𝑉1−𝑝(𝑒0))/𝜆).

Lemma 5 (see [19]). From Lemma 4, when 𝜂 = 0, ∀𝑡 ≥ 𝑡0,
the global finite time should be rewritten as T3max = 𝑡0 +𝑉1−𝑝(𝑒0)/(1 − 𝑝)𝜆, and 𝑇2𝑚𝑎𝑥 ≤ 𝑇3𝑚𝑎𝑥 for 𝑉(𝑒0) ≥ 0.
Lemma 6 (see [35]). If 𝜀𝑖 ∈ R, 𝑖 = 1, 2 ⋅ ⋅ ⋅ 𝑁 are arbitrary real
numbers, the following inequalities satisfy

( 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝜀𝑖󵄨󵄨󵄨󵄨)
𝛿 ≤ 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝜀𝑖󵄨󵄨󵄨󵄨𝛿 , 0 < 𝛿 ≤ 1

𝑁1−𝛿( 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝜀𝑖󵄨󵄨󵄨󵄨)
𝛿 ≤ 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝜀𝑖󵄨󵄨󵄨󵄨𝛿 , 1 < 𝛿
(24)

4.2. Design of Adaptive Nonsingular Terminal Sliding Mode
Controller. The second-order nonlinear dynamical system is
adopted as follows:

𝑥̇1 = 𝑥2𝑥̇2 = 𝑓 (𝑥, 𝑡) + 𝑏𝑢 (𝑡) + 𝑑 (𝑡)𝑦 = 𝑥1
(25)

where, according to (6) and (13), [𝑥1 𝑥2]𝑇 =[𝜑(𝑡) 𝜑̇(𝑡)]𝑇, 𝑓(𝑥, 𝑡) = −𝑎𝑥2 − 𝑏𝑥32 − 𝜔2𝑛𝑥1 − 𝑘𝑥1 cos(Ω𝑡),𝑑(𝑡) = 𝑓1 cos(V1𝑡) + 𝑓2 cos(V2𝑡) denotes the bounded com-
bination harmonic excitation, and 𝑢(𝑡) is the control input.

In order to stabilize state variable 𝑥1, let 𝑦𝑑 be the desired
signal vector. The control error and its derivatives are written
as 𝑒1 = 𝑦 − 𝑦𝑑 and 𝑒2 = ̇𝑦 − ̇𝑦𝑑. From (25), one has

̇𝑒1 = 𝑒2̇𝑒2 = 𝐹 (𝑥) + 𝐵𝑢 (𝑡) + 𝐷 (𝑡) (26)
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Figure 7: Control flowchart diagram of closed loop system.

where 𝐹(𝑥) = 𝑓(𝑥, 𝑡) − 𝑦̈𝑑, 𝐵 = 𝑏, 𝐷(𝑡) = 𝑑(𝑡), and there is
the bounded condition |𝐷(𝑡)| ≤ 𝛽0, 𝛽0 is the given constant.

Then the proposed nonsingular terminal sliding mode
manifold can be described as

𝑠 (𝑡) = 𝑒2 + (𝛾 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌1 + 𝜗 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌2) sign (𝑒1) (27)

where 𝛾, 𝜗 > 0 and 0 ≤ 𝜌2 < 1, 𝜌1 > 1; by using(𝑑/𝑑𝑡)(|𝑒1|𝜒 sign(𝑒1)) = 𝜒|𝑒1|𝜒−1 ̇𝑒1, the time derivative of (27)
can be derived as

̇𝑠 (𝑡) = ̇𝑒2 + (𝛾𝜌1 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌1−1 + 𝜗𝜌2 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌2−1) ̇𝑒1 (28)

According to the sliding mode control theory, the sliding
mode manifold and its derivative must satisfy

𝑠 (𝑡) = 0
and ̇𝑠 (𝑡) = 0 (29)

By substituting (26) without combination harmonic exci-
tation into (28), one can have

̇𝑠 (𝑡) = 𝐹 (𝑥) + 𝐵𝑢𝑒𝑞 (𝑡)
+ (𝛾𝜌1 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌1−1 + 𝜗𝜌2 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌2−1) 𝑒2 (30)

From (29), the equivalent control law 𝑢𝑒𝑞 can be obtained
as

𝑢𝑒𝑞 = 𝐵−1 [−𝐹 (𝑥) − (𝛾𝜌1 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌1−1 + 𝜗𝜌2 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌2−1) 𝑒2] (31)

In order to satisfy the sliding condition in the presence of
combination harmonic excitation, a switching adaptive law𝑢𝑠𝑤 is designed as

𝑢𝑠𝑤 = −𝐵−1 [(𝑘1 |𝑠|𝜌3 + 𝑘2 |𝑠|𝜌4) + 𝑘0] sign (𝑠) (32)

where 0 ≤ 𝜌4 < 1, 𝜌3 > 1, and 𝑘𝑖, 𝑖 = 0, 1, 2, are
the estimations of the tuning parameters. Then, the overall
sliding mode control law can be given below

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠𝑤
= 𝐵−1{[−𝐹 (𝑥) − (𝛾𝜌1 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌1−1 + 𝜗𝜌2 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌2−1) 𝑒2]− [(𝑘1 |𝑠|𝜌3 + 𝑘2 |𝑠|𝜌4) + 𝑘0] sign (𝑠) } (33)

The estimations of the parameters 𝑘0, 𝑘1, and 𝑘2 are
updated by the following adaptive laws:

𝑘̇0 = [|𝑠|
− (𝛽1 󵄨󵄨󵄨󵄨𝑘0 − 𝛽0󵄨󵄨󵄨󵄨𝜌3 + 𝛽2 󵄨󵄨󵄨󵄨𝑘0 − 𝛽0󵄨󵄨󵄨󵄨𝜌4) sign (𝑘0 − 𝛽0)] (34)

𝑘̇1 = [|𝑠|𝜌3+1
− (𝛽1 󵄨󵄨󵄨󵄨𝑘1 − 𝛽1󵄨󵄨󵄨󵄨𝜌3 + 𝛽2 󵄨󵄨󵄨󵄨𝑘1 − 𝛽1󵄨󵄨󵄨󵄨𝜌4) sign (𝑘1 − 𝛽1)] (35)

𝑘̇2 = [|𝑠|𝜌4+1
− (𝛽1 󵄨󵄨󵄨󵄨𝑘2 − 𝛽2󵄨󵄨󵄨󵄨𝜌3 + 𝛽2 󵄨󵄨󵄨󵄨𝑘2 − 𝛽2󵄨󵄨󵄨󵄨𝜌4) sign (𝑘2 − 𝛽2)] (36)

where 𝛽0, 𝛽1, and 𝛽2 are the arbitrary constants. The control
flowchart diagram of closed loop system is illustrated in
Figure 7.

4.3. Fixed-Time Stability Analysis. In this section, somemain
results of the proposed adaptive fixed-time terminal sliding
mode control are analytically proved in the following theo-
rem.

Theorem 7. The adaptive controller of system (25) is designed
as (33) and the corresponding updated laws are chosen as (34)-
(36). If the sliding mode manifold is expressed as (27), then the
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system state trajectories converge to the sliding surface within a
finite time bounded by

𝑡𝑟 ≤ 2(1−𝜌4)/2𝛽2 (2(𝜌4−𝜌3)/2𝛽22𝛽1 )(1−𝜌4)/(𝜌3−𝜌4)

⋅ ( 11 − 𝜌4 + 1𝜌3 − 1)
(37)

Proof. The Lyapunov function candidate is constructed as
follows:

𝑉1 = 12𝑠 (𝑡)𝑇𝑠 (𝑡) + 12
2∑
𝑖=0

(𝑘𝑖 − 𝛽𝑖)2 (38)

Then the time derivative of 𝑉1 can be written as

𝑉̇1 = 𝑠 (𝑡)( 𝐹 (𝑥) + 𝐵𝑢 (𝑡) + 𝐷 (𝑡)
+ (𝛾𝜌1 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌1−1 + 𝜗𝜌2 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌2−1) 𝑒2) + 2∑

𝑖=0

(𝑘𝑖 − 𝛽𝑖) 𝑘̇𝑖 (39)

Substituting the designed control law 𝑢 (33) into (39), one
gets

𝑉̇1 = 𝑠 (𝑡) [𝐷 (𝑡) − ((𝑘1 |𝑠|𝜌3 + 𝑘2 |𝑠|𝜌4) + 𝑘0) sign (𝑠)]
+ 2∑
𝑖=0

(𝑘𝑖 − 𝛽𝑖) 𝑘̇𝑖 (40)

Combining the adaptive updating laws (34)-(36), one has

𝑉̇1 = 𝐷 (𝑡) 𝑠 − 𝑘1 |𝑠|𝜌3+1 − 𝑘2 |𝑠|𝜌4+1 − 𝑘0 |𝑠|
+ (𝑘0 − 𝛽0)
⋅ [|𝑠| − ( 𝛽1 󵄨󵄨󵄨󵄨𝑘0 − 𝛽0󵄨󵄨󵄨󵄨𝜌3+𝛽2 󵄨󵄨󵄨󵄨𝑘0 − 𝛽0󵄨󵄨󵄨󵄨𝜌4) sign (𝑘0 − 𝛽0)]
+ (𝑘1 − 𝛽1)
⋅ [|𝑠|𝜌3+1 − ( 𝛽1 󵄨󵄨󵄨󵄨𝑘1 − 𝛽1󵄨󵄨󵄨󵄨𝜌3+𝛽2 󵄨󵄨󵄨󵄨𝑘1 − 𝛽1󵄨󵄨󵄨󵄨𝜌4) sign (𝑘1 − 𝛽1)]
+ (𝑘2 − 𝛽2)
⋅ [|𝑠|𝜌4+1 − ( 𝛽1 󵄨󵄨󵄨󵄨𝑘2 − 𝛽2󵄨󵄨󵄨󵄨𝜌3+𝛽2 󵄨󵄨󵄨󵄨𝑘2 − 𝛽2󵄨󵄨󵄨󵄨𝜌4) sign (𝑘2 − 𝛽2)]

(41)

To simplify the calculation, the above equation is modi-
fied as

𝑉̇1 = 𝐷 (𝑡) 𝑠 − 𝛽0 |𝑠| − ( 𝛽1 󵄨󵄨󵄨󵄨𝑘0 − 𝛽0󵄨󵄨󵄨󵄨𝜌3+1+𝛽2 󵄨󵄨󵄨󵄨𝑘0 − 𝛽0󵄨󵄨󵄨󵄨𝜌4+1)
− 𝛽1 |𝑠|𝜌3+1 − ( 𝛽1 󵄨󵄨󵄨󵄨𝑘1 − 𝛽1󵄨󵄨󵄨󵄨𝜌3+1+𝛽2 󵄨󵄨󵄨󵄨𝑘1 − 𝛽1󵄨󵄨󵄨󵄨𝜌4+1) − 𝛽2 |𝑠|𝜌4+1

− ( 𝛽1 󵄨󵄨󵄨󵄨𝑘2 − 𝛽2󵄨󵄨󵄨󵄨𝜌3+1+𝛽2 󵄨󵄨󵄨󵄨𝑘2 − 𝛽2󵄨󵄨󵄨󵄨𝜌4+1) ≤ (|𝐷 (𝑡)| − 𝛽0) |𝑠|
− 𝛽1 (|𝑠|𝜌3+1 + 󵄨󵄨󵄨󵄨𝑘0 − 𝛽0󵄨󵄨󵄨󵄨𝜌3+1 + 󵄨󵄨󵄨󵄨𝑘1 − 𝛽1󵄨󵄨󵄨󵄨𝜌3+1
+ 󵄨󵄨󵄨󵄨𝑘2 − 𝛽2󵄨󵄨󵄨󵄨𝜌3+1) − 𝛽2 (|𝑠|𝜌4+1 + 󵄨󵄨󵄨󵄨𝑘0 − 𝛽0󵄨󵄨󵄨󵄨𝜌4+1
+ 󵄨󵄨󵄨󵄨𝑘1 − 𝛽1󵄨󵄨󵄨󵄨𝜌4+1 + 󵄨󵄨󵄨󵄨𝑘2 − 𝛽2󵄨󵄨󵄨󵄨𝜌4+1)

(42)

According to Lemma 6, it is easy to obtain that

𝑉̇1 ≤ −2(𝜌3+1)/2𝛽1 ((12 s2)
(𝜌3+1)/2

+ (12 (𝑘0 − 𝛽0)2)
(𝜌3+1)/2 + (12 (𝑘1 − 𝛽1)2)

(𝜌3+1)/2

+ (12 (𝑘2 − 𝛽2)2)
(𝜌3+1)/2)

− 2(𝜌4+1)/2𝛽2 ((12 s2)
(𝜌4+1)/2

+ (12 (𝑘0 − 𝛽0)2)
(𝜌4+1)/2 + (12 (𝑘1 − 𝛽1)2)

(𝜌4+1)/2

+ (12 (𝑘2 − 𝛽2)2)
(𝜌4+1)/2)

≤ −41−(𝜌3+1)/22(𝜌3+1)/2𝛽1(12𝑠 (𝑡)𝑇𝑠 (𝑡)
+ 12
2∑
𝑖=0

(𝑘𝑖 − 𝛽𝑖)2)(𝜌3+1)/2

− 2(𝜌4+1)/2𝛽2(12𝑠 (𝑡)𝑇𝑠 (𝑡)
+ 12
2∑
𝑖=0

(𝑘𝑖 − 𝛽𝑖)2)(𝜌4+1)/2 = −2(3−𝜌3)/2𝛽1𝑉(𝜌3+1)/21

− 2(𝜌4+1)/2𝛽2𝑉(𝜌4+1)/21

(43)

It follows from Lemma 3 that system (25) can be globally
fixed time stable and the settling time is upper bounded by
(37).The proof is completed.
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Figure 8: Time response of tracking 𝑥1.

When the error variables are on the sliding manifold,
their dynamics will meet (𝑠(𝑡) = 0)

𝑒2 = − (𝛾 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌1 + 𝜗 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌2) sign (𝑒1) (44)

Theorem 8. The sliding mode dynamics (44) of the error
system (26) is finite time stable and its state trajectories globally
converge to the origin with the settling time upper bounded by

𝑡𝑠 ≤ 2(1−𝜌2)/2𝜗 (2(𝜌2−𝜌1)/2𝜗𝛾 )(1−𝜌2)/(𝜌1−𝜌2)

⋅ ( 11 − 𝜌2 + 1𝜌1 − 1)
(45)

Proof. The Lyapunov candidate function is selected in the
following form:

𝑉2 (𝑡) = 12𝑒21 (𝑡) (46)

From (44), one can get

𝑉̇2 (𝑡) = 𝑒1 ̇𝑒1
= −𝑒1 (𝛾 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌1 + 𝜗 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌2) sign (𝑒1) − 𝛾 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌1+1
− 𝜗 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝜌2+1

= −2(𝜌1+1)/2𝛾𝑉2(𝜌1+1)/2 − 2(𝜌2+1)/2𝜗𝑉2(𝜌2+1)/2
(47)

In the light of Lemma 3, the upper bound of convergence
time can be estimated by (45). The proof is completed.

5. Simulation Results

In this section, numerical simulation results are used to
validate the effectiveness and the superiority of the proposed
control algorithm for the system (25).The system parameters
are selected as 0 < 𝑓 = 𝑓1 = 𝑓2 < 5, 𝑎 = −0.15, 𝑏 = 0.1, 𝑘 = 1,
V1 = 1; the controller parameters are chosen as 𝛾 = 𝜗 = 10,𝜌1 = 1.5, 𝜌2 = 0.5, 𝑘0(0) = 𝑘1(0) = 𝑘2(0) = 3, 𝛽0 = 2.5,𝛽1 = 10, 𝛽2 = 8, 𝜌3 = 1.8, 𝜌4 = 0.5. Based on Lemma 3, by
calculation from (37) and (45), the estimation upper bound
of convergence time can be obtained by 𝑇1𝑚𝑎𝑥 < 𝑡𝑟 + 𝑡𝑠 =0.2856 + 0.4 = 0.6856𝑠.

In numerical simulation, to highlight the superiorities
of the proposed scheme in further depth, two cases of the
reference signal are implemented in keeping the rest of
conditions unchanged.

Case 1. The reference signal is chosen as 𝑥𝑑(𝑡) = sin(2𝑡).
Case 2. The reference signal is set as 𝑥𝑑(𝑡) = sin(𝜋𝑡).

The initial conditions of the state variable are set as[𝑥1(0), 𝑥2(0)] = [0.1 0.12]. According to Lemma 4, the
tuning parameters of the finite-time method are designed as𝜆 = 8, 𝜂 = 10, 𝑝 = 0.5. After calculation, one can get𝑇2𝑚𝑎𝑥 ≤ 0.9206.The controller is activated at 𝑡 = 5𝑠. As shown
in Figures 8 and 9, the response curves of state variables with
Case 1 accurately track the reference signal. By comparing
the proposed scheme, one can see that the convergence time
is shorter than the finite-time method and the chattering
phenomenon is well suppressed. As illustrated in Figure 10,
the estimated values of tuning parameters 𝑘0, 𝑘1, and 𝑘2 will
fast converge to 𝛽0, 𝛽1, 𝛽2, respectively.

In order to exhibit the merits of the proposed fixed-
time method, the control effect is independent of the initial
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conditions. Therefore, in case 2, the initial conditions of
the state variable are set as [𝑥1(0), 𝑥2(0)] = [0.15 0.22].
According to Lemma 4, the tuning parameters of the finite-
time method are designed as 𝜆 = 5, 𝜂 = 8, 𝑝 =0.5. After calculation, one can get 𝑇2𝑚𝑎𝑥 ≤ 1.140𝑠. As
illustrated in Figures 11 and 12, adding proposed controller
at 𝑡 = 8𝑠, the state variables rapidly stabilize to the certain
value. Meanwhile, the comparative results explore the shorter
stabilization time and the free chattering phenomenon in
simulation. When 𝑘0(0) = 𝑘1(0) = 𝑘2(0) = 5, the estimated

values of tuning parameters 𝑘0, 𝑘1, and 𝑘2 are demonstrated
in Figure 13.

6. Conclusions

In this study, the stability analysis of a complex nonlin-
ear drivetrain with combined harmonic excitation can be
addressed by relying on nonlinear dynamics theory. First, we
rebuilt themathematicalmodel of thewind turbine drivetrain
considering the nonlinear time-varying stiffness and the
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nonlinear damping force. Second, the nonlinear dynamics
theory is introduced to analyze the stability of the wind
turbine drivetrain including bifurcation map, phase dia-
grams, and Lyapunov exponential spectrum under combined
harmonic excitation. Then, numerical results clearly show
that the greater the amplitude of the external disturbance
excitation, the smaller the damping, and the larger the value
of the nonlinear negative stiffness, themore unstable thewind

turbine drivetrain. In order to guarantee the stability and
normal functioning of the whole system, an adaptive fixed-
time terminal sliding mode control approach can be imple-
mented. Finally, in comparison with finite-time method, the
applicability and superiority of the proposed scheme can
be exhibited by numerical simulations, which are in good
agreement with the theoretical analysis for the vibration
phenomena of the wind turbine drivetrain. Meanwhile, it is
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noteworthy that the proposed method here can be further
extended to the steady operation and design of the dual-
motor driving electromechanical system. The fixed-time
sliding mode control with an adaptive disturbance observer
for the high-order or fractional-order dynamic system can be
considered to estimate the model uncertainty directly in the
future work.
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