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Abstract
Multiobjective particle swarm optimisation (MOPSO) is faced with convergence difficulties and diversity deviation, owing to
combined learning orientations and premature phenomena. In MOPSO, leader selection is an important factor that can enhance
the algorithm convergence rate. Inspired by this case, and aimed at balancing the convergence and diversity during the searching
procedure, a self-organising map is used to construct the neighbourhood relationships among current solutions. In order to
increase the population diversity, an extended chemical reaction optimisation algorithm is introduced to improve the diversity
performance of the proposed algorithm. In view of the above, a self-organising map-based multiobjective hybrid particle swarm
and chemical reaction optimisation algorithm (SMHPCRO) is proposed in this paper. Furthermore, the proposed algorithm is
applied to 35 multiobjective test problems with all Pareto set shape and compared with 12 other multiobjective evolutionary
algorithms to validate its performance. The experimental results indicate its advantages over other approaches.

Keywords Multiobjective optimization . Hybrid chemical reaction optimization . Self-organizing map . Multiobjective particle
swarm optimization

1 Introduction

Most real-world optimisation problems involve multiple opti-
misation criteria, which are often in conflict with one another.
For example, improvement in one objective leads to deterio-
ration in another; no single solution can optimise all objectives
simultaneously. Consequently, there exists a set of optimal
solutions that present a trade-off among different objectives.
Therefore, the multiobjective optimisation problem (MOP)
yields a set of trade-off solutions (Pareto optimal solutions),
known as the Pareto set (PS) in the decision space and Pareto
front (PF) in the objective space [1]. Research on
multiobjective optimisation is important, because it offers
the ability to solve numerous practical applications, such as
software cost estimation design [2], community detection in
dynamic networks [3], the semi-supervised clustering tech-
nique [4], trust optimisation problems [5], portfolio

optimisation problems [6], and the multiobjective vehicle
routing problem [7], among others.

Two types ofmethods exist for dealing withMOPs, namely
traditional analytic algorithms and evolutionary algorithms
(EAs). The EA optimisation technique is population-based
and not problem dependent; it can approximate the PF (PS)
of an MOP in a single run. Thus, the MOEA has become a
major approach to the optimisation of MOPs. Under mild
conditions, the Pareto front (Pareto set) of anm-objective con-
tinuousMOP is constructed by a (m-1)-dimensional piecewise
continuous manifold. Zhang et al. [8] used this property to
develop model-based offspring reproduction. Zhang et al.
[9] also used this property for designing a model-based meth-
od that associates each solution with a sub-problem. Zhou
et al. [10] proposed a self-organisingmultiobjective evolution-
ary algorithm (SMEA) for this property to deal with MOPs.

Several researchers have developed different MOEAs for
dealing with different complicated benchmarks. While most
existing MOEAs focus on the development of optimisation
operators, many researchers have developed different EAs
[1], such as the particle swarm optimisation (PSO) algorithm
[11], artificial raindrop algorithm [12], chemical reaction op-
timisation (CRO) [13, 14], grasshopper optimisation algo-
rithm [15], and bat algorithm [3].

PSO is a popular paradigm in current studies, and has
also been investigated for tackling MOPs in recent

* Hongye Li
lihongye8@163.com

Lei Wang
leiwang@xaut.edu.cn

1 School of Computer Science and Engineering, Xi’an University of
Technology, Xi’an 710048, China

Applied Intelligence
https://doi.org/10.1007/s10489-018-1358-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-018-1358-0&domain=pdf
http://orcid.org/0000-0002-7669-2969
mailto:lihongye8@163.com


years. Almost all types of PSO approaches have been
designed by mimicking the individual cognition and so-
cial learning behaviour of bird flocking [11]. When de-
signing a multiobjective PSO (MOPSO) algorithm, two
particular difficulties are faced. The first is the selection
of the global best (gbest) and personal best (pbest) in
the MOPSO algorithm [16–18]. In the MOPSO algo-
rithm, a set of Pareto optimal solutions can be nominat-
ed as gbest and pbest. Their selection has a significant
impact on the MOPSO algorithm performance. The sec-
ond is the rapid loss of diversity as a result of its fast
convergence speed, as pointed out in [19]. This behav-
iour may lead to premature convergence or becoming
stuck in local optima. To improve this problem, several
MOPSO methods have adopted a perturbation operator
on each particle [18–20].

Based on the above difficulties, this study designed a
hybrid multiobjective optimisation algorithm that com-
bines the PSO algorithm and extends the CRO algorithm
to optimise the MOP effectively. The leaders of the
MOPSO can guide the population to search for the opti-
mal solution direction. The extended CRO algorithm can
enhance the proposed algorithm diversity, which prevents
premature population convergence. In this work, we pro-
posed a new selection method for leaders, which easily
causes premature population convergence. Therefore, the
self-organising map (SOM) method is used to enhance
diversity, which involves building a (m-1)-dimensional
topological structure of the current population and defin-
ing neighbourhood relationships among solutions in the
population. Each molecule or particle has a subpopula-
tion, which exhibits a distributed organisation in the deci-
sion space. This makes it easy to select neighbourhood
leaders. This study adopts the minimax distance between
the reference point and current subpopulation solutions as
the neighbour leader. The global leader is the same as the
neighbour leader, which is the minimax distance between
the reference point and the entire set of population solu-
tions. The selection of leaders will cause the algorithm to
converge prematurely; thus, extended CRO is applied and
the SOM method can enhance the local exploitation abil-
ity. A new solution is generated by the self-organising
map-based multiobjective hybrid particle swarm and
chemical reaction optimisation (SMHPCRO) algorithm,
which can use the extended CRO or PSO algorithm by
means of probability. When the extended CRO algorithm
generates a new solution, it requires another solution that
differs from the current solution. The selection of another
solution can be made from the neighbourhood and entire
population in a probability.

The remainder of this paper is organised as follows.
Section 2 presents the related work. Section 3 describes the
proposed SMHPCRO. Section 4 describes and discusses the

simulation experimental results. Finally, conclusions are pre-
sented in section 5.

2 Related work

2.1 CRO algorithm

CRO is a recent variable population-based swarm intelligence
meta-heuristics algorithm developed by Lam and Li [13, 14].
The method has been applied to solving MOPs [20–22],
which encode the solutions as molecules and mimic the inter-
actions of molecules in chemical reactions by searching for
the optimal solutions in a container. Amolecule possesses two
types of energy, namely potential energy (PE) and kinetic
energy (KE). PE can be described in mathematical terms as
follows:

PEx ¼ f xð Þ ð1Þ
where f is an objective function and x is the structure of a
molecule that represents a point in the decision space. The
collisions among molecules in a container are classified into
two categories: uni-moliecular and inter-molecular collisions.
Uni-molecular collisions can be classified as two types, name-
ly on-wall ineffective collision and decomposition. The inter-
molecular collisions include inter-molecular ineffective colli-
sion and synthesis. A flowchart of the chemical reaction algo-
rithm is presented in Fig. 1.

1) On-wall ineffective collision

When the molecules collide with the container walls and
bounce back, this procedure is the on-wall ineffective collision
operator. Following the on-wall ineffective collision, the mol-
ecule structures will change. The structure of x becomes x’,
which is generated from the neighbourhood of x. The reaction
process is defined by Eq. (3).

x ið Þ ¼ x ið Þ0 ð2Þ
where x(i)’=Neighbour(x(i)). If x(i) is replaced by x(i)’, the
energy conservation condition must be satisfied as follows:

PEx þ KEx≥PEx0 ð3Þ
Its KE is updated by:

KEx0 ¼ PEx−PEx0 þ KEx0
� �� α ð4Þ

where α is a random number that lies between [KELossRate,
1] in which KELossRate is a parameter of CRO.

2) Decomposition
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The decomposition operator means that a molecule x hits a
container wall and then breaks into two or more molecules.
Then, the decomposition criterion is demonstrated as follows:

NumHitx−MinHitx > α ð5Þ

The decomposition operator must be satisfied as follows:

PEx þ KEx þ δ1 � δ2 � buffer≥PEx01
þ PEx02

ð6Þ

If (7) holds, the current molecule w is replaced by the two
new molecules, x1

’ and x2
’. Here, δ1 and δ2 are two uniformly

generated random numbers from the range [0, 1].

3) Inter-molecular ineffective collision

The inter-molecular ineffective collision operator means
that two or more molecules collide with one another and then
bounce back. The concrete operation involves the two mole-
cules x1 and x2 being carried on the neighbourhoods respec-
tively, which can become x1’ and x2’. The energy conservation
condition must be met, as follows:

PEx1 þ PEx2 þ KEx1 þ KEx2 ≥PEx01
þ PEx02

ð7Þ

4) Synthesis

The synthesis operator achieves the opposite of decompo-
sition; two or more molecules collide and are then combined
to form one new, single molecule.

The condition of synthetic operations occurring is met as
follows:

KEx1 < β and KEx2 < β ð8Þ

The energy conservation condition is demonstrated as fol-
lows:

PEx1 þ PEx2 þ KEx1 þ KEx2 ≥PEx ð9Þ

If (10) holds, the current molecules x1’and x2’ are replaced
by one new molecule x.

2.1.1 Energy handling

Energy can be transformed from one type to another,
but all energy must follow the energy conservation
law, which states the energy can be neither created nor
destroyed. A generalised form of the elementary reac-
tion can be expressed as follows:

x1 þ :::þ xk→x
0
1 þ :::þ x

0
l ð10Þ

where k and l are the numbers of molecules involved
before and after the reaction, respectively. For k = 1 and
l = 2, the reaction can be considered as decomposition.

The corresponding energy equation can be expressed as
follows:

PEx1 þ :::þ PExkð Þ þ KEx1 þ :::þ KExkð Þ þ buffer

¼ PEx01
þ :::þ PEx0l

� �
þ KEx01

þ :::þ KEx0l

� �
þ buffer

0

In the above equation, the change in the total energy of the
molecules before and after the reaction is represented on the
left and right of the equality, respectively.

The general new solution acceptance rule is as follows:

∑
k

i¼1
PExi þ ∑

k

i¼1
KExi− ∑

l

i¼1
PExi ≥0 ð11Þ

2.1.2 Sketch of CRO algorithm

As explained above, the step-wise procedure for the CRO
implementation can be summarised as follows.

Initial

molecules &

parameters

Compute the PE of

molecules

Stopping
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Choose
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Fig. 1 The flowchart of CRO
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2.2 The standard PSO algorithm

The PSO [11] algorithm conducts search operation using
a population of particles that correspond to molecules in
the extended CRO. Each particle represents a potential
solution within the searching space in which the particle
dimension is assumed as D-dimensional, and a particle i
is represented by a vector x = (xi1,…,xid,…,xiD). The
velocity of the particle xi is represented by another vec-
tor vi = (vi1,…,vid,…,viD). In each generation, the ith par-
ticle learns the best position (Xpbest) that it has achieved
thus far and the best position of all particles (Xgbest) in

the current generation. The basic PSO algorithm can be
described as follows:

Velocity equation : vid t þ 1ð Þ
¼ wvid tð Þ þ c1r1 xpbestid tð Þ−xid tð Þ� �

þ c2r2 xgbestid tð Þ−xid tð Þ� � ð12Þ

Position equation : xi;d t þ 1ð Þ ¼ xi;d tð Þ þ vi;d t þ 1ð Þ ð13Þ

Algorithm 1 CRO( )
Begain

Step 1: Define the optimization problem and initialize the optimization parameters.

Step 2: Initialize the population of molecules.

Step 3: while (FES<FESLimit)
If (rand > MoleColl) || (the number of population is equal to one)

go to Step4;

else
go to Step5;

endif
endwhile
Step 4: Uni-molecular operator. 

If xi .numHit- xi .minHit>DecThres
Decomposition operator of CRO ();

else
On-wall Ineffective Collision operator of CRO ();

endif
Update energy management rules ( );

Step 5:Inter-molecular operator.

If(xi .KE<SynThres)&&(xj .KE <SynThres)

Synthesis operator of CRO ();

else
Inter-molecular Ineffective Collision operator of CRO ();

endif
Step 6: Termination criterion. Stop if the maximum generation number is achieved; otherwise repeat from Step 3.

end

H. Li, L. Wang



where c1 is the cognitive weight and c2 is the social weight; r1
and r2 are two random values uniformly distributed in [0, 1];w
is the inertia weight benefit for global searching; xpbestid(t) is
the dth dimension of the personal best (pbest) of particle i in
cycle t; and xgbestid (t) is the dth dimension of the global best
(gbest) in cycle k.

The main drawback of the PSO algorithm is that it does not
guarantee global convergence prone to premature conver-
gence [19].

2.3 SOM

The SOM [10, 23] method uses a neighbourhood func-
tion to preserve the topological properties of the data. It
produces low-dimensional representations of the training
points located in a high-dimensional input space. The
topology of a 2D SOM is illustrated in Fig. 2. The
SOM procedure includes two stages, namely learning
and clustering.

1) Learning stage: The SOM extracts significant features
and adjusts the weight value of each neuron for
recognising the features in the future.

2) Clustering stage: The SOM classifies the input sam-
ples according to weightsand maps them to the
neurons.

3 Description of proposed SMHPCRO

In this section, the proposed SMHPCRO algorithm is
introduced. The distinct feature of this algorithm is the
use of an SOM to discover the population distribution
structure as local optimisation leaders for the particles.
In order to enhance the PSO diversity, a combined hy-
brid CRO algorithm with PSO and an SOM method is
proposed to prevent premature convergence of the PSO.
The algorithmic framework of the SMHPCRO is dem-
onstrated in Algorithm 4, where P and A are the evo-
lution and archive populations, respectively. Following
initialisation, two main procedures are iteratively run
in the SMHPCRO, namely an SOM to construct the
population distribution structure and a hybrid CRO al-
gorithm to generate the new population. Then, the cur-
rent evolution population is archived through the envi-
ronmental selection, and the SMHPCRO can obtain a
set of optimal Pareto solutions and update the popula-
tion. The environmental selection is conducted using the
procedure outlined in [10].

3.1 Selection of global and local optimal solutions

Prior to introducing the algorithm framework, we pres-
ent the selection method for xgbest(t) and xlbest(t). The
selection of xgbest(t) and xlbest(t) differs from that of
other multiobjective PSO algorithms in which the refer-
ence points of the current and neighbourhood

Algorithm 2 PSO( )
Begain

Step 1: Initialize a population of particles.

Step 2: Evaluate the objective values of all particles, and defined the initial pbest and gbest.
Step 3: Update the velocity and position of each particle.

Step 4: Evaluate the velocity and position of all particles.

Step 5: update pbest and gbest.
For i=1:N

If f(xi)<pbesti
pbesti= f(xi);

endif
if f(xi)<gbest

gbest= f(xi);

endif
endfor
Step 6: If a predefined stopping criterion is met, then output gbest value; otherwise go to back to Step 3.

end

A self-organizing map based hybrid chemical reaction optimization algorithm for multiobjective optimization



populations are firstly calculated, and then xgbest(t) and
xlbest(t) are respectively set by computing the shortest
distance from the current solution to the reference point
of the current and neighbourhood populations. The set-
ting of reference points involves calculating the mini-
mum values of every objective function in the current
population. Taking the calculation of reference points
for two-objective optimisation problems as an example,
the selection of xgbest(t) and xlbest(t) is described by
Fig. 3.

3.2 Framework of SMHPCRO

The above sub-sections explained the procedures for the selec-
tion of the global and local optimal solutions. The SMHPCRO
procedures are described in the following. In this work, we com-
bine the CRO algorithm and PSO as an optimisation algorithm,
HPCRO. And the flow chart of HPCRO algorithm is shown in
Fig. 4. In order to enhance the global search ability of the ex-
tended CRO, the PSO algorithm is embedded. Moreover, in
order to enhance the PSO diversity, the extended CRO algorithm
is embedded. Therefore, we propose a multiobjective hybrid
CRO algorithm and PSO, which differs from the hybrid algo-
rithm based on particle swarm and chemical reaction optimisa-
tion [20]. Combining PSO with the CRO algorithm can effec-
tively solve MOPs and avoid premature convergence.

The proposed algorithm firstly uses the SOM method
to divide the population into an organised, low-
dimensional feature population in the decision space,
where each molecule or particle has a neighbourhood
in the decision space. Thereafter, judgement is made
for a molecule or particle as to whether the parameter
α satisfies the PSO or CRO update. If the PSO update
is met, it will continue with formula (14); if it satisfies
the CRO update, two situations will exist. When the
parameter η is larger than or equal to 0.3 and smaller
than 0.6, the algorithm carries out the inter-molecular
ineffective collision operation. When the parameter η
is greater than or equal to 0.6, the algorithm carries
out the synthesis operation. Following the above opera-
tion, the polynomial mutation (PM) operation is per-
formed, which is described in Algorithm 4 and Figs. 3
and 4.

vid t þ 1ð Þ ¼ wvid tð Þ þ c1r1 xlbestid tð Þ−xid tð Þð Þ
þ c2r2 xgbestid tð Þ−xid tð Þ� � ð14Þ

where x l b e s t i d ( t ) i s the d t h d imens ion of the
neighbourhood best (lbest) of particle i in cycle t.

Fig. 2 An illustration of a 2-
dimensional SOM [10]
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The pseudo-code for the SMHPCRO framework is
presented in Algorithm 6 and Fig. 5. SMHPCRO be-
gins with an initial population P and an archive A by
means of environmental selection. In every generational
cycle, SMHPCRO uses the SOM method of dividing
the input population P into an organised, low-
dimensional feature population. Thereafter, the popula-
tion is evolved with the operator of the hybrid CRO
algorithm with PSO.

The initial settings include:

& N = N1 ×⋯ × Nm − 1: number of neurons, which is the
same as the population size;

& τ0: initial SOM learning rate;

& σ0 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffi
∑m−1
i¼1 N

2
i

m−1

q
: initial neighborhood radius for updating

neuron weight vectors;
& H: size of neighborhood reaction pools;
& N: population size;
& β: probability of mating restriction within neighborhood;
& T: maximum number of generations.

Algorithm 4 SMHPCRO
Input: P (a set of solutions (particles/ molecules))

Output: A set of Pareto optima solutions
1 if <0.3

2 Carry on the PSO () in formula (14) and (13)

3 else
4 if 0.6> ≥0.3

5 Inter-molecular Ineffective Collision operator ()

6 else
7 Synthesis operator ()

8 endif
9 endif
10 Polynomial Mutation ()

11 Update ()

R

xgbest(t)
xl best(t
)

Neighborhood

Individual of current population
Reference point

f1

f2

Fig. 3 The selection of xgbest(t) and xlbest(t)

Initialization

PSO Update

Synthesis

PolynomialMutation

Stop

Obtained a set of Pareto

optima solutions

Yes No

Yes No

Yes
No

Update gbest, lbest, Archive

PSO Upadate
Inter-molecular

Ineffective Collision
Synthesis

SOM

Fig. 4 The flow chart of the hybrid chemical reaction algorithm with
particle swarm optimization algorithm
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Algorithm 5 SOM Framework
1 Initialize each neuron weight vector as a training point randomly selected from S.

2 For g = 1,…, G do

3
Adjust the neighborhood radius, , and learning rate, :

00 (1 ),  (1 ).
g g
G G

4 Randomly select a training point x S .

5
Find the closest neuron:

2
1

' arg min || x-w || .u

u D
u

6
Locate the neighboring neurons:

'

2
U={ |1 }.u uu u D z z

7
Update all neighboring neurons Uu as

'

2
w w exp x-wu u u u uz z

8 end
9 return the neuron weight vectors w

u
, u=1, …, D.

Algorithm 6 SMHPCRO Framework
Randomly initialize the population P = {x

1
, …, x

N
}. Set the initial training set S = P, and the set of 

neuron weight vector {w
1
, …,w

N
} = P. Let uk

be the index of the kth 
nearest neuron to neuron u in the 

latent space.
for t = 1,…, T do

for each xs S, s = 1,…, |S| do

Update the training parameters: = × 1 −
( )

, = × 1 −
( )

Find the closet neuron to x
s
: = argmin −

Locate the neighboring neurons: U = |1 ≤ ≤ − <

Update all neighboring neurons ( ) as

= + ∙ exp − − −

end
Set A = P, and U = {1,…,N}.

while ≠ do
Randomly choose & \{ }

Set x
u

= x where = argmin −

Set U = U\{u}.

end
Set A = P.

foreach {1,..., }u N do
Set the reaction pool Q for x

u
as

=
x if ( ) <

otherwise

Generate a new solution y = SMHPCRO (Q,x
u
).

Update the population P = Select (P, y).

end
Update the set of training data: S = P\A.

end
return the population P.
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4 Experimental results and discussion

4.1 Experimental platform and termination criterion

In all experiments, 30 independent runs were carried out
on the same machine with a Celeron 3.40 GHz CPU,
4 GB memory, and Windows 7 operating system with
Matlab 2015, except for NCRO and SMSEMOA in
JAVA, and conducted with the maximum number of
function evaluations (MaxFES) as the termination crite-
rion. The goal was to ensure a fair comparison and
reduce the statistical error.

4.2 Test functions

This study focused on 34 different MOP benchmarks.
These include the Zitzler-Deb-Thiele (ZDT) test suite,
Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [24],
bi-objective walking fish group (WFG) [25], UF1-
UF10 [26], and GTL1-GTL6 [23]. Features of the
ZDT test suite include variable linkage and multi-
modality; therefore, it is not difficult to solve the ZDT
test suite. The WFG test suite (WFG1-WFG9) [25] was
included, which is characterised by various features,
such as non-separable, deceptive, degenerate problems,
mixed PF shape, variable dependencies, and multi-mo-
dality. The benchmarks of UF1-UF10 [26] are variable
linkages and complicated PSs. The benchmarks of
GTL1-GTL6 [23] are variable linkages and complicated
PFs.

These include the initial ZDT-x and DTLZ-x benchmarks
[24] with a simple PS shape and independent variable attri-
butes. Owing to its lack of features, such as variable linkages
and objective function multimodality, this test suite is not par-
ticularly challenging. Moreover, the bi-objective WFG [25],
MOPs with variable linkages, UF1-UF10 [26], and MOPs
with complicated PF and PS shapes, GTL1-GTL6 [23], are
included.

4.3 Performance metric

Quality indicators are required to evaluate the performance of
the concerned algorithms. The inverted generational distance
(IGD) [9] is a widely used indicator in the evolutionary
multiobjective optimization (EMO) literature, which repre-
sents the convergence and diversity of a solution set. The
calculation formula for the IGD is as follows.

IGD P*;P
� � ¼ ∑x*∈P*d x*;Pð Þ

jP*j ð15Þ

where P* is a set of uniformly distributed Pareto optimal
points in the PF, and P is a non-dominated front. Moreover,
d(x∗, P) is the minimal distance between x* and any point inP,
while |P*| is the cardinality of P*. The PF must be known
when using the IGD metric.

4.4 Parameter settings for SMHPCRO algorithm
and its competitors

In this section, we validate the performance of the SMECRO
algorithm by comparing it with different algorithms using the
IGD metric.

The comparative algorithms include different fitness as-
signment schemes, as follows.

1) NSGA-II [27] used the Pareto-based dominance method
and elitism approach.

2) MOEA/D-DE [9] which decomposed the MOP into N
sub-problems and used DE algorithm to optimize those
sub-problems.

3) MOECRO/D [28] used CRO to optimize by applying
the MOEA/D framework.

4) NCRO [29] was based on the quasi-linear average time
complexity quick non-dominated sorting algorithm,
which incurred a low computational cost.

5) MOGOA [15] used the grasshopper optimization algo-
rithm (GOA) with the archive and target selection

Initialization

Stop End

Model Update

Partition

Population update

Solution

reproduction

SOM

On-wall/Inter-molecular

Ineffective Collision

Solution generation

Chemical reaction

selection

Particle swarm

update

Fig. 5 The flowchart of
SMHPCRO
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technique integrated into the algorithm and estimated the
Pareto optimal front.

6) IM-MOEA [8] which used the inverse modelling for
generating offspring by building a map set from the
objective space to the decision space.

7) SMEA [10] used an SOM to construct an organization
population and applies the EA for optimisation.

8) SMSEMOA [30] used the S-metric selection based evo-
lutionary multiobjective algorithm.

9) OMOPSO [16] used Pareto dominance and crowding-
distance information to identify the list of leader
solutions.

10) DMOPSO [17] was fully dependent on the decomposi-
tion approach for solving MOPs.

11) MMOPSO [19] was introduced in [18] to use two
search strategies for velocity update, promoting the
convergence speed and maintaining the population
diversity.

12) AgMOPSO [18] was an external archive-guided
MOPSO algorithm, where the leaders for the ve-
locity update were all selected from the external
archive.

The parameter settings of the 12 compared algorithms and
SMHPCRO are further summarized in Table 1. Moreover, the
12 comparative algorithms combine a PSO algorithm, CRO
and other MOEAs. The population size is set as N = 100 and
105 for the two- and three- objective MOPs, respectively, in
the comparative algorithms. The number of decision variables
is set as n = 30 for ZDT-x, GLT1-GLT6, CEC09 and WFG1-
WFG9, and n = 10 for DTL1 and DTLZ3. The termination
condition for each algorithm is set to a maximum number of
fitness evaluations (FEs) and Max_FES is set to 30,000 for a
test instance with n dimensions. For the experiments, 1000
evenly distributed points are selected from the PF to form
P* in the IGD metric. A smaller IGD value results in a supe-
rior P. The small IGD value Pmust be close to the true PF and
P must be the diversity.

4.5 Comparison of the non-parametric Wilcoxon rank
sum test results

The mean and standard deviation of the IGD metric values of
30 final populations obtained using the seven algorithms for
each instance are displayed in Tables 2, 3, 4 and 5. The

Table 1 The parameter settings
of 10 comparative algorithms Algorithm Parameter

SMEA SOM structures: 1-dimensional structure 1 × 100 for bi-objective, and 2-dimensional
structure 7 × 15 for tri-objective MOPs;

Initial learning rate: τ0=0.7; Size of neighborhood mating pools: H = 5; Control parameters for
DE operator: F = 0.9, CR = 1;

Control parameter for polynomial mutation operator: pm = 1/n, and ηm = 20

MOEA/D-DE Neighborhood size: NS = 0.1 N; nr = 0.01 N; Probability of selecting parents from
neighborhood: β=0.9; F = 0.5, CR = 1.0;

Control parameters for polynomial mutation operator: pm = 1/n, and ηm = 20,

IM-MOEA The number of reference vectors K: K = 10; the model group size L:L = 3

NSGA-II Control parameters for SBX pc = 1.0, and ηc = 20; Control parameters for polynomial mutation
operator: pm = 1/n, and ηm = 20

MOECRO/D Neighborhood size: NS = 5; Probability of selecting parents from neighborhood:β = 0.9;
F = 0.9, CR = 0.8;

Control parameters for polynomial mutation operator: pm = 1/n, and ηm = 20;

IniKE = 1000, iniBuffer = 1000, lossRate = 0.1, decThres = 15,000

NCRO crossover probability: 0.9; mutation probability: 1/n;

simulated binary crossover (SBX) distribution index:20; polynomial mutation index:20

InitialKE: 10000; KELoss Rate: 0.6; MoleColl: 0.7; DecThres: 15; SynThres: 10

SMSEMOA Control parameters for DE operator: F = 0.5, CR = 1;

Control parameters for polynomial mutation operator: pm = 1/n, and ηm = 20

SMHPCRO SOM structures:1-dimensional structure 1 × 100 for bi-objective, and 2-dimensional
structure 7 × 15 for tri-objective MOPs;

Initial learning rate: τ0=0.7; Size of neighborhood mating pools: H = 5;IniKE = 1000,
iniBuffer = 1000, lossRate = 0.1, β = 0.9, decThres = 15,000

OMOPSO 0.1 <w < 0.5, 1.5 <C1 < 2.0,1.5 <C2 < 2.0,r1、r2∈[0,1]
DMOPSO pc = 0.9, pm = 1/n, ηm = 20,ηc = 20, w∈[0.1, 0.5], c1∈[1.5, 2.0], c2∈[1.5, 2.0]
MMOPSO pc = 0.9, pm = 1/n, ηm = 20,ηc = 20, w∈[0.1, 0.5], c1∈[1.5, 2.0], c2∈[1.5, 2.0], δ = 0.9
AgMOPSO pc = 0.9, pm = 1/n, ηm = 20,ηc = 20, w∈[0.1, 0.5], F2 = 0.5, T = 20

H. Li, L. Wang



Table 2 The experimental results of OMOPSO, DMOPSO, SMOPSO, MMOPSO, AgMOPSO, MOECRO/D, NCRO and SMHPCRO over 30
independent runs on 19 MOPs of ZDTx, DTLZx and WFGx

Fun OMOPSO DMOPSO MMOPSO AgMOPSO MOECRO/
D

NCRO SMHPCRO

ZDT1 5.712E-03+
(7.572E-03)

3.867E-03+
(2.347E-04)

3.688E-03+
(2.482E-05)

1.847E-03+
(1.509E-03)

4.269E-03+
(6.780E-06)

5.240E-03+
(2.822E-03)

1.007E-03
(1.337E-05)

Rank_zdt1 7 4 3 2 5 6 1
ZDT2 7.857E-03+

(1.514E-04)
6.438E-02+
(1.877E-03)

3.793E-03+
(2.791E-05)

1.974E-03+
(1.506E-03)

1.805E-03+
(4.143E-06)

4.911E-03+
(1.003E-03)

1.321E-03
(5.065E-05)

Rank_zdt2 7 6 4 3 2 5 1
ZDT3 3.508E-02+

(7.572E-03)
1.065E-02+
(4.224E-04)

4.304E-03+
(4.426E-02)

2.225E-03-
(1.706E-03)

1.063E-02+
(1.274E-05)

1.044E-02+
(1.671E-03)

3.182E-03
(2.051E-04)

Rank_zdt3 7 6 3 1 5 4 2
ZDT4 8.383E+00+

(3.786E-02)
4.480E-01+
(0.938E-02)

3.666E-03+
(1.328E-01)

2.038E-03+
(1.559E-03)

4.068E-03+
(6.661E-04)

3.654E-01+
(2.679E-02)

1.069E-03
(1.272E-03)

Rank_zdt4 7 6 3 2 4 5 1
ZDT6 4.472E-02+

(3.028E-04)
3.537E-02+
(2.816E-03)

2.379E-03+
(2.656E-04)

1.487E-03+
(1.137E-03)

1.278E-02+
(1.047E-04)

3.227E-02+
(9.298E-03)

1.193E-03
(5.774E-06)

Rank_zdt1 7 6 3 2 4 5 1
DTLZ1 9.999E+00+

(6.057E-04)
2.178E-01+
(1.408E-03)

7.107E+00+
(1.770E-04)

2.064E-02+
(4.337E-02)

1.618E-02+
(1.318E-05)

1.760E-02+
(3.020E-03)

1.308E-02
(7.937E-05)

Rank_dtlz1 7 5 6 4 2 3 1
DTLZ2 3.613E-01+

(5.300E-02)
5.359E-01+
(4.693E-03)

4.000E-02+
(2.213E-01)

2.740E-02+
(2.092E-02)

4.153E-02+
(3.378E-04)

3.865E-02+
(7.157E-04)

2.228E-02
(8.950E-04)

Rank_dtlz2 6 7 4 2 5 3 1
DTLZ3 1.004E+00+

(2.271E-03)
4.305E+00+
(4.691E-04)

3.596E+00+
(3.541E-02)

4.913E+00+
(5.562E+00)

4.354E-02+
(1.980E-03)

6.243E-01+
(4.754E-01)

3.959E-02
(3.866E-04)

Rank_dtlz3 6 7 4 5 2 3 1
DTLZ4 7.542E-02+

(4.543E-02)
1.819E-01+
(3.285E-03)

4.194E-02+
(3.098E-03)

2.856E-02+
(2.181E-02)

2.267E-02≈
(3.417E-04)

4.048E-02+
(3.754E-04)

2.239E-02
(5.772E-04)

Rank_dtlz4 6 7 5 3 2 4 1
DTLZ6 8.172E-02+

(6.814E-03)
8.275E-02+
(3.755E-01)

7.352E-02+
(3.984E-03)

3.952E-02+
(3.034E-02)

6.175E-02+
(1.525E-03)

6.428E-02+
(9.017E-01)

3.028E-02
(5.953E-04)

Rank_dtlz6 6 7 5 2 3 4 1
WFG1 1.696E+00+

(3.110E-01)
2.675E+00+
(3.732E-03)

1.461E-01+
(6.205E-02)

1.333E-01+
(7.132E-02)

1.402E+00+
(3.704E-04)

2.342E+00+
(4.321E-02)

1.085E-01
(2.797E-02)

Rank_wfg1 5 7 3 2 4 6 1
WFG2 5.451E-02+

(5.598E-04)
4.281E-02+
(1.948E-03)

3.782E-02+
(3.102E-02)

4.974E-02+
(3.815E-02)

2.863E-02+
(4.023E-04)

9.881E-02+
(2.548E-02)

1.666E-02
(5.253E-05)

Rank_wfg2 6 5 3 4 2 7 1
WFG3 3.297E-01+

(2.488E-03)
1.736E-01+
(2.728E-02)

1.125E-02≈
(1.551E-04)

5.662E-02+
(4.324E-02)

2.016E-02+
(2.990E-04)

8.537E-01+
(3.785E-01)

1.108E-02
(5.564E-05)

Rank_wfg3 5 6 2 4 3 7 1
WFG4 4.089E-02+

(1.244E-01)
2.472E-02+
(1.559E-02)

1.051E-02≈
(3.878E-02)

5.355E-02+
(4.091E-03)

3.878E-02+
(5.867E-04)

5.965E-02+
(3.691E-03)

1.032E-02
(2.637E-03)

Rank_wfg4 6 4 2 7 5 8 1
WFG5 7.188E-02+

(1.866E-02)
6.702E-02+
(1.169E-03)

6.159E-02+
(4.654E-02)

3.399E-02+
(2.613E-02)

6.031E-02+
(9.195E-04)

5.477E-01+
(8.672E-01)

2.766E-02
(6.909E-04)

Rank_wfg5 7 6 5 2 4 3 1
WFG6 2.942E-01+

(4.976E-01)
1.850E-01+
(3.507E-02)

1.243E-01+
(2.327E-01)

6.224E-01+
(4.762E-03)

2.227E-01+
(4.096E-04)

3.453E-01+
(5.664E-01)

1.065E-01
(1.375E-02)

Rank_wfg6 5 3 2 7 4 6 1
WFG7 6.034E-02+

(4.354E-02)
5.938E-02+
(2.338E-03)

1.189E-02+
(7.57E-04)

5.956E-02+
(4.545E-03)

5.310E-02+
(2.505E-04)

3.561E-02+
(5.787E-02)

1.133E-02
(7.986E-05)

Rank_wfg7 7 6 2 5 4 3 1
WFG8 1.486E-01+

(6.221–03)
8.624E-02+
(3.971E-03)

9.448E-02+
(5.430E-03)

6.785E-02+
(6.068E-02)

2.339E-02+
(9158E-04)

1.130E-01+
(4.557E-02)

2.144E-02
(4.337E-04)

Rank_wfg8 7 4 5 3 2 6 2
WFG9 5.675E-01+

(3.732E-03)
5.598E-01+
(7.95E-04)

1.191E-01+
(6.981E-03)

6.646E-01+
(5.146E-03)

3.190E-01+
(8.762E-04)

4.731E-01+
(6.381E-01)

1.036E-01
(3.326E-05)

Rank_wfg9 5 6 2 7 3 4 1
Sum_

Rank
119 108 66 67 65 92 20

Rank 7 6 3 2 4 5 1
± /≈ 19/0/0 19/0/0 17/0/2 18/1/0 18/0/1 19/0/0

The bold data in the table are the best mean metric values yielded by the algorithms for each instance

A self-organizing map based hybrid chemical reaction optimization algorithm for multiobjective optimization



Table 3 The experimental results of NSGA-II, SMSEMOA, MOEA/D-DE, IM-MOEA, MOGOA, SMEA and SMHPCRO over 30 independent runs
on nineteen MOPs of ZDTx, DTLZx and WFGx

Fun NSGA-II SMSEMOA MOEA/D-
DE

IM-
MOEA

MOGOA SMEA SMHPCRO

ZDT1 4.696E-03+
(1.435E-04)

3.814E-03+
(2.041E-05)

3.706E-03+
(6.355E-06)

3.330E-03+
(4.483E-04)

4.600E-03+
(2.470E-02)

3.617E-03+
(2.082E-05)

1.007E-03
(1.337E-05)

Rank_zdt1 7 5 4 2 6 3 1
ZDT2 4.724E-03+

(1.390E-04)
4.389E-03+
(2.865E-05)

3.806E-03+
(4.679E-06)

2.560E-03+
(1.344E-04)

4.900E-03+
(9.000E-03)

4.357E-03+
(8.145E-05)

1.321E-03
(5.065E-05)

Rank_zdt2 6 5 3 2 7 4 1
ZDT3 4.724E-02+

(1.788E-04)
4.683E-03+
(2.224E-04)

4.623E-02+
(9.740E-06)

3.880E-03+
(1.861E-04)

3.230E-02+
(3.400E-03)

4.441E-03+
(8.544E-05)

3.182E-03
(2.051E-04)

Rank_zdt3 7 6 5 3 2 4 1
ZDT4 4.880E-01+

(7.713E-04)
8.261E-01+
(9.947E-03)

3.752E-03+
(1.101E-04)

2.833E-03+
(6.598E-05)

5.036E-02+
(4.728E-03)

6.623E-03+
(2.169E-02)

1.069E-03
(1.272E-03)

Rank_zdt4 4 7 3 2 5 6 1
ZDT6 4.261E-02+

(6.549E-05)
4.402E-02+
(6.526E-04)

2.739E-03+
(4.436E-06)

2.731E-03+
(1.194E-04)

1.576E-02+
(1.260E-03)

2.247E-03+
(1.002E-04)

1.193E-03
(5.774E-06)

Rank_zdt1 6 7 5 4 2 3 1
DTLZ1 3.982E-02+

(1.121E-03)
1.918E-02+
(3.025E-03)

1.658E-02+
(3.302E-04)

3.876E-02+
(2.465E-01)

7.880E-02+
(1.260E-03)

1.319E-02≈
(9.001E-05)

1.308E-02
(7.937E-05)

Rank_dtlz1 6 4 3 5 7 2 1
DTLZ2 7.696E-02+

(1.435E-03)
6.022E-01+
(2.571E-02)

4.280E-02+
(8.601E-04)

3.876E-02+
(2.465E-01)

4.728E-02+
(6.304 E-02)

5.301E-02+
(1.464E-04)

2.228E-02
(8.950E-04)

Rank_dtlz2 7 6 3 2 4 5 1
DTLZ3 8.741E-02+

(5.430E-02)
7.143E-02+
(3.216E-03)

4.426E-02+
(5.166E-04)

3.876E-02-
(2.465E-01)

6.304E-02+
(1.418E-01)

4.991E-02+
(4.600E-04)

3.959E-02
(3.866E-04)

Rank_dtlz3 7 6 3 1 5 4 2
DTLZ4 5.951E-02+

(1.365E-03)
7.232E-02+
(3.368E-02)

4.340E-02+
(2.935E-04)

3.876E-02+
(2.465E-01)

4.571E-02+
(1.785E-01)

3.934E-02+
(2.357E-04)

2.239E-02
(5.772E-04)

Rank_dtlz4 6 7 4 2 5 3 1
DTLZ6 4.156E-01+

(1.483E-03)
3.678E+00+
(2.056E-02)

4.323E-01+
(1.772E-03)

3.876E-01+
(2.465E-01)

3.214E-01+
(1.785E-02)

4.712E-02+
(6.004E-04)

3.028E-02
(5.953E-04)

Rank_dtlz6 5 3 6 4 2 7 1
WFG1 1.516E+00+

(6.329E-02)
1.523E+00+
(6.413E-02)

1.418E+00+
(6.522E-02)

1.421E+00+
(4.384E-04)

1.671E+00+
(2.499E-01)

1.521E+00+
(9.483E-02)

1.085E-01
(2.797E-02)

Rank_wfg1 5 6 2 3 7 4 1
WFG2 2.342E-01+

(7.035E-04)
1.465E-01+
(6.942E-04)

3.676E-02+
(1.136E-04)

1.491E-01+
(1.233E-04)

1.938E-01+
(1.661E-02)

2.333E-02+
(2.424E-03)

1.666E-02
(5.253E-05)

Rank_wfg2 7 4 3 5 6 2 1
WFG3 1.392E-01+

(7.297E-04)
1.406E-01+
(2.192E-04)

1.271E-02≈
(4.973E-05)

1.929E-02+
(1.996E-04)

1.071E-01+
(7.139E-03)

1.416E-02+
(5.141E-04)

1.108E-02
(5.564E-05)

Rank_wfg3 6 7 2 4 5 3 1
WFG4 5.834E-01+

(5.286E-03)
4.651E-01+
(8.776E-05)

2.264E-01+
(3.301E-03)

2.753E-01+
(6.783E-05)

3.569E-01+
(2.379E-02)

9.865E-02+
(3.934E-03)

1.032E-02
(2.637E-03)

Rank_wfg4 7 6 4 3 5 2 1
WFG5 6.8581E-01+

(3.619E-04)
6.713E-01+
(1.695E-02)

1.708E-01+
(5.972E-05)

7.976E-02+
(1.258E-04)

5.949E-01+
(1.071E-01)

6.665E-02+
(2.048E-04)

2.766E-02
(6.909E-04)

Rank_wfg5 7 6 4 3 5 2 1
WFG6 3.423E-01+

(1.155E-02)
3.376E-01+
(2.790E-04)

3.475E-01+
(3.391E-02)

1.513E-01+
(2.465E-01)

2.379E-01+
(1.918E-02)

3.456E-01+
(1.774E-02)

1.065E-01
(1.375E-02)

Rank_wfg6 5 4 7 2 3 6 1
WFG7 4.931E-01+

(1.389E-03)
1.253E-02≈
(2.790E-04)

1.633E-02+
(4.193E-05)

4.088E-02+
(2.668E-03)

1.189E-01+
(3.837E-02)

1.369E-02+
(5.854E-04)

1.133E-02
(7.986E-05)

Rank_wfg7 7 2 4 5 6 3 1
WFG8 1.104E-01+

(6.841E-03)
5.618E-02+
(6.438E-03)

3.309E-02+
(1.448E-02)

2.943E-02+
(8.327E-02)

9.592E-02+
(1.376E-02)

3.689E-02+
(6.502E-03)

2.144E-02
(4.337E-04)

Rank_wfg8 7 5 3 2 6 4 1
WFG9 2.782E-01+

(1.057E-02)
2.879E-01+
(1.618E-02)

2.028E-01+
(2.616E-04)

2.521E-01+
(7.168E-03)

2.871E-01+
(3.931E-02)

2.302E-01+
(4.479E-05)

1.036E-01
(3.326E-05)

Rank_wfg9 5 7 2 4 6 3 1
Sum_

Rank
117 103 70 58 94 70 20

Rank 7 6 4 2 5 3 1
± /≈ 19/0/0 18/0/1 18/0/1 18/1/0 19/0/0 18/0/1

The bold data in the table are the best mean metric values yielded by the algorithms for each instance
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parameter setting of the compared algorithms are presented in
Table 1. The Wilcoxon rank sum test at a 5% significance
level was conducted to compare the significance of difference
between the mean metric value yielded by a comparison algo-
rithm and SMHPCRO. The symbols ‘+’, ‘-’, ‘≈’ in Tables 2, 3,

4 and 5 represent the mean and standard deviation of the IGD
values of the 12 compared MOEAs, which indicate that the
performance of the SMHPCRO is better than, worse than and
similar to that of the comparison algorithm, respectively, ac-
cording to the Wilcoxon rank sum test. The bold data with a

Table 4 The experimental results of OMOPSO, DMOPSO, SMOPSO, MMOPSO, AgMOPSO, MOECRO/D, NCRO and SMHPCRO over 30
independent runs on UFx and GLTx on sixteen MOPs

Fun OMOPSO DMOPSO MMOPSO AgMOPSO MOECRO/
D

NCRO SMHPCRO

UF1 1.298E-01+
(3.934E-03)

8.415E-02+
(6.124E-02)

8.961E0–02+
(1.050E-02)

3.952E-02+
(3.034E-02)

6.912E-02+
(7.235E-01)

1.166E-01+
(3.501E-03)

4.398E-03
(3.007E-04)

Rank_uf1 7 4 5 2 3 6 1
UF2 7.876E-02+

(6.557E-02)
2.984E-02+
(1.531E-02)

3.435E-02+
(1.399E-03)

2.001E-02+
(1.559E-02)

6.912E-02+
(7.235E-01)

2.412E-02+
(2.904E-03)

1.105–02
(1.159E-03)

Rank_uf2 7 4 5 2 6 3 1
UF3 3.965E-01+

(4.590E-01)
3.099E-01+
(2.296E-02)

2.859E-01+
(3.149E-02)

1.244E-01+
(9.695E-02)

2.912E-01+
(7.235E-01)

2.582E-01+
(6.870E-02)

8.582E-02
(5.957E-03)

Rank_uf3 7 6 4 2 5 3 1
UF4 1.723E-01+

(2.623E-02)
2.619E-01+
(0.765E-01)

8.094E-02+
(2.449E-01)

1.326E-02+
(1.015E-02)

6.912E-02+
(7.235E-01)

4.378E-02+
(1.939E-02)

1.084E-02
(6.864E-03)

Rank_uf4 6 7 5 2 4 3 1
UF5 1.604E+00+

(5.901E-01)
1.385E+00+
(4.593E-01)

6.392E-01+
(1.749E-01)

4.244E-01+
(3.708E-01)

6.912E-01+
(7.235E-01)

5.331E-01+
(1.871E-01)

3.283E-01
(1.278E-01)

Rank_uf5 7 6 4 2 5 3 1
UF6 5.662E-01+

(3.278E-01)
5.633E-01+
(7.655E-02)

1.200E-01≈
(7.000E-04)

1.903E-01+
(1.929E-01)

6.912E-01+
(7.235E-01)

1.777E-01+
(8.327E-02)

1.052E-01
(5.347E-02)

Rank_uf6 6 5 2 4 8 3 1
UF7 6.087E-01+

(5.245E-02)
3.918E-01+
(6.889E-02)

4.080E-02+
(2.799E-02)

9.227E-02+
(1.407E-01)

2.912E-01+
(7.235E-01)

3.562E-01+
(1.816E-02)

5.176E-03
(4.829E-04)

Rank_uf7 7 6 2 3 4 5 1
UF8 4.217E-01+

(1.9672E-01)
3.901E-01+
(3.827E-02)

1.389E-01+
(2.099E-01)

1.169E-01-
(9.324E-02)

2.912E-01+
(7.235E-01)

3.769E-01+
(6.778E-02)

1.234E-01
(1.284E-01)

Rank_uf8 7 6 3 1 4 5 2
UF9 1.140E-01+

(6.557E-01)
2.103E-01+
(3.062E-02)

1.202E-01+
(3.499E-01)

1.804E-01+
(1.453E-01)

1.212E-01+
(7.235E-01)

1.615E-01+
(8.357E-02)

3.638E-02
(5.958E-02)

Rank_uf9 3 7 2 6 4 5 1
UF10 4.930E-01+

(1.311E-02)
6.502E-01+
(5.358E-02)

3.166E-01+
(3.501E-03)

4.801E-01+
(5.749E-01)

3.017E-01+
(5.201E-01)

4.912E-01+
(7.235E-01)

1.753E-01
(3.222E-02)

Rank_uf10 6 7 3 4 2 5 1
GLT1 1.768E-01+

(1.867E-02)
4.480E-01+
(4.815E-03)

1.306E-01+
(3.922E-01)

9.189E-02+
(7.017E-02)

3.214E-03+
(6.780E-03)

6.118E-03+
(3.278E-03)

1.051E-03
(2.732E-03)

Rank_gtl1 6 7 5 4 2 3 1
GLT2 1.453E+00+

(1.245E-02)
4.298E-01+
(5.778E-02)

1.326E+00+
(2.615E-03)

1.928E-01+
(1.472E+00)

3.505E-02+
(4.387E-03)

4.901E-02+
(1.253E-03)

1.347E-02
(9.443E-04)

Rank_gtl2 7 5 6 4 2 3 1
GLT3 5.745E-02+

(3.734E-02)
3.694E+00+
(2.889E-02)

5.811E-02+
(6.538E-03)

4.746E-02+
(4.118E-02)

8.163E-03+
(1.325E-03)

6.143E-03+
(1.684E-03)

4.391E-03
(2.609E-03)

Rank_gtl3 6 7 5 4 3 2 1
GLT4 5.167E-01+

(6.225E-02)
4.781E-01+
(3.852E-02)

4.639E-01+
(1.307E-02)

2.497E-01+
(1.904E-01)

4.108E-02+
(6.661E-03)

6.018E-03+
(2.529E-02)

5.206E-03
(9.101E-03)

Rank_gtl4 7 6 5 4 3 2 1
GLT5 1.184E-01+

(3.112E-03)
3.229E-01+
(1.926E-02)

9.944E-02+
(1.961E-03)

6.028E-02+
(4.603E-02)

3.386E-02≈
(9.047E-04)

3.907E-02+
(9.128E-03)

3.089E-02
(3.804E-04)

Rank_gtl5 6 7 5 4 2 3 1
GLT6 3.454E-01+

(2.489E-02)
3.394E-01+
(9.631E-04)

4.959E-02+
(3.268E-02)

3.174E-02+
(2.427E-02)

5.618E-02+
(1.318E-05)

6.713E-02+
(3.124E-03)

2.257E-02
(4.232E-04)

Rank_gtl6 7 6 3 2 4 5 1
Sum_

Rank
102 96 64 50 61 59 20

Rank 7 6 5 2 4 3 1
± /≈ 16/0/0 16/0/0 15/0/1 15/0/1 15/0/1 16/0/1

The bold data in the table are the best mean metric values yielded by the algorithms for each instance
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grey background in the table are the best mean metric values
yielded by the algorithms for each instance.

It can be observed that the proposed SMHPCRO outper-
forms the 12 compared multiobjective MOEAs, including the
multiobjective PSO algorithms, multiobjective CRO algo-
rithms, dominance-based method, decomposition-based

method, and indicator-based MOEAs. The SMEA is a
model-based method that uses the SOM method to construct
the population. The MOEA/D-DE is a decomposition-based
method that adopts the Chebyshev method to decompose the
MOPs into a scalar number of single objective sub-problems.
The IM-MOEA is a model-based method that can alleviate the

Table 5 The experimental results of NSGA-II, SMSEMOA, MOEA/D-DE, IM-MOEA, MOGOA, SMEA and SMHPCRO over 30 independent runs
on UFx and GLTx on sixteen MOPs

Fun NSGA-II SMSEMOA MOEA/D-
DE

IM-MOEA MOGOA SMEA SMHPCRO

UF1 9.473E-02+
(3.249E-03)

1.195E-01+
(3.029E-02)

4.433E-03+
(2.745E-04)

4.346E-02+
(1.365E-01)

1.892E-01+
(2.501E-02)

4.524E-03≈
(4.819E-04)

4.398E-03
(3.007E-04)

Rank_uf1 5 6 4 3 7 2 1
UF2 3.5071E-02+

(1.479E-03)
3.704E-02+
(1.192E-02)

7.788E-03-
(2.755E-03)

1.477E-02+
(5.252E-03)

4.940E-02+
(3.860E-02)

1.043E-02-
(1.197E-03)

1.105–02
(1.159E-03)

Rank_uf2 5 6 1 4 7 2 3
UF3 9.082E-02+

(1.682E-02)
2.563E-01+
(4.008E-02)

1.077E-02+
(8.849E-03)

6.138E-02+
(1.283E-02)

2.166E-01+
(6.620E-02)

9.662E-03+
(4.803E-03)

1.582E-03
(5.957E-03)

Rank_uf3 5 7 3 4 6 2 1
UF4 8.074E-02+

(2.809E-03)
7.146E-02+
(5.760E-04)

6.224E-02+
(4.522E-03)

6.196E-02+
(2.126E-03)

7.960E-02+
(4.800E-03)

6.197E-02+
(5.403E-03)

5.484E-02
(6.864E-03)

Rank_uf4 7 5 4 2 6 3 1
UF5 5.201E-01+

(5.162E-02)
5.684E-01+
(1.749E-01)

2.930E-01≈
(8.714E-02)

2.234E-01-
(5.160E-02)

1.147E+00+
(1.661E-01)

4.146E-01+
(7.817E-02)

3.283E-01
(1.278E-01)

Rank_uf5 5 6 2 1 7 4 3
UF6 8.073E-01+

(6.460E-02)
3.275E-01+
(7.831E-02)

2.738E-01+
(2.313E-01)

1.836E-01+
(6.163E-02)

7.345E-01+
(2.769E-01)

1.964E-01+
(1.981E-01)

1.052E-01
(5.347E-02)

Rank_uf6 7 5 4 2 6 3 1
UF7 1.898E-01+

(1.959E-03)
1.896E-01+
(1.626E-01)

5.487E-03+
(4.163E-04)

1.412E-02+
(2.641E-03)

1.567E-01+
(6.331E-02)

5.218E-03≈
(9.349E-04)

5.176E-03
(4.829E-04)

Rank_uf7 6 7 3 4 5 2 1
UF8 4.132E-01+

(2.742E-03)
3.917E-01+
(1.122E-01)

3.208E-01+
(1.013E-02)

2.439E-01-
(1.564E-02)

2.497E-01+
(7.490E-02)

1.993E-01-
(6.615E-02)

2.234E-01
(1.284E-01)

Rank_uf8 7 6 5 3 4 1 2
UF9 3.070E-01+

(6.810E-04)
2.263E-01+
(6.590E-02)

7.935E-02+
(5.291E-02)

9.605E-02+
(3.624E-02)

3.145E-01+
(1.445E-01)

1.519E-01+
(9.544E-02)

3.638E-02
(5.958E-02)

Rank_uf9 6 5 2 3 7 4 1
UF10 5.599E-01+

(1.254E-02)
4.570E-01+
(9.995E-02)

4.597E-01+
(7.055E-02)

3.407E-01+
(6.147E-02)

4.645E-01
(1.445E-01)

2.025E-01≈
(1.560E-01)

1.753E-01
(3.222E-02)

Rank_uf10 7 5 4 3 6 2 1
GLT1 5.317E-02+

(3.368E-02)
4.324E-02+
(7.536E-03)

4.285E-03+
(3.609E-02)

3.028E-02+
(1.550E-03)

3.014E-02+
(2.261E-03)

3.004E-03+
(3.515E-03)

1.051E-03
(2.732E-03)

Rank_gtl1 7 6 3 5 4 2 1
GLT2 8.006E-02+

(3.082E-02)
9.402E-02+
(2.783E-03)

4.042E-02+
(1.548E-03)

1.697E-02+
(4.386E-02)

8.007E-02+
(6.783E-02)

3.543E-02-
(1.304E-03)

1.347E-02
(9.443E-04)

Rank_gtl2 6 7 4 3 5 2 1
GLT3 3.562E-02+

(1.009E-02)
3.186E-02+
(8.956E-03)

2.795E-02+
(6.666E-03)

2.187E-02+
(5.67E-03)

5.276E-02+
(7.537E-02)

6.233E-03+
(4.561E-03)

4.391E-03
(2.609E-03)

Rank_gtl3 6 5 4 3 7 2 1
GLT4 4.521E-02+

(1.806E-01)
4.001E-02+
(6.192E-03)

2.066E-02+
(1.272E-02)

1.676E-01+
(8.734E-03)

1.071E-02+
(5.951E-03)

5.794E-03+
(1.324E-04)

1.206E-03
(9.101E-03)

Rank_gtl4 6 5 4 7 3 2 1
GLT5 6.181E-02+

(3.246E-03)
5.271E-02+
(4.584E-04)

8.521E-02+
(2.236E-03)

3.843E-02+
(2.886E-02)

7.118E-02+
(3.571E-03)

3.009E-02≈
(3.528E-04)

3.089E-02
(3.804E-04)

Rank_gtl5 7 5 8 3 6 1 2
GLT6 5.705E-02+

(3.641E-03)
5.863E-02+
(5.289E-04)

5.428E-02+
(1.550E-03)

5.215E-02+
(5.621E-03)

8.532E-02+
(1.066E-03)

3.672E-02+
(3.235E-03)

2.257E-02
(4.232E-04)

Rank_gtl6 5 6 4 3 7 2 1
Sum_

Rank
90 92 59 57 93 36 22

Rank 5 6 4 3 7 2 1
± /≈ 16/0/0 16/0/0 14/1/1 14/2/0 16/0/0 9/3/4

The bold data in the table are the best mean metric values yielded by the algorithms for each instance
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solution diversity requirement. The main concept of the IM-
MOEA is to construct Gaussian process-based inverse models
that map all identified non-dominated solutions from the ob-
jective space to the decision space.

The multiobjective PSO algorithms and multiobjective
CRO algorithms are compared to 19 MOPs without var-
iable linkages of ZDTx, DTLZx and WFGx.

Table 2 indicates that the SMHPCRO algorithms perform
significantly better than their corresponding multiobjective
PSO MOEAs and multiobjective CRO MOEAs on ZDTx,
DTLZx, and WFGx. For all 35 benchmarks under consider-
ation, the SMHPCRO achieved statistically superior IGD
values on 19 benchmarks better than OMOPSO, which was
ranked seventh. The SMHPCRO had 19 benchmarks better
than DMOPSO, which was ranked sixth. The SMHPCRO had
17 benchmarks better than MMOPSO, which was ranked
third, and on WFG3 and WFG4, the MMOPSO was similar
to SMHPCRO. The SMHPCRO had 18 benchmarks better

than AgMOPSO, which was ranked second, and on the
ZDT3 the AgMOPSO was better than SMHPCRO. The
SMHPCRO had 18 benchmarks better than MOECRO/
D, which was ranked fourth, and on the DTLZ4, the
MOECRO/D was s im i l a r t o SMHPCRO. The
SMHPCRO had 19 benchmarks better than NCRO,
which was ranked fifth.

It can be observed that the proposed SMHPCRO is suited
to solving test problems with multiple local fronts. On the
ZDT4, DTLZ1 and DTLZ3, the proposed SMHPCRO could
obtain a set of non-dominated solutions with effective conver-
gence and diversity. This can also be observed from Fig. 6,
which plots the Pareto front with the best IGD value among 30
runs for the SMHPCRO and the seven compared
multiobjective PSO and multiobjective CRO algorithms on
the three-objective DTLZ1 in the objective space, respective-
ly. The main reason for this phenomenon is that the proposed
algorithm uses the SOM method to decompose the decision
space into several subspaces. Thereafter, the HPCRO algo-
rithm optimisation can be used to obtain effective

Fig. 6 The set of nondominated associated with the best IGD value among 30 runs obtained by SMHPCRO and seven compared multiobjective PSO
algorithms and multiobjective CRO algorithms on DTLZ1
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performance on multiple local fronts. In Fig. 6, it is observed
that the SMHPCRO can achieve effective performance in
terms of diversity and convergence on the DTLZ1.

Table 3 indicates that the SMHPCRO algorithms perform
significantly better than the corresponding existing
dominance-based method, decomposition-based method and
indicator-based MOEAs on ZDTx, DTLZx and WFGx.
SMHPCRO had 19 benchmarks better than NSGA-II, which
was ranked seventh. The SMHPCRO had 18 benchmarks bet-
ter than SMSEMOA, which was ranked sixth, and on the
WFG7, SMSEMOA was similar to the SMHPCRO. The
SMHPCRO had 18 benchmarks better than MOEA/D-DE,
which was ranked fourth, and on the WFG3, the MOEA/D-
DE was similar to the SMHPCRO. The SMHPCRO had 18
benchmarks better than IM-MOEA, which was ranked sec-
ond, and on the DTLZ3, the IM-MOEA was better than the
SMHPCRO. The SMHPCRO had 19 benchmarks better than
theMOGOA, which was ranked fifth. The SMHPCRO had 18
benchmarks better than the SMEA, which was ranked third,
and on the DTLZ1, the SMEAwas similar to the SMHPCRO.

Table 4 indicates that the SMHPCRO algorithms perform
significantly better than the corresponding multiobjective
PSO and multiobjective CRO algorithms on 19 MOPs, which
include UFx with complicated PSs and GLTx with complicat-
ed PFs. The SMHPCRO had 16 benchmarks better than the
OMOPSO, which was ranked eighth. The SMHPCRO had 16
benchmarks better than the DMOPSO, which was ranked sev-
enth. The SMHPCRO had 15 benchmarks better than the
SMOPSO, which was ranked sixth, and on the UF10, the
SMOPSO was similar to the SMHPCRO. The SMHPCRO
had 15 benchmarks better than the MMOPSO, which was
ranked fifth, and on the UF6, the MMOPSO was similar to
the SMHPCRO. The SMHPCRO had 15 benchmarks better
than the AgMOPSO, the RM-MEDAwas ranked second, and
on the UF8, the MMOPSO was better than the SMHPCRO.
The SMHPCRO had 16 benchmarks better than the NCRO,
and the MOECRO/D was ranked third. In Figs. 7 and 8, the
results of the compared algorithms on the UF1 benchmark
demonstrate that the SMHPCRO can obtain effective conver-
gence diversity.

Fig. 7 The set of nondominated associated with the best IGD value among 30 runs obtained by SMHPCRO and seven compared dominance,
decomposition and indicator based MOEAs on nineteen MOPs multiobjective on DTLZ1
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A comparison of existing dominance, decomposition,
and indicator-based MOEAs was conducted on 19
MOPs without variable linkages of ZDTx, DTLZx,
and WFGx.

From Table 5, it can be observed that the SMHPCRO al-
gorithms perform significantly better than the corre-
s pond i ng ex i s t i n g dom in an c e - ba s ed me t hod ,
decomposition-based method, and indicator-based
MOEAs on ZDTx, DTLZx, and WFGx. SMHPCRO
had 16 benchmarks better than NSGA-II, which was
ranked fifth. The SMHPCRO had 16 benchmarks better
than SMSEMOA, which was ranked sixth. The
SMHPCRO had 14 benchmarks better than MOEA/D-
DE, which was ranked fourth, and on the UF2, the
MOEA/D-DE was better than the SMHPCRO, whereas
on the UF5, the MOEA/D-DE was similar to the
SMHPCRO. SMHPCRO had 14 benchmarks better than
the IM-MOEA, which was ranked third, and on the UF5
and UF8, the IM-MOEA was better than the SMHPCRO.

A compar ison of mul t iobjec t ive PSO and
multiobjective CRO algorithms was conducted on 19

MOPs using variable linkages of UFx with complicat-
ed PSs and GLTx with complicated PFs.

The SMHPCRO had 14 benchmarks better than MOGOA,
which was ranked seventh. The SMHPCRO has nine bench-
marks better than SMEA, which was ranked second, and on
the UF1, UF7, UF10 and GLT5, the SMEAwas similar to the
SMHPCRO, while on the UF2, UF8 and GLT2, the SMEA
was better than the SMHPCRO. In Fig. 9, the results of the
compared algorithms on the UF1 benchmark demonstrate that
the SMHPCRO can achieve effective convergence diversity.
Moreover, Fig. 9 illustrates that the SMSEMOA can achieve
effective convergence, featuring a selection operator based on
the hyper-volume measure combined with non-dominated
sorting, but exhibits poor diversity. The UF1 possesses the
characteristics of variable linkages and complicated PSs,
whereas the SMSEMOA exhibits poor decoupling ability on
complicated benchmarks. The MOEA/D-DE uses the
Tchebycheff method to decompose the MOPs into a scalar
number of single-objective sub-problems, each of which has
a direction vector that can maintain the population diversity.
The IM-MOEA exhibits effective diversity, the MOGA offers

Fig. 8 The set of nondominated associated with the best IGD value among 30 runs obtained by SMHPCRO and seven compared multiobjective PSO
algorithms and multiobjective CRO algorithms on UF1
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poor performance on the complicated benchmark UF1 and the
SMEA exhibits effective performance on the UF1.

A comparison with the existing dominance-based meth-
od, decomposition-based method, and indicator-based
MOEAs was carried out on 16 MOPs using variable

linkages of UFx with complicated PSs and GLTx with
complicated PFs.

4.6 Impact of SOM on SMHPCRO

In this study, a hybrid multiobjective optimisation algorithm
combining the PSO and extend CRO algorithms is designed,
using the SOM method to partition the population into sub-
populations. Each molecule or particle has a subpopulation,
with a distributed organisation in the decision space. This
makes it easy to select neighbourhood leaders. This study
adopts the minimax distance between the reference point
and current subpopulation solutions as the neighbour leader.
The global leader is the same as the neighbour leader, which is
the minimax distance between the reference point and the
entire population solutions. The selection of leaders will result
in premature convergence of the algorithm; thus, the extended
CRO is used and the SOM method can enhance the local
exploitation ability. A new solution is generated by the
SMHPCRO algorithm, which can use the extended CRO or

Fig. 9 The set of nondominated associated with the best IGD value among 30 runs obtained by SMHPCRO and seven compared dominance,
decomposition and indicator based MOEAs on nineteen MOPs multiobjective on UF1

Table 6 The experimental results of HPCRO and SMHPCRO over 30
independent runs on six MOPs

Fun MOPSO HPCRO SMHPCRO

GLT1 3.964E-02
(3.425E-02)

1.671E-02
(1.941E-03)

1.051E-03
(2.732E-03)

GLT2 8.245E-02
(7.366E-03)

1.579E-02
(2.912E-03)

1.347E-02
(9.443E-04)

GLT3 2.519E-02
(5.667E-02)

1.392E-02
(4.854E-02)

4.391E-03
(2.609E-03)

GLT4 3.964E-02
(5.914E-03)

2.785E-02
(1.456E-02)

1.206E-02
(9.101E-03)

GLT5 9.687E-02
(7.661E-03)

5.570E-02
(2.426E-03)

3.089E-02
(3.804E-04)

GLT6 1.446E-01
(3.921E-03)

1.114E-01
(9.708E-03)

2.257E-02
(4.232E-04)
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PSO algorithm by means of a certain probability. When the
extended CRO algorithm generates a new solution, it requires
another solution that differs from the current solution. The
selection of another solution can be conducted from the
neighbourhood and the entire population according to a prob-
ability. In this manner, the exploration and exploitation can be
balanced in the SMHPCRO.

In order to explain the role of SOM in the SMHPCRO
more clearly, a combination of the PSO and extended CRO
algorithms without using the SOM method (HPCRO) is in-
vestigated. The following presents a comparison between the

SMHPCRO and HPCRO algorithms on the benchmarks GLT-
x with complicated PFs.

Table 6 displays the means and standard deviations of the
IGD metric values of 30 final populations obtained by means
of the SMHPCRO and HPCRO. It can be observed that the
SMHPCRO provides superior mean IGD metric values on
GLT-x to HPCRO. From Fig. 10, it can be observed that the
SMHPCRO exhibits effective diversity and convergence on
GLT-x. In order to analyse the difference between the
SMHPCRO and HPCRO more carefully, Fig. 11 illustrates
the convergence among 30 runs obtained by GLT1-GLT4. It

 

Fig. 10 The set of nondominated associated with the best Pareto front obtained by SMHPCRO on GLT-x

Fig. 11 The set of nondominated
associated with the mean
convergence among 30 runs
obtained by SMHPCRO and
HPCRO on GLT1-GLT4
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can be observed that the HPCRO exhibits poor convergence
during the early stage compared to SMHPCRO on GLT1. In
the later stage, HPCRO can achieve effective convergence.
The SMHPCRO uses the SOM method, which can enhance
diversity, thereby preventing the algorithm from falling into
premature convergence. The HPCRO exhibits effective con-
vergence during the end stage, because it uses the synthesis
operator of two molecules, which can promote the algorithm
jumping out of the local optimum. The benchmark of GLT2 is
similar to GLT1, but the SMHPCRO achieves better conver-
gence than the HPCRO. On the GLT3, the SMHPCRO can
achieve superior convergence to the HPCRO. This demon-
strates that the SMHCRO offers an effective ability to balance
the exploration and exploitation. On the GLT4, the SMHCRO
exhibits similar performance convergence during the early
stage, and effective convergence in the middle stage. During
the later stage, the SMHCRO and HPCRO exhibit similar
convergence performance. Furthermore, the red diamond in
Fig. 11 represents the convergence curve of the MOPSO al-
gorithm on different test functions. It can be observed from
Fig. 11 that the MOPSO algorithm appears to converge pre-
maturely. The experimental results demonstrate that the CRO
algorithm combined with PSO can enhance the diversity of
the MOPSO. Moreover, it can prevent the algorithm from
falling into the local optimal solution set. Therefore, the hy-
brid CRO and PSO algorithm can effectively solve MOPs.

5 Conclusions

According to the SOM method, we clustered the population
space, which can enhance the population diversity and make it
convenient to select the neighbour leader. In order to enhance
the global search ability, the extended CRO algorithm was
used to prevent premature convergence of the developed
PSO. Furthermore, the SMHPCRO was investigated on a
large number of benchmarks with either complicated PF
shapes or complicated PS shapes, and its performance was
compared with 12 other MOPs. The experimental results dem-
onstrate that the proposed approach is effective for most
benchmark problems, particularly on multimodal and difficult
benchmarks, which suggests that it can be considered as a
very promising MOEA in the field of MOPs.

Further work will include research into the multi-swarm
and cooperation mechanism to make the algorithm more effi-
cient. Moreover, the algorithm may be applied to the
constrained, dynamic, and noisy multiobjective optimisation
domain. It is expected that the SMHPCRO will be used in
real-world optimisation problems.
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