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ABSTRACT Cuckoo search (CS) algorithm has been proved to be an effective method in solving numerical
optimization problems. Nevertheless, with regard to Levy flight, each individual is attracted by the best
solution found so far in the entire population, which may lead to premature convergence. Motivated
by this observation, a new cuckoo search with neighborhood attraction (NACS) is proposed. In NACS,
the neighborhood attraction scheme based on ring topology is firstly designed, where the best solution in a
predefined neighborhood is employed to guide individual evolution. Then, to further enhance the exploration
ability, the neighborhood attraction scheme and Levy flight are combined to generate potential candidate
solutions. Moreover, the step size is adaptively regulated according to the degree of individual evolution.
To validate the effectiveness of the presented algorithm, 25 extensively used benchmark test problems with
different dimensions are employed. Experimental results reveal that the presented method is a competitive
optimizer compared with other algorithms.

INDEX TERMS Cuckoo search, Levy flight, neighborhood attraction, optimization, step size.

I. INTRODUCTION
Lots of real-world problems can be converted to optimiza-
tion problems. In recent decades, many meta-heuristic algo-
rithms have been proposed to handle these optimization
problems, such as particle swarm optimization (PSO) [1],
differential evolution (DE) [2], genetic algorithm (GA) [3],
teaching-learning-based optimization (TLBO) [4], human
mental search (HMS) [5] and squirrel search algorithm (SSA)
[6]. Since these optimization algorithms are superior to the
traditional heuristic methods, they are appreciated by the
evolutionary computing community.

Cuckoo search (CS) [7] is a promising meta-heuristic opti-
mization algorithm for imitating the natural reproduction of
some cuckoos. Distinct from other algorithms, the search
process of CS is divided into two phases: global and local,
corresponding to exploration and exploitation, respectively.
The global phase is carried out by using Levy flight. The
reason is that Levy distribution has infinite mean and vari-
ance, which helps to explore the solution space effectively.
The local phase is executed by using the biased random
walk with a certain probability to adjust the exploitation
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degree [8]. Due to the combined use of global and local
phases, CS algorithm shows good convergence performance
and has receivedwide attention from different fields. In recent
years, a lot of work has been done on the research of
CS algorithm and its application.

In Levy flight, the search behavior of CS is guided by
the same best solution found so far in the entire popula-
tion. Although this scheme can accelerate convergence, it is
easy to be trapped in local optimum when solving complex
multimode problems. Moreover, in evolutionary algorithms,
the neighborhood topology is frequently used to enhance
the convergence performance [9], and different topological
structures can be employed to define neighborhood informa-
tion, such as ring, star, pyramid and von Neumann. Thus,
to strengthen the exploration ability, we propose a novel CS
algorithmwith neighborhood attraction, referred to as NACS.
However, different neighborhood topologies may have differ-
ent effects on different types of optimization problems. For
multimode problems, neighborhood topologies with lower
connectivity are better; for unimodal problems, neighborhood
topologies with higher connectivity are recommended. That
is to say, no neighborhood topology can always be better
than others [10]. Also, the ring topology is considered to be
the most indirect communication pattern, which is conducive

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 122261

https://orcid.org/0000-0002-9622-4572


J. Cheng, L. Wang: CS Algorithm With Neighborhood Attraction for Numerical Optimization

to exploring complex function landscapes. Therefore, the
index-based ring topology is employed to define the neigh-
borhood relationship flexibly. In the neighborhood attraction
scheme, each individual is only attracted by the best solu-
tion obtained so far in a small neighborhood rather than the
entire population. After that, considering that Levy flight may
escape from the local optimum region with a high proba-
bility, the neighborhood attraction scheme and Levy flight
are combined using a switching parameter, which appears in
NACS algorithm as a new parameter. Further, in view of the
correlation between the step size and optimization problem
being solved, the average fitness of population is used to
assess the evolution degree of individuals. On the basis of this,
the step size is regulated adaptively to enhance the versatility
of handling different optimization problems.

In brief, the main contributions of this work are as follow.
First, the neighborhood attraction scheme based on neighbor-
hood topology is introduced into CS to strengthen the global
search capability. Next, a predefined switching parameter is
set to control the combination of the neighborhood attraction
scheme and Levy flight. Then, the appropriate neighborhood
size and switching parameter are investigated experimentally.
Finally, the average fitness of population is used to evaluate
the degree of individual evolution, and the step size is then
adjusted adaptively.

The paper is organized as follows. Section 2 introduces the
basic CS, and Section 3 reviews the relatedwork. In Section 4,
the presented algorithm is described in detail, and the numer-
ical experiments are reported in Section 5. Finally, the con-
clusion is given in Section 6.

II. BASIC CUCKOO SEARCH ALGORITHM
Cuckoo search (CS) algorithm is a nature-inspired global
optimizer, belonging to the community of swarm intelligence.
The nest chosen by cuckoo is considered to be a potential
solution of the problem being solved, and the optimal solution
may be found by using Levy flight and biased random walk.

It is assumed that N is the number of cuckoos and D rep-
resents the dimension of problem, the position of ith cuckoo
is denoted as Xi = {xi1, xi2, · · · , xiD}. Then, the new position
can be generated using the following equations:

Xi(k + 1) = Xi(k)+ step � Levy(λ) (1)

step = α � (Xi(k)− Xbest (k)) (2)

where Xi(k) represents the position of ith cuckoo at kth gener-
ation, α is the step size which depends on the problem being
solved, Xbest (k) is the best location obtained so far in the
entire population. Levy(λ) denotes the random search path,
and it can be formulated as:

Levy (λ) =
u

|z|1/β
(3)

where u and z are two random numbers following the normal
distribution, β often takes a fixed value of 1.5.
Another search phase of CS algorithm is implemented by

means of discovery probability pa. First of all, some of these

nests are abandoned. After that, the same number of new nests
can be generated by using biased random walk. This scheme
is described as:

Xi (k + 1) = Xi (k)+ γ � (Xj (k)− Xl(k)) (4)

where γ is the scaling factor uniformly distributed in
range [0, 1], Xj and Xl represents two distinct solutions ran-
domly chosen in the population.

III. RELATED WORKS
So far, much effort has been done to further enhance the
search ability of CS algorithm, and many CS variants have
been developed. These improved versions can be divided
into two major categories: parameter control and hybridiza-
tion [11]. Besides, CS has been applied to various fields
successfully because of its simplicity and efficiency.

In view of the important influence of control parame-
ters on the performance, much meaningful work has been
done on the control parameter settings of CS algorithm.
Walton et al. [12] modified the step size in Levy flight by
changing the number of iterations. Moreover, the informa-
tion exchange between solutions with the best fitness was
employed to accelerate convergence to the optimal value.
After that, the method was tested on 7 benchmark functions.
It is found that the proposed algorithm is superior to the
classical CS. Li and Yin [13] introduced two mutation rules
to balance the exploration and exploitation, and combined
these two rules using a linear decreasing probability. Then,
according to the relative success number of two newly added
parameters in the previous iteration, an adaptive parameter
adjustment strategy was developed. Finally, the performance
of the proposed algorithm was evaluated on 16 benchmark
functions. Comparison results show that this scheme is better
than thirteen state-of-the-art algorithms. Huang et al. [14]
utilized four different chaotic sequences to initialize the pop-
ulation. Also, these sequences were used to adjust the step
size and reset the solution beyond the boundary. After that,
two groups of test functions were employed to verify the
effectiveness of the proposed method. Yang et al. [15] first
defined the speed factor and aggregation factor using different
fitness values. Then, the step size and discovery probability
were regulated according to these two factors. Experiments
on 10 benchmark functions show that the improved CS ver-
sion is effective in tackling numerical optimization problems.

In terms of hybridization methods, the structures or oper-
ators of other algorithms have been introduced into CS
to enhance the search ability. Wang et al. [16] combined
the pitch adjustment operation in harmony search algo-
rithm with CS to accelerate the convergence speed. Then,
14 classical benchmark functions were employed to test the
performance. It is found that the improved version is better
than CS and eight other algorithms. Besides, the authors also
investigated the parameter sensitivity. Kanagaraj et al. [17]
proposed a hybrid GA and CS method for engineering
design optimization. The effectiveness of this hybrid algo-
rithm were tested on 13 benchmark constrained functions
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and 3 well-known design problems. Experimental results
show that the proposed algorithm is a competitive scheme.
Long et al. [18] introduced Solis and Wets local search
technique into CS algorithm to balance the tradeoff between
exploration and exploitation. Also, an augmented Lagrangian
function was used for constraint-handling. Subsequently, the
authors investigated the performance of this hybrid algorithm
on 13 constrained benchmark problems. Daniel et al. [19]
developed a hybrid cuckoo search-grey wolf optimization
algorithm to fuse medical image. In this hybrid method,
CS was used to search for the optimal control parameters of
grey wolf optimization. Cheng et al. [20] proposed an ensem-
ble CS variant for numerical optimization. With regard to this
scheme, three different cuckoo search algorithms coexisted
in the entire search process and competed to produce better
offspring. Then, an external archive was introduced to further
maintain population diversity.

With respect to applications, CS has been extensively
applied to many domains, such as facility layout design [21],
continuous dynamic optimization [22], reliability redundancy
allocation [23], structural optimization [24], mining indus-
try [25], scheduling [26], [27] and fault diagnosis [28] and
so on. These applications indicate that CS algorithm is an
effective and efficient optimizer for solving some real-world
problems.

IV. CS ALGORITHM WITH NEIGHBORHOOD ATTRACTION
A. MOTIVATION
In Levy flight, the new candidate solutions can be generated
through the guidance of the best solution found so far. That is
to say, all individuals can interact with the best one at every
generation, which allows CS algorithm to converge to the
same point at a faster speed. Due to the guidance of the best
solution in the population, however, CS is prone to premature
convergence when solving complex optimization problems.
Also, in evolutionary algorithms, the use of neighborhood
information is a good idea. The individual interacts with a
certain number of neighbors rather than the entire population,
which helps to strengthen the exploration capability [29].
Motivated by these, CSwith neighborhood attraction (NACS)
is proposed in this paper.

Besides, the fixed step size is employed in the original CS.
Since the step size is associated with the problem being
solved, the fixed step size may lead to the loss of adaptability
and cannot coordinate the dynamic search characteristics of
CS algorithm. Therefore, according to the degree of individ-
ual evolution, an adaptive adjustment scheme of step size is
presented to effectively coordinate the performance of large-
scale global exploration and local fine search.

B. NEIGHBORHOOD ATTRACTION
In evolutionary algorithms, neighborhood topology is widely
used to alleviate premature convergence [30]. Thus, a neigh-
borhood attraction scheme by borrowing the neighborhood
topology is proposed for guiding the evolution of individuals.

FIGURE 1. 2-neighborhood of Xi .

For the sake of simplicity, the ring topology is employed in
this study.

Suppose that there are N individuals in the population,
and each individual can be organized on the ring topology
in terms of its indices. For example, the first individual X1
connects with the last individual XN , and it also connects
with X2. That is, XN and X2 are the immediate neighbors
ofX1. Clearly, with respect toXi, the k-neighborhood consists
of 2k + 1 individuals, which are {Xi−k , · · · ,Xi, · · · ,Xi+k}.
Thus, the neighborhood size m is equal to 2k + 1, where k is
a predefined integer within the interval [1, (N − 1)/2]. Note
that the population size must be larger than the neighborhood
size. To schematically illustrate the concept of ring topology,
Figure 1 reports the 2-neighborhood of Xi.
In this neighborhood attraction scheme, each individual

is only attracted by the best solution found so far in the
k-neighborhood rather than that in the entire population.
That is to say, the individual located in a good region of
search space only affects its immediate neighbors, thus this
strategy can be regarded as a local search scheme. Also,
the k-neighborhood is smaller in comparison with the entire
population, so the attraction of the best individual in each
neighborhood is weaker, which can enhance the population
diversity and alleviate premature convergence. As discussed
above, the neighborhood attraction scheme can be expressed
as:

Xi(k + 1) = Xi(k)+ r �
(
Xi,neig (k)− Xi(k)

)
(5)

where Xi,neig denotes the best individual in the neighborhood
of Xi, r is a random number in [0, 1].
Besides, Levy flight has the characteristics of occasional

long jumps, resulting in better global search ability. In this
paper, the neighborhood attraction scheme and Levy flight are
combined together to yield promising solutions, which can
further enhance the probability of jumping out of the local
optimum. In this case, the updating equation is then modified
as follows:

Xi(k + 1)=

{
Xi (k)+step � Levy (λ) rand < ps
Xi (k)+r �

(
Xi,neig (k)− Xi (k)

)
otherwise

(6)
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TABLE 1. Mean errors obtained by NACS with different m values for the
classical benchmark functions at 30D (ps = 0.8).

where ps is called the switching parameter, rand represents a
random number between 0 and 1.

C. STEP SIZE ADJUSTMENT
As mentioned above, the step size α is related to the opti-
mization problem being solved, and the proper setting of step
size is helpful to enhance the convergence performance of
CS algorithm. Therefore, some work has been done on the
adaptive parameter adjustment mechanism. Among these
adjustment strategies, it is a common scheme to regu-
late step size by using the number of iterations. However,
the characteristics of different optimization problems are
different. Also, it is difficult to accurately grasp the rela-
tionship between the number of iterations and the degree
of individual evolution when solving complex optimiza-
tion problems. Thus, the adjustment method using only
the iteration number usually has poor universality. In this
scheme, the average fitness of the entire population is
employed to estimate the evolution degree of individuals,
and the step size is adjusted accordingly, which has good
universality.

In Levy flight, the adjustment strategy of step size α is as
follows:

α =
1

5+ exp(α0)
(7)

α0 =
fi − favg
fbest − favg

(8)

where fi is the fitness of ith solution, favg denotes the average
fitness of population, and fbest represents the fitness of the
best solution found so far.

Without losing generality, the problem of minimization
is considered in this paper. Clearly, if fiis larger than favg,
it means that the individual is far away from the optimal
position. At this time, the step size α can take a larger value
to enhance global search capability. Similarly, in case fi is
smaller than favg, the individual is close to the optimal solu-
tion, and the step size is set to a smaller value for local search.
Therefore, the average fitness of population can reflect the
degree of individual evolution.

In terms of the above descriptions, the implementation of
NACS algorithm is presented in Algorithm 1.

Algorithm 1 Proposed NACS
1 Set the population size N , problem dimension D,

maximum iteration number kmax , discovery probability
pa, switching parameter ps and distribution parameter
β;

2 Initialize the individualXi and calculate its fitness value
fi;

3 Find out the best solution Xbest and its fitness value
fbest ;

4 Define the neighborhood of Xi;
5 k = 1;
6 while k < kmax do
7 Calculate the step size α using ‘‘(7)’’;
8 Determine the best solution Xi,neig in the

neighborhood of Xi;
9 for i = 1 to N do
10 Generate the new solution Xi,new using ‘‘(6)’’ and

calculate its fitness value fi,new;
11 if fi,new < fi then
12 Xi = Xi,new and fi = fi,new;
13 end if
14 Generate the new solution Xi,new using ‘‘(4)’’

and calculate its fitness value fi,new;
15 if fi,new < fi then
16 Xi = Xi,new and fi = fi,new;
17 end if
18 if fi < fbest then
19 Xbest = Xi and fbest = fi;
20 end if
21 end for
22 k = k + 1;
23 end while

TABLE 2. Mean errors obtained by NACS with different m values for the
classical benchmark functions at 50D (ps = 0.8).

V. EXPERIMENTAL STUDY
A. BENCHMARK FUNCTIONS AND INVOLVED CS
VARIANTS
In these experiments, the performance of NACS algo-
rithm is investigated on 25 well-known benchmark func-
tions from two different test suites. These test functions
are employed in previous studies [31]–[33] and are given
in the Appendix. The first test suite includes 11 classical
functions, and the second test suite consists of 14 shifted

122264 VOLUME 7, 2019



J. Cheng, L. Wang: CS Algorithm With Neighborhood Attraction for Numerical Optimization

FIGURE 2. Evolutionary curves of CS, ACS, CSPSO, HSA-CS, OCS-LC, PSCS, QCCS and NACS on the first test suite at 30D.

TABLE 3. Mean errors obtained by NACS with different ps values for CEC 2005 benchmark functions F1 – F10 at 30D (m = 3).

rotated problems proposed in CEC 2005 [34]. These bench-
mark functions involve a series of problem features, such
as unimodal, multimodal, non-separable, rotated and so on.
Generally speaking, it is difficult to find out the opti-
mal solutions of these shifted rotated or non-separable
problems.

In this section, the proposed NACS is compared with
the classical CS and six recently developed CS variants.
These modified versions include adaptive CS (ACS) [35],
a hybridization of CS and PSO (CSPSO) [36], hybrid
self-adaptive CS (HSA-CS) [37], particle swarm inspired
CS (PSCS) [38], oriented CS with Levy distribution and
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TABLE 4. Mean errors obtained by NACS with different ps values for CEC 2005 benchmark functions F1 – F10 at 50D (m = 3).

TABLE 5. Numerical results of CS, ACS, CSPSO, HSA-CS, OCS-LC, PSCS, QCCS and NACS on the first test suite at 30D.

Cauchy distribution (OCS-LC) [39] and quantum chaotic
CS (QCCS) [40]. For the purpose of comparison, the pop-
ulation size N of all algorithms is set to 50, except for
HSA-CS using a linear population reduction strategy. These
benchmark problems are once tested with D = 30 and once
with D = 50, and the maximum function evaluation is
set to 10000 × D. Additionally, each algorithm is executed
in 30 independent tests. The mean value, standard deviation
(SD) and the best result are reported for comparison. In this
work, all the experiments are carried out on a computer
(Intel i7-4790 CPU, 8.00GB RAM and Windows 7 system)
using MATLAB R2016a.

The parameter configurations of these algorithms are given
as follows:

1) CS: α = 0.01, pa = 0.25.
2) ACS: pa = 0.25.
3) CSPSO: αmax = 0.5, αmin = 0.01, pa = 0.25.
4) HSA-CS: α = 0.9, F = 0.5, Cr = 0.9, pa = 0.1,

pb = 0.8, pe = 0.1, Nmax = 200, Nmin = 10.
5) PSCS: ϑ ∼ N (0, 0.52), ∅ ∼ N (0.5, 0.52), α = 0.01,

pa = 0.25, q = 0.05.
6) OCS-LC: α = 0.01, pa = 0.25.
7) QCCS: α = 1, δ = 1.6, pa = 0.25.
8) NACS: pa = 0.25, m = 3, ps = 0.8.
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TABLE 6. Numerical results of CS, ACS, CSPSO, HSA-CS, OCS-LC, PSCS, QCCS and NACS on the first test suite at 50D.

B. INFLUENCE OF PARAMETERS m AND ps
In this subsection, to demonstrate the influence of different
settings of neighborhood size m and switching parameter ps
on the performance of NACS algorithm, the two sets of test
problems with 30 and 50 dimensions are used as benchmarks
for experimental research. For these 30D and 50D problems
in the 30 independent runs, the comparative tests are con-
ducted using different m values (i.e., 3, 5, 7, 9 and 11). After
that, the ps values from 0.1 to 1 are also selected for analysis.
The numerical results with regard to the mean errors are
reported in Tables 1 – 4 respectively, and the best results are
shown in bold. In these experiments, one parameter remains
unchanged, and the other investigated is variable to find its
approximate optimal setting. The process is repeated until the
proper values of all parameters can be found.

From Table 1, we can see that NACS performs well on
f5, f6, f8, f9, f10 and f11 when the neighborhood size m
is set to 3, and m = 7 provides the solutions with higher
accuracy on f7 and f10. Similarly, m = 11 yields better
results on f1, f2, f3, f4 and f10, m being set to 5 does not
work for multimode functions f9 – f11, the reason is that
the individual may oscillate when solving these problems.
Apparently, with respect to the unimodal functions f1 – f4,
m being set to 11 is the best choice. When m is set to 3,
NACS is good at handling these multimodal functions.

As indicated in Table 2, m = 3 is also competitive in solving
f6, f9, f10 and f11. Therefore, to enhance the ability to tackle
multimode problems, the neighborhood size m is set to 3 in
this paper.

With respect to CEC 2005 test functions F1 – F10
at 30D, Table 3 provides the mean errors obtained by NACS
algorithm with different ps values. Obviously, in terms of
the experimental results, ps = 0.4 yields better solution
on F2, ps = 0.6 obtains reasonable results on F3 and F6,
and ps = 0.7 outperforms others on F4 and F10. Further,
ps = 0.8 performs well on F1, F5 and F9, and ps = 1.0
provides reasonable solutions on F1 and F7. Moreover, from
Table 4, ps = 0.8 performs well on F5, F6, F9 and F10,
ps = 0.4 outperforms others on F2 and F7, while it does
not work for F6, F9 and F10. Thus, for this test suite with
different dimensions, the switching parameter ps can be set
to 0.5 – 1.0, which is a good choice. In this work, ps is set
to 0.8 in the following experiments.

C. COMPARISON RESULTS ON THE FIRST TEST SUITE
In the first test suite, f1 – f5 are unimodal functions, and
f6 – f11 are multimodal functions. The unimodal problems
are used for evaluating the convergence rate of the algo-
rithm, and the multimodal functions are used to test the
exploration capability. For these benchmark functions with
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FIGURE 3. Evolutionary curves of CS, ACS, CSPSO, HSA-CS, OCS-LC, PSCS, QCCS and NACS on the second test suite at 30D.

30 dimensions, the mean value, standard deviation (SD)
and best value obtained by these involved algorithms are
presented in Table 5. Also, for some functions at 30D,
the evolutionary curves of the mean fitness values are plotted
in Figure 2, where FEs represents the number of func-
tion evaluations. Additionally, to evaluate the influence
of dimension on search ability, the convergence perfor-
mance of NACS is also investigated on these functions
with 50 dimensions, and the numerical results are listed
in Table 6. The lowest mean values are highlighted in
bold.

As shown in Table 5, in terms of solution accuracy,
NACS performs well on f5, f6, f9, f10 and f11. Especially,
only NACS converges to the optimal solution on f9. Also,
CSPSO performs best on the unimodal functions f1 and f3,
HSA-CS has the best performance on f4 and f7, PSCS does
well in handling f8, f10 and f11, and QCCS yields high-
quality solution on f2. Need to add that, with regard to f1,
f2, f4, f7 and f8, NACS also provides the solutions with high

accuracy. Besides, in solving these multimodal functions, the
searching behavior of these compared algorithms may make
the individual oscillates on some problems. Especially for
CS, ACS, CSPSO and QCCS, these individuals are easily
attracted by the best solution found so far in the entire popu-
lation. Thus, it is difficult for them to escape from the local
optimal region, leading to convergence instability. As dis-
cussed above, NACS is very effective on these benchmark
functions.

As can be seen from Figure 2, NACS also has better
convergence performance for the unimodal functions, even
though its convergence speed is not the fastest among these
selected algorithms. With regard to f5, it has the property
of multimode function with the increase of dimension.
Therefore, finding its optimal solution is very challeng-
ing. Obviously, NACS converges slower than HSA-CS
for f5 and f6, while the solutions found are closer to
the optimal value. Additionally, compared to other algo-
rithms, NACS obtains high-quality solutions and makes
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TABLE 7. Numerical results of CS, ACS, CSPSO, HSA-CS, OCS-LC, PSCS, QCCS and NACS on the second test suite at 30D.

use of the less number of function evaluations in handling
f8 – f11. In short, for the first test suite with 30 dimensions,
NACS is the best method among these CS variants.

Seen from Table 6, with the aid of the solution quality,
NACS obtains the lowest mean values for 5 out of 11 test
problems. Especially for the multimode functions, the over-
all performance of NACS is better than others. Similarly,
CSPSO performs best on f1, f3 and f5, HSA-CS is superior
to others on f6 and f7, and PSCS performs well on f8 and f10.
Also, compared with other algorithms, CS does not work
for these functions, and it gets trapped in local minima for
them. Due to the adoption of adaptive strategy, ACS algo-
rithm weakens the sensitivity of parameter setting to different
problems and achieves good overall performance. Besides,
OCS-LC and QCCS perform better than CS algorithm, while
they have the limitation of convergence instability. In sum-
mary, NACS can acquire promising solutions for these bench-
mark test problems at 50D.

D. COMPARISON RESULTS ON THE SECOND TEST SUITE
In this subsection, the proposed NACS algorithm is further
tested on the second test suite, which consists of 14 bench-
mark functions. Among them, F1 – F5 are unimodal
problems, F6 – F12 are basic multimodal problems, and
F13 – F14 are expanded multimodal problems. Besides,
F1 and F9 are separable functions, and the others are non-
separable problems. Because of the interrelationship among
variables, it is much more difficult to solve non-separable
problems than separable ones. Obviously, it is very difficult
to find the optimal solutions of these functions, so they can
further test the effectiveness of NACS algorithm. For this test
suite with 30 dimensions, the comparison results of these
involved algorithms are reported in Table 7, and the evolu-
tionary curves for some test problems are shown in Figure 3.
In addition, the scalability study is also carried out on them
with 50 dimensions, and the experimental results are provided
in Table 8 .
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TABLE 8. Numerical results of CS, ACS, CSPSO, HSA-CS, OCS-LC, PSCS, QCCS and NACS on the second test suite at 50D.

TABLE 9. Average rankings obtained by the friedman test on the first test
suite.

Apparently, the results appearing in Table 7 indicate that
the convergence performance of all algorithms is seriously
affected by the coordinate shifting and/or rotation. In terms
of solution quality, HSA-CS, PSCS, QCCS and NACS can
converge to the optimal value on F1. Further, NACS produces
lower mean values in 6 out of 14 test functions, HSA-CS and
QCCS perform well in 3 out of 14 problems. Followed by
OCS-LC, it surpasses others on F2 and F8. Similarly, CS,

TABLE 10. Average rankings obtained by the friedman test on the second
test suite.

ACS, CSPSO and PSCS provide the solution with higher
quality in 1 out of 14 functions, respectively. Besides, NACS
is the second best on F3, F4 and F10. Therefore, we can
conclude that NACS is a competitive method in comparison
with other improved CS versions.

From Figure 3, one can observed that no algorithm has the
fastest convergence speed for all test functions. With regard
to HSA-CS, the mutation operator in differential evolution
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TABLE 11. Numerical results of ABC, DE, GSA, PSO, BBPSO, jDE, SaDE and NACS on the first test suite at 30D.

and linear population reduction strategy are introduced into
CS, thus it converges faster for some problems. Since the
neighborhood attraction scheme is employed to guide the
generation of solutions, it will undoubtedly reduce the con-
vergence rate of NACS in dealing with complex optimiza-
tion problems. Specifically, for F5, F6, F9, F11 and F12,
NACS converges slower than some other CS variants in the
initial stage of evolution process. Nevertheless, in the middle
and later periods, NACS has a strong capability of refined
search. Considering the convergence speed and solution accu-
racy, we can say that NACS is more promising in handling
these test problems.

As described in Table 8, for these test problems with
50 dimensions, NACS also obtains better overall performance
with the help of solution accuracy. To be specific, on the
aspect of reliability, the convergence of NACS, OCS-LC,
PSCS and QCCS on F1 is unstable, while HSA-CS can find
the global optimal solution in all 30 runs. Besides, bothNACS
and HSA-CS produce the lowest average values in 4 out
of 14 problems, followed by OCS-LC for 2 out of 14 ones,
whereas CS cannot provide a lower mean value for any
problem. Note that HSA-CS does not work for F10 and
F14, while NACS also yields better results on F2, F3, F10
and F12. All in all, NACS performs well on this test suite
with 50 dimensions.

E. NONPARAMETRIC STATISTICAL TEST
To further compare the performance differences of all algo-
rithms, the non-parameter statistic Friedman test is con-
ducted, and the average rankings of these selected algorithms
on each test suite are reported inTables 9 and 10, respectively.
For the sake of clarity, the best ranking, that is, the lowest
ranking value is marked in bold.

Obviously, with regard to the first test suite with 30 and
50 dimensions, the average rankings appearing in Table 9
demonstrate that NACS yields the lowest ranking values.
For these benchmark functions with 30 dimensions, these
involved algorithms are sorted in the following order: NACS,
HSA-CS, OCS-LC, PSCS, ACS, QCCS, CSPSO and CS. For
these problems with 50 dimensions, NACS also provides the
best ranking. Moreover, the ranking value of PSCS is slightly
larger than those of ACS and CSPSO, which they obtain the
same ranking.

According to the average ranking results in Table 10, for
the second test suite with 30 dimensions, the rankings of
these algorithms involved are as follows: NACS, OCS-LC,
ACS, HSA-CS, CSPSO, QCCS, CS and PSCS. Apparently,
PSCS is less capable of handling these complex optimization
problems. Additionally, as mentioned earlier, HSA-CS and
NACS obtain the lowest mean values in 4 problems when
tackling these test functions with 50 dimensions. However,
NACS is significantly superior to its competitors in terms
of the average ranking results, followed by HSA-CS. Thus,
NACS is the best scheme among these algorithms on the sec-
ond test suite.

F. COMPARISON WITH OTHER EVOLUTIONARY
ALGORITHMS
To further verify the superiority of NACS, a few other evo-
lutionary algorithms are used for comparison. These opti-
mization techniques include ABC [41], DE, GSA [42], PSO,
BBPSO [43], jDE [44] and SaDE [45]. In this subsection,
the population size N and problem dimension D are set to
50 and 30, respectively. For each test problem, all algorithms
are run 30 times, and the maximum function evaluation is set
to 300000 for each run. The numerical results produced by
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TABLE 12. Numerical results of ABC, DE, GSA, PSO, BBPSO, jDE, SaDE and NACS on the second test suite at 30D.

these algorithms in terms of the mean and standard deviation
of the function error are reported in Tables 11 and 12. To
compare the performance of all algorithms, the Friedman test
is conducted, and the average ranking value (ARV) is also
presented in these comparative results.

According to Table 11, the proposed algorithm finds the
optimum values on f9, f10 and f11. Similarly, ABC performs
well on f5, f6, f7, f10 and f11, GSA provides better solutions
on f4 and f9, PSO surpasses others on f1 and f3, and jDE does
well in handling f2, f7, f8 and f10. DE, BBPSO and SaDE
are failed to produce best result for any problem. Further,
in terms of the average ranking results, NACS yields the
average ranking value of 3.5, which is closely successful with
ABC in tackling these classical functions.

From Table 12, one can observed that these algorithms
seem to be good at tackling different benchmark functions
in terms of solution quality. Specifically, both ABC and
GSA perform well on 4 problems, DE is superior to others
in 3 cases, PSO performs best on F14, jDE beats other algo-
rithms on F6, SaDE produces the optimum solution on F1,
and NACS provides better results on F1 and F3. However,
the average rankings obtained by Friedman test indicate that
NACS exhibits the best optimization performance. To sum
up, compared with other optimization techniques, NACS is
efficient and effective optimizer for these two test suites.

As discussed above, for these benchmark functions from
two different test sets, the proposed NACS algorithm can
achieve fruitful results in comparison with other CS variants

and several popular evolutionary algorithms. Themain reason
is the combination of neighborhood attraction scheme and
Levy flight to guide the search behavior of individuals. How-
ever, there are some limitations in NACS algorithm. Since
each individual is only attracted by the best solution found
so far in the neighborhood rather than the entire population,
it may reduce the convergence speed. Moreover, to further
enhance the convergence performance of the proposed algo-
rithm, it is also a promising research direction to regulate the
switching parameter using an adaptive control scheme.

VI. CONCLUSION
In this paper, a new CS with neighborhood attraction namely
NACS is proposed. NACS algorithm adopts two different
strategies to yield potential candidate solutions. One is the
neighborhood attraction scheme, and the other is Levy flight
used in the classical CS. With regard to the first scheme, each
individual is attracted by the best solution in k-neighborhood
to maintain the population diversity. After that, a switching
parameter is defined to achieve the combination of the neigh-
borhood attraction scheme and Levy flight. Also, according to
the degree of individual evolution, the step size is adaptively
adjusted in the evolutionary process, which weakens the sen-
sitivity of step size to optimization problem being solved.
To evaluate the performance of NACS algorithm, two sets
of test problems with 30 and 50 dimensions are employed.
Moreover, the settings of neighborhood size and switching
parameter are also investigated experimentally. Numerical

122272 VOLUME 7, 2019



J. Cheng, L. Wang: CS Algorithm With Neighborhood Attraction for Numerical Optimization

results reveal that NACS is a competitive CS variant for
some test problems, and the average rankings obtained by the
Friedman test also show that NACS performs well compared
with the other six newly-developed CS versions and seven
popular evolutionary algorithms.

In the future, we intend to expand the current work in the
following directions. First, since the neighborhood attraction
scheme is developed based on the ring topology, other topo-
logical structures can also be studied. Next, with regard to the
switching parameter, an adaptive adjustment mechanism can
be tried to further enhance the search ability. Finally, we will
employ the presented NACS algorithm to address some real-
world problems.

APPENDIX
These 11 classical functions are given below.

Sphere function

f1(x) =
∑D

i=1
x2i , x ∈ [−100, 100]D

Schwefel function 2.22

f2 (x) =
∑D

i=1
|xi| +

∏D

i=1
|xi| , x ∈ [−10, 10]D

Schwefel function 1.2

f3(x) =
∑D

i=1
(
∑i

j=1
xj)

2
, x ∈ [−100, 100]D

Schwefel function 2.21

f4(x) = max i {|xi| , 1 ≤ i ≤ D} , x ∈ [−100, 100]D

Rosenbrock function

f5(x) =
∑D−1

i=1

[
100(xi+1 − x2i )

2
+ (xi − 1)2

]
,

x ∈ [−30, 30]D

Schwefel function 2.26

f6 (x) = 418.9829 � D−
∑D

i=1
xi sin

(√
|xi|
)
,

x ∈ [−500, 500]D

Rastrigin function

f7(x) =
∑D

i=1

[
x2i − 10 cos (2πxi)+ 10

]
,

x ∈ [−5.12, 5.12]D

Ackley function

f8 (x) = −20 exp

(
−
1
5

√
1
D

∑D

i=1
x2i

)
− exp(

1
D

∑D

i=1
cos(2πxi)),

x ∈ [−32, 32]D

Griewank Function

f9(x) =
1

4000

∑D

i=1
x2i −

∏D

i=1
cos
(
xi
√
i

)
+ 1,

x ∈ [−600, 600]D

Penalized function 1

f10 (x) =
π

D

{
10 sin (πyi)+

∑D

i=1
(yi−1)2[

1+10 sin2 (πyi+1)
]
+ (yD − 1)2

}
+

∑D

i=1
u(xi, 10, 100, 4), yi = 1+ (xi + 1)/4,

x ∈ [−50, 50]D

Penalized function 2

f11 (x)

= 0.1
{
sin2(3πx1)+

∑D

i=1
(xi − 1)2

×

[
1+sin2(3πxi+1)

]
+(xD−1)2 � [1+sin2(2πxD)]

}
+

∑D

i=1
u(xi, 10, 100, 4), x ∈ [−50, 50]D

Abbreviation to CEC 2005 benchmark functions F1 – F14.
F1: Shifted Sphere function.
F2: Shifted Schwefel function 1.2.
F3: Shifted rotated high conditioned Elliptic function.
F4: Shifted Schwefel function 1.2 with noise.
F5: Schwefel function 2.6 with global optimum on bounds.
F6: Shifted Rosenbrock function.
F7: Shifted rotated Griewank function without bounds.
F8: Shifted rotated Ackley function with global optimum

on bounds.
F9: Shifted Rastrigin function.
F10: Shifted rotated Rastrigin function.
F11: Shifted rotated Weierstrass function.
F12: Schwefel’s problem 2.13.
F13: Shifted expanded Griewank’s plus Rosenbrock’s

function.
F14: Shifted rotated expanded Scaffer’s F6 function.
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