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ABSTRACT Stereo matching has been widely used in various computer vision applications and it is still
a challenging problem. Adaptive support weights (ASW) methods represent the state of the art in stereo
matching and have achieved outstanding performance. However, the local ASW methods fail to resolve
the matching ambiguity in low texture areas because their cost aggregation is limited within local fixed
or adaptive support windows. On the other hand, the non-local ASW methods perform cost aggregation
along a special tree, so that these methods are often sensitive to high texture areas since some useful
connectivity constrains between adjacent pixels are broken during constructing the special tree. To solve
these problems, in this paper, a novel and generic fusing ASW framework are proposed for stereo matching.
In this framework, we establish dual support windows for each pixel, i.e., a local window and the whole
image window. As such, the primitive connectivity between each pixel and its neighboring pixels in the
local window can be maintained, and then each pixel not only gets appropriate supports from neighboring
pixels within its local support window but also receives more adaptive supports from the other pixels outside
the local window. Furthermore, a local edge-aware filter and a non-local edge-aware filter, whose kernel
windows correspond to the dual support windows, are merged in order to achieve collaborative filtering of
the cost volume. The performance evaluation on the Middlebury and KITTI datasets shows that the proposed

stereo matching method outperforms the current state-of-the-art methods.

INDEX TERMS Stereo matching, cost aggregation, adaptive support weight, edge-aware filtering.

I. INTRODUCTION

Aiming to endow computers with human-like depth vision
capabilities, binocular stereo matching remains one of the
most active research topics in computer vision since it plays a
crucial role in many applications, including 3D scene recon-
struction, 3D tracking and autonomous driving. The goal
of stereo matching is to generate a dense disparity map by
finding all the correspondences between two rectified images
from the same scene which are captured from different view-
points. Due to the ambiguous nature of the matching problem
and existing noise, occlusion, or distortion in the images,
stereo matching is very challenging and the recovery of an
accurate disparity map still remains an open problem.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohui Liu.

A large number of studies have been conducted to solve
this problem. An extensive review of the stereo matching
algorithms can be found in [1]. According to the taxonomy
and evaluation strategy in [1], stereo matching algorithms
can be mainly categorized into global methods and local
methods. Global methods typically compute all disparities
simultaneously by minimizing an energy function defined
on the Markov random field model using a global optimiza-
tion algorithm, e.g., graph cut [2], belief propagation [3] or
dynamic programming [4]. Global methods tend to produce
more accurate matching results. However, they are gener-
ally computationally expensive due to the iterative nature of
the underlying optimization process. Local methods consider
correlations between adjacent pixels in support windows.
Firstly, the matching cost of each pixel at each disparity is cal-
culated with some measurement of pixel similarity. Secondly,
in order to reduce the matching ambiguity, the raw matching
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costs of all pixels within a support window are aggregated to
the center pixel at each disparity. Then, an optimal disparity
that gives a minimum aggregated cost is chosen through an
efficient local optimization process. Compared with global
methods, local methods have more efficient computational
performance and can better satisfy the requirement of practi-
cal applications.

In local methods, there is an implicit smoothness
assumption that all pixels in a support window have simi-
lar disparities. However, this assumption is broken at depth
discontinuities where the support window contains pixels
from different depths, and this leads to the well-known
edge fattening effect. On the other hand, local methods also
cannot work well for large regions with low or repetitive
texture since the support windows of these methods are
often limited in a pre-defined small window. Thus, to obtain
accurate results not only at depth discontinuities but also
in homogeneous regions, an appropriate support window
should be selected for each pixel adaptively. To this end,
variable and multiple support windows methods in early
papers were proposed by changing window size [5], shape [6]
or center offset [7]. Among these methods, rectangular and
constrained-shaped window models may be inappropriate for
pixels near arbitrarily shaped depth discontinuities. Addi-
tionally, computational cost over multiple windows for each
pixel also increases tremendously. To resolve this problem,
segmentation-based methods [8] use segmented regions with
arbitrary sizes and shapes as the support windows, which
were implicitly assumed that the disparity varies smoothly in
each region. However, these methods require precise color
segmentation that is very difficult when dealing with highly
textured images. Furthermore, segmentation-based methods
may fail if segments overlap depth boundaries.

The major breakthrough in local methods is the intro-
duction of the adaptive support weights (ASW) meth-
ods [9], [11]-[14]. These methods achieve an accuracy
comparable to that of global methods. The key idea in ASW
methods is to assign an appropriate weight for each pixel
within the support window. The support weight represents the
probability that the center pixel and a neighbor pixel might
belong to the same region. In other words, ASW methods can
be treated as segmenting the reference image in a ““soft” way.
Yoon and Kweon [9] firstly introduced the ASW strategy for
stereo matching. In their method, a pixel’s weight inside a
support window is computed based on the color similarity
and spatial distance to the center pixel. Note that this is equiv-
alent to the way that weights are computed in bilateral filter
(BF) [10] with edge-aware property, so the cost aggregation
step of their method can be understood as filtering the cost
volume with BE. Hence, ASW methods are also referred as
cost volume filtering methods. In [11], the segmented BF
weight function that relies on a pre-computed color segmen-
tation was proposed. Hosni er al. [12] defined the weights
within a window by computing the geodesic distance to the
center pixel. The main disadvantage of the above ASW meth-
ods is that their computational complexity directly depends

VOLUME 7, 2019

on the size of the support windows. As a consequence, these
methods performs very slowly since the support windows
have to be sufficiently large (e.g. 35 x 35 in [9]) to better
handle low texture regions. In order to reduce the processing
time, several acceleration techniques for speeding up the BF
weight function had been proposed [13], [14]. However, these
fast approximation methods often sacrifice the output quality
for high computational speed.

Inspired by BF, various edge-aware filtering techniques
have been introduced for better estimating support weights.
The guided filter (GF) proposed by He et al. [15], which has
a runtime independent of the kernel window size, exhib-
ited its superiority over BF on both quality and efficiency.
Rhemann ef al. [16] utilized the GF for filtering the cost
volume and outperformed most local methods in terms of
both speed and accuracy. To avoid the kernel windows of
GF covering the object boundaries or depth discontinuities,
several improved GF-based methods which combines with
adaptive support windows have been presented, such as adap-
tive guided filtering [17] and cross-based local multi-point
filtering [18]. Hamzah et al. [19] presented the iterative
guided image filter (IGF) [20] and utilized a cascade model
of IGF and BF to filter the cost volume for better preserving
the object edges. To improve the performance of the ASW
methods, Zhang et al. [21] adopted the coarse-to-fine strategy
to perform cross-scale cost aggregation and enforced cost vol-
ume consistency across multiple scales. To address the depen-
dence problem of the support window size, some recursive
edge-aware filters [22], [23] for stereo matching have been
presented. However, these recursive filters often carry out
cost aggregation in row or column, so a pixel cannot directly
get support from those adjacent pixels in other directions.
Recently, Yang [24] proposed a non-local cost aggregation
approach [25] with extremely low computational complexity,
in which the matching costs are aggregated adaptively along
a minimum spanning tree (MST). Mei et al. [26] employed
a segment tree to perform the non-local cost aggregation
strategy. In addition, a cross-trees structure consisting of a
horizontal tree and a vertical tree is proposed for non-local
cost aggregation in [27]. Different from aforementioned var-
ious local ASW methods whose support regions are often
local fixed-size or adaptive windows, the non-local methods
take the whole image as its supporting window. Although the
non-local methods can better handle low texture regions, they
show poor performance in highly textured regions.

In this paper, in order to improve robustness to lack of
texture or highly textured regions, we propose a novel fusing
ASW strategy for stereo matching by collaboratively per-
forming cost aggregation on dual support windows with dual
edge-aware filters. Specifically, we embed a local edge-aware
filter into a non-local edge-aware filter to achieve collaborate
filtering of the cost volume. Furthermore, in order to balance
accuracy and speed, we use the original GF to filter the
cost volume over the local support window, and adopt the
MST filter to perform the non-local cost aggregation over
the whole image. Then the fusing aggregated cost volume
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is the average value of the outputs of the above two filter-
ings. In fact, the proposed fusing ASW strategy is a general
framework and its performance may be improved when more
outstanding edge-aware filter, no matter whether the local one
or the non-local one, is integrated into this general fusing
framework. Experiments on the Middlebury benchmark [28]
and KITTI benchmark [29] demonstrate the effectiveness of
the proposed method and show that our method is one of the
state-of-the-art stereo matching algorithms.

The remainder of this paper is organized as follows.
In Section II, the related work is discussed. A novel stereo
matching algorithm using fusing ASW is systematically
described in Section III. Experimental results and analyses
are presented in Section I'V. Section V concludes this paper.

Il. RELATED WORK

A recent comparative study on various weight functions was
carried out in [30], so we refer readers to the survey to get
an overview of different ASW methods. Since GF shows
its quality and speed advantages over the other most local
edge-aware filters (e.g. BF), here we will focus on the GF-like
local ASW methods and the non-local ASW methods, which
are very relevant to our method.

Hosni et al. [16] took one image among stereo image
pair as the guided image and utilized GF to asymmetrically
perform the cost volume filtering. In contrast, in order to
aware both edges of left and right images in stereo match-
ing, Zhang et al. [31] employed symmetric linear regression
model. Obviously, the computational cost of the symmetric
guided filter is much more expensive than GF. In order to
improve the edges of object matching, Hamzah et al. [19]
proposed the iterative guided filter (IGF)[20], and then used
its weighted form which is obtained by concatenating IGF
with BF to conduct cost aggregation. However, this cascade
manner greatly increases computational load.

Considering that the simple box support window with
fixed size in the above guided image filters easily overlaps
object boundaries and depth discontinuities, Yang et al. [17]
proposed an improved stereo matching method using the
adaptive guided filtering (AGF). The AGF adopts adaptive
rectangular support window instead of the fixed square win-
dow, and applies the integral image technique to achieve a
linear computational complexity independent of the window
size. In fact, AGF defines a general form of GF’s weight
function by varying the rectangle window size. To obtain
adaptive shape support regions, the cross-based local multi-
point filtering (CLMF) [18] uses adaptive cross-based sup-
port regions presented by Dai et al. [32] as the support
windows. CLMF adopts orthogonal integral image technique
in [32] for fast filtering over any arbitrarily shaped windows.
However, when the linear regression model as in GF is used
in CLMF, the computational complexity of CLMF is much
higher than GF [16] and AGF [17], and it becomes larger with
increasing support region size. Moreover, in contrast to GF,
both CLMF and AGF need an additional overhead for each
pixel to construct an upright cross support skeleton with four
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varying arms. Notice that both adaptive rectangular windows
and adaptive shape windows are still limited by user-specified
maximum length of the skeleton arms. Thus, the above
improved GF-based methods like other local window-based
methods still can not perform well for low texture regions
especially large textureless regions.

In order to solve this problem, by introducing the coarse-to
fine (CTF) strategy into cost aggregation, Lu et al. [21]
reformulated the cost volume filtering from a weighted least-
squares (WLS) optimization perspective and introduced an
inter-scale regularization term into the WLS optimization
objective to enforce the consistency of the cost volume
across multiple scales. This cross-scale strategy can effec-
tively improve the disparity accuracy at expense of some
extra computational load. On the other hand, Yang [24], [25]
proposed a non-local cost aggregation method by building
a MST over the image graph. In this method, each pixel is
able to get supports from all the other pixels of the image
through unique paths on a MST, so the support window of the
non-local cost aggregation method is the whole image. The
non-local cost aggregation method performs better around
low texture regions than local ASW methods, since the for-
mer can guarantee to cover the whole low texture regions.
Besides, the non-local cost aggregation method [25] has
great advantage in extremely low computational complex-
ity. By enforcing tight connections for the pixels inside the
same segment, Mei et al. [26] proposed a segment-tree (ST)
instead of MST to perform the non-local cost aggregation
strategy. However, ST is easily influenced by the accuracy of
image segmentation and it also requires additional overhead
for image segmentation. In [27], two crossed trees, namely
horizontal tree and vertical tree, were employed, and the
non-local cost aggregation strategy is done twice by travers-
ing the two crossed trees successively. Although these non-
local ASW methods work well for low texture regions, they
can not handle highly textured or noised regions well. It is
because that some useful connectivity constrains between
local neighboring pixels are removed when these non-local
ASW methods construct their special tree structures.

Inspired by tree filtering (TF) [33] and fully connected
guided filtering (FCGF) [34], we propose a novel fusing
ASW strategy to improve the accuracy of stereo match-
ing. Both TF and FCGF relax their kernel windows to the
entire image, and define the spatial affinity between pixels
by building a MST as in [25]. To smooth out high-contrast
details while preserving major edges, TF adopts the non-
local aggregation algorithm [25] to smooth the outputs of BF
in a cascade manner as in [19]. To boost the performance
of GF, FCGF introduces the spatial affinity defined on the
MST into the fully connected linear regression model, and
substitutes the box filterer with the non-local aggregation
algorithm [25] to compute the new model. Obviously, both
TF and FCGF have high computational burden. Besides,
they consider spatial affinity rather than intensity similarity
between pixels, so TF and FCGF are not suitable for stereo
matching. In contrast, our fusing ASW strategy for stereo
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> Disparity map

FIGURE 1. The flowchart of the proposed algorithm.

matching averages the weights of GF and the MST filter
that is derived from the non-local aggregation algorithm [25].
As such, when performing cost aggregation with the proposed
fusing ASW, the MST filter can effectively compensate for
the deficiencies of GF, and vice versa. The computational
complexity of our fusing method is approximate to that of
GF since the MST filter has extremely low complexity and it
is several times faster than GF.

ill. THE PROPOSED ALGORITHM

Stereo matching methods typically consist of the four steps:
1) matching cost computation; 2) cost aggregation using
ASW, i.e., cost volume filtering; 3) disparity computation;
and 4) disparity refinement. An overview of the proposed
algorithm is shown in Fig.1. Following this pipeline, the pro-
posed algorithm will be described in detail below.

A. MATCHING COST COMPUTATION

In this step, the initial cost volume is constructed by com-
puting the matching cost at each pixel at each disparity. The
census transform [35] encodes each pixel value into a bit
string representing the relative ordering of the neighboring
pixels, and therefore is robust against radiometric changes.
The census transform also shows the best overall performance
in the evaluation on various matching costs [36]. Thus, we use
the census transform as the measurement of pixel similarity
to compute matching cost. Let D denote the set of allowed
disparity levels. Here the left image is taken as the reference
image. Given a pixel p = (x,y) in the left image and an
allowed disparity value d € D, the corresponding pixel on
the right image is denoted as pg = (x — d, y).

For a pixel p, its census transform is computed by compar-
ing its intensity with the intensities of the neighboring pixels
in a fixed-size window N (p) around p. The results of these
comparisons are then concatenated into a single bit string.
Thus, the census transform of pixel p is formulated as

cen(p) = qenp& P, @) ey

where ® represents the concatenation operation for gener-
ating the bit string cen(p), and £(p, ¢) is a binary function
defined as follows

L if I(q) < I(p)

2
0, else &

§p.q =

where I(p) and I(g) are the gray value of pixel p and pixel g.
Accordingly, after applying the census transform to both
the left and right images, the matching cost of pixel p with
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disparity d is the Hamming distance of cen(p) and cen (pg)
expressed as follows

C(p, d) = Hamming (cen(p), cen (pq)) 3)

The computational complexity of computing matching cost
based on the census transform mainly depends on the window
size of the census transform. The window size of the census
transform is set experimentally to 7 x 7, in order to reduce
computational amount without affecting the quality of simi-
larity measurement.

Once the matching costs C(p, d) for all pixels and all
possible disparity levels are computed, we can obtain the
initial cost volume C which is a 3D array.

B. COST AGGREGATION WITH FUSING ASW

Cost aggregation which aggregates each pixel’s matching
cost over a support window is the most important step
to reduce the matching ambiguities and noise in the ini-
tial cost volume. For ASW stereo methods, the cost aggre-
gation is formulated by filtering the cost volume. To be
more precise, the filtered cost value of pixel p at dis-
parity d is a weighted average of all pixels in a sup-
port window in the dth xy-slice, which can be formulated
as:

Clp.dy=3.  Wp,aClqd) @
@p

where w, denotes a support window centered at pixel p,
and W(p, q) is usually the weight function of a spec-
ified edge-aware filter such as BF and GF. Note that
the filter weight W(p, g) depends on the guidance image,
which is the reference image [/ in the case of stereo
matching.

As described in previous section, the local ASW methods
using local support windows as shown in Fig.2 (a), no matter
whether the fixed-size windows or the adaptive windows,
cannot work well for low texture regions whose sizes are often
arbitrary and unknowable. To avoid designing the optimal
adaptive windows, the non-local ASW methods directly take
the whole image as the global support window of each pixel
and then exploit a specified tree to perform the cost aggre-
gation as shown in Fig.2 (b). The non-local ASW methods
show good performance in low texture regions, but these
methods are sensitive to high texture regions since the original
local Markov random fields around the pixel of interest is
broken during constructing the special tree. To better deal
with both low texture regions and high texture regions, we
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FIGURE 2. The support regions of different ASW methods. (a) The local ASW methods use local support region denoted with the dashed
box to perform cost aggregation. The center pixel only gets supports from its neighboring pixels within the local window. (b) The
non-local ASW method take the whole image as its support region. The center pixel can receive supports from all pixels of the image
along a tree (e.g., MST). However, the connected edges between the center pixel and adjacent pixels may be lost. (c) The proposed fusing
ASW method has two support regions, i.e., the local support window and the whole image, which correspond to the kernel windows of
the local edge-aware filter and the non-local edge-aware filter respectively. Thus, the connected edges in the local window can be
maintained. The center pixel not only gets proper supports from all neighboring pixels within the local window, but also gets adaptive

supports from the other pixels outside the local window.

propose a novel fusing ASW strategy, that is, a local edge-
aware filter and a non-local edge-aware filter are merged
to collaboratively complete cost volume filtering. Different
from the cascade way as in [19], [33], the weight function
of our fusing ASW is the average value of the weight func-
tions of the local filter and the non-local filter. Accordingly,
as illustrated in Fig.2(c), we establish dual support regions
for each pixel, i.e., a local window and the whole image,
which correspond to the kernel windows of the local filter
and the non-local filter, respectively. As such, the important
connected edges in the local window can be preserved, and
each pixel not only gets proper supports from its neighboring
pixels within the local window, but also gets more adaptive
supports from the other pixels outside the local window.
Considering that GF not only can produce higher quality
results than most local edge-aware filters, but it also has very
low computational complexity which is linear to the number
of image pixels, so we adopt GF with a small fixed-size
window to perform local cost aggregation. On the other hand,
the non-local cost aggregation algorithm [25] extracts a MST
to conduct non-local cost aggregation. Note that the MST is
also edge-aware because edges with large intensity difference
are removed during spanning tree construction. Hence, when
MST and GF are fused for cost aggregation, they can promote
the performance of each other. In order to amalgamate GF and
MST on the same scale, we derive a new MST filter (MF)
from the MST non-local aggregation algorithm [25]. Then
the MST filter is used to perform non-local cost aggregation.
Note that the MST non-local cost aggregation has extremely
low computational complexity and it is several times faster
than GF as reported in [25]. Thus, for cost aggregation,
the computational complexity of our ASW method fusing GF
and MF is close to that the GF-based ASW method since the
filtering process of MF only requires a small amount of extra
computational load. Below we will describe the formulation
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of the proposed fusing ASW framework and the process of
filtering the cost volume using GF and MF respectively.

Suppose that Wgr (p, g) is the weight function of the origi-
nal GF [15] as a local filter which is defined in a local squared
window wy, and Wyr(p, q) is the weight function of MF as a
non-local filter which is defined in the whole reference image
I. In order to achieve the proposed fusing ASW framework,
we reformulate an extended weight function W, (p, ¢) of GF
by relaxing the local definition domain to the entire image /
as follows

Wer(p, @),
O’ q ¢ Wi

q <€ wg

Wir(p, q) = { )

where wy is a square window centered at pixel k.
The weight function Wgs(p, g) of our fusing ASW is the
average value of W(,.(p, ¢) and Wyr(p, g) as

Wia(p, = (1/2)W5r (P, @) + Wur(p, @) (6)

To get the aggregated cost with the proposed fusing ASW
strategy, by substituting (6) into (4), we have

CA(p, d) = qul Wea(p, 9)C(q, d)
= qu] A/2)Wir (. @) + Wur(p, )))C(q, d)

= (1/2) (Cér(p. )+ Clir (. ) )

where C4 is the filtered cost volume with GF and Cjyy is
the filtered cost volume with MF. It can be seen that the final
aggregated cost volume C# with the proposed fusing ASW
strategy is the average value of the two filtered cost volume.
Suppose that the guidance image I is a color one. Next,
we will use GF and MF to smooth the initial cost volume,
respectively.
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1) COST VOLUME FILTERING WITH GF

According to Formula (4), each slice of the initial cost volume
C should be filtered respectively. Thus, for each disparity
level d, we apply GF to filter the d™ xy-slice C(-, d) of C
and then the output of filtering is the d™ xy-slice CéF(-, d)
of CéF. Note that the weight function Wgr(p, q) of GF does
not need to be calculated explicitly, and the filtering output
can be obtained directly according to the definition of GF for
simplifying calculation. The key assumption of GF is a local
linear regression model between the guidance image / and
the filtering output. Specifically, for the cost volume filtering,
it is assumed that the filtering output CéF(o, d) is a linear
transform of the guidance image / in the window wy defined
as

Chr(p.d) = all(p) + by, Vp € ax @)

where a; is a 3 x 1 coefficient vector and by is a scalar, and
I(p)is the 3 x 1 color vector of pixel p. The values of a; and by
are then obtained by minimizing a energy function E(ay, by)
in the window wy which is defined as

2
E (ay, bk):Zpewk ((azl(p)+bk—C(p, d)) —l—eaZak)
©

Here, € is a regularization parameter for penalizing large
ay. The solution of a; and by is computed by the linear
regression as

(1 —

ar = (Zy+€U) el Zpewl(p)C(p, d)—p C(k, d)
(10)
by =C(k,d) — a; (11)

where ) is the 3 x 1 mean vector and Xy is the 3 x 3
covariance matrix of I in wy respectively. U is a 3 x 3 identity
matrix. |wg| is the number of pixels in wy. C(k, d) is the mean
of the input cost slice C(-, d) in wy.

Note that the pixel p is covered by several different win-
dows wy and each window wy yields a different output value
of CéF(p,d) in (8) with different a; and b. In order to
enhance robustness, we average all the output values gener-
ated by all windows wy covering the pixel p. Hence the final
filtering output is given as follows

Cor(p, d) =@y 1(p) + by (12)

where @, = ﬁ D kew, @k and by = @ 2_kew, bk are the
average coefficients of all windows overlapping the pixel p.

These calculations can be efficiently implemented with a
sequence of box filtering using the integral image technique
as described in [15], which makes the runtime independent of
the window size. During the cost volume filtering, GF should
be performed once for each disparity level, so the computa-
tional complexity of cost volume filtering with GF is O(N | D|)
where N is the number of pixels in the guidance image and
|D| is the number of disparity levels in D.
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2) COST VOLUME FILTERING WITH MF

For the non-local cost volume filtering, the guidance image /
is represented as a connected, undirected graph G = (V, E),
where each node in V corresponds to a pixel in /, and each
edge in E connects a pair of the nearest neighboring pixels.
For an edge e connecting pixels s and r, its weight is decided
as follows:

pe = p(s, 1) = I(s) = I(r) s (13)

where I(s) and I(r) represent the color vector of pixels s and r
respectively. Here the Lo, norm of the vector is used to ensure
that only when two neighboring pixels have similar intensity
in all RGB channels, their edge is assigned a high weight.
Experiments also verify that using L, norm in (13) performs
better than using other norms such as Lj. Then a MST with
the minimum sum of the edge weights can be constructed by
selecting N — 1 edges with small weights. The intuition is that
an edge is less likely to cross the depth borders if its two nodes
have higher intensity similarity. For any two pixels p and g,
there is one unique path connecting them on the MST, and
their distance D(p, g) is determined by the sum of the edge
weights along their path as follows:

n—1
D@p,q)=D(q,p) = Zi:l (i git+1) (14)
The support weight K (p, g) between p and g is defined as:
D bl )
K(p. 9) = exp(— 2 (1s)

where o is a user-defined parameter used to adjust the weight
between two nodes. The pixel with shorter distance from p is
assigned a larger support weight. As far as the cost volume fil-
tering is concerned, the support weight K (p, g) does not need
to be normalized. However, as described in [15], the weights
of GF are normalized automatically during the filtering with
the local linear regression model. As such, the support weight
K(p, ¢g) should also be normalized for fusing with GF on the
same scale. The normalized version of K (p, g) corresponds
to a new filter, namely MST filter. Thus, the weight function
Wur (p, g) of the MST filter (MF) is expressed as:

K(p.q)
qu[ K(p, Q)

Similar to the cost volume filtering with GF, we apply
MF to filter each slice of the initial cost volume C respec-
tively. For the disparity level d, the output of filtering d™ xy-
slice C(-, d) with MF is Cf,IF(~, d) which is computed as a
weighted sum of C(-, d) as follows

A —
Cor(p:d) =3 Wyr(p, @Clg; ) (17)
Substituting (16) into (17), we have

> ge1 K. 9)C(q. )
qul K(p, Q)

Directly computing Cf,IF(p, d) for each pixel p by
using (18) iteratively is really time-consuming. Fortunately,

Wur(p, @) = (16)

Chir(p. d) = (18)
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(a) (b)

FIGURE 3. Two-pass cost aggregation on a tree. Here the pixel p is
treated as the root node of the tree. (a) 1st pass: From leaf to root;
(b) 2nd pass: From root to leaf.

both the numerator and denominator can be computed effi-
ciently using the MST non-local aggregation algorithm [25].
Here we briefly describe how to rapidly calculate the numer-
ator for all pixels at the same time. The denominator as the
normalization term in (18) can be solved in the same way
as the numerator since the denominator is the special case
of the numerator with C(gq,d) = 1. Let SA(p, d) denote the
numerator of Cf,[F(p, d)in (18),1i.e.,

S =3, Kb, aCd) (19)

Yang [25] proved that S4(p,d) for all pixels can be
in one breath computed efficiently by traversing the MST
in two sequential passes as illustrated in Fig.(3). In the
first pass, the MST is traced from the leaf nodes to
the root node. The intermediate aggregated cost SAT(p, d)
for pixel p can be computed by using the following

equation:
At _ oAt
M dy=Co.d+Y  Kp.a)-$*a.d) QO)

where the set Ch(p) contains all the children of pixel p. After
the first pass, the root node receives the weighted costs from
all the other nodes, while the rest only receive the costs from
their sub-trees. In the second pass, the tree is traversed from
the root node to the leaf nodes. For pixel p, its final aggre-
gated cost S4(p, d) is determined with its parent Pr(p) as
follows:

SA(p, d) = K(Pr(p), p) - SA(Pr(p), d)
+ (A =KXPr(p),p) - S . d) 21)

For each disparity level d, the computational complexity
of computing S4(p, d) for all pixels by using the above two
sequential passes is O(N). Then the computational complex-
ity of computing CjeIF(p, d) for all pixels at each disparity
is also O(N) since the denominator in (18) can be solved in
the same way as the numerator. Hence, the computational
complexity of filtering cost volume with MF is O(N|DJ)
which is the same as that of filtering cost volume with
GFE.

Once the initial cost volume C is filtered with GF and MF
respectively, the final aggregated cost volume C4 is the aver-
age value of the two filtered cost volume as expressed in (7).
Hence, the total computational complexity of computing the
final aggregated cost volume C# is O(N|D)).
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C. DISPARITY COMPUTATION

In this step, we adopt a commonly used winner-take-all
(WTA) strategy to compute the disparity map from the aggre-
gated cost volume C4. The WTA strategy generates each
pixel’s optimal disparity d), by choosing the disparity with the
lowest aggregated cost value in all allowed disparity levels
according to

dy = arg mingep CA(p, d) (22)

Then the raw disparity map can be obtained by mapping each
pixel to its own optimal disparity level according to the above
WTA strategy.

D. DISPARITY REFINEMENT

The raw disparity map usually contains a lot of outliers (i.e.,
invalid pixels) whose disparity values are invalid, especially
near depth discontinuities and in occluded regions. In order
to handle these outliers and make the disparity map more
accurate, we adopt the disparity refinement method proposed
in [16] to post-process the raw disparity map. First, to detect
the outliers, the left-right consistency check is applied on the
left and right raw disparity maps which are generated when
the left image and right image are used as the reference image
respectively. A pixel is marked as the outlier whose disparity
value is not identical to that of its matching point. Next,
the scan line filling technique is performed to fill the detected
outliers. For each outlier, we extract the disparity values of the
closest valid pixel to the left and to the right of the current
outlier. Then the outlier is assigned to the minimum value
between the two valid disparity values due to the nature of the
occlusion in which the occluded pixels belong primarily to the
background objects. Finally, the disparity map is smoothed
using a weighted median filter [16] to remove streak-like
artifacts that usually are produced by the filling process.

IV. EXPERIMENTAL RESULTS

The proposed stereo matching with fusing ASW (FASW) is
implemented in C4+. We evaluate our method on both the
Middlebury benchmark [28] and the KITTI benchmark [29].
All the following experiments are conducted on a PC with a
3.2 GHZ Intel Core i5-6500 CPU and 8-GB memory.

A. EXPERIMENTAL SETTINGS

We mainly focus on two benchmarks: the Middlebury bench-
mark [28] from the indoor scene, and the KITTI bench-
mark [29] from the outdoor scene. First, we online evaluate
the performance of the proposed stereo matching algorithm
on the version 3 of Middlebury stereo evaluation. This new
stereo evaluation adopts the newest dataset v3 [37] consisting
of a training set and a test set. The training set comprises
15 stereo pairs with publicly available ground truth disparity
maps and they are used to determine the parameters for stereo
matching algorithms, while the ground truth disparity maps
of all 15 stereo pairs in the test set are not released. The
disparity map results of all 15 stereo pairs in the test set
have to be uploaded into the Middlebury online system for
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TABLE 1. The error rates of stereo matching methods on 15 test stereo pairs from Middlebury dataset v3.

PSMNet

DoGGuided

Data DDL[39]  IGF[20] DSGCA[40] ISM[19] piypry ;7 ADSM[42] MPSV[43] BSM[44] (45] DF[46]  FASW
Australia 23.8 22.4 23.4 20.5 17.0 18.8 39.8 423 26.0 27.5 20.2
AustraliaP 8.11 7.03 8.34 9.20 13.1 5.99 14.6 12.0 9.88 14.0 6.50
Bicycle2 13.2 11.1 11.2 133 17.0 12.0 16.2 15.9 16.1 23.2 9.03
Classroom?2 12.6 19.0 16.3 19.0 16.4 21.3 21.7 26.6 21.6 327 11.9
Classroom2E 23.6 29.7 28.4 28.0 31.2 44.1 375 48.7 39.6 50.7 23.6
Computer 11.5 18.3 16.1 20.1 13.0 11.7 16.3 22.6 16.8 40.5 8.45
Crusade 12.6 20.2 18.9 337 20.0 36.8 349 253 42.1 57.7 9.89
CrusadeP 7.29 15.7 14.3 31.2 21.0 32.1 304 17.0 37.5 55.7 6.28
Djembe 5.66 5.86 5.92 8.95 11.3 6.47 13.6 11.3 8.46 222 3.94
DjembeL 27.9 333 353 33.0 63.2 44.7 43.4 54.2 49.5 80.5 23.4
Hoops 16.0 25.8 259 31.1 334 41.5 31.6 35.4 39.6 59.0 16.3
Livingroom 16.5 20.8 21.6 23.0 19.9 23.6 29.5 30.8 25.6 40.0 14.7
Newkuba 13.7 17.5 19.9 18.0 20.9 18.6 26.4 315 22.6 36.4 13.6
Plants 14.2 19.3 20.0 18.9 42.0 222 26.0 249 28.6 67.9 11.2
Staircase 17.7 28.9 324 58.6 529 58.8 353 55.5 61.5 85.8 17.9
Avg (%) 13.6 18.0 18.0 22.5 23.5 23.6 25.9 26.9 27.0 434 11.7
TABLE 2. The disparity errors of stereo matching methods on 15 test stereo pairs from Middlebury dataset v3.
Data DDL[39] Il;sol\g?fﬁ IGF[20]  ISM[19] DSGCA[40] MPSV[43] ADSM[42] D"(‘Efsu]lded BSM[44] DF[46]  FASW
Australia 9.87 7.98 7.48 6.49 11.0 13.7 5.81 12.3 234 17.1 7.42
AustraliaP 6.73 6.95 4.50 4.46 6.75 6.72 3.86 6.62 9.58 11.9 5.19
Bicycle2 7.17 5.07 4.97 437 7.01 6.38 8.17 11.2 9.29 10.0 4.22
Classroom2 8.25 3.70 10.5 11.5 13.7 8.61 15.8 16.3 26.7 272 333
Classroom2E 11.0 7.38 17.0 17.8 21.5 26.7 413 62.6 52.0 424 11.5
Computer 420 331 5.87 4.53 5.90 5.21 4.25 6.83 9.81 14.6 3.44
Crusade 434 4.13 5.36 7.64 6.72 9.07 28.2 34.0 21.6 29.1 2.98
CrusadeP 3.68 4.24 4.67 6.95 5.85 8.59 26.3 30.6 14.9 28.9 2.86
Djembe 1.96 2.08 2.08 2.47 2.78 3.68 2.15 3.65 6.31 5.90 1.80
DjembeL 9.50 14.7 10.3 13.2 222 34.6 24.1 37.0 40.5 335 8.49
Hoops 6.92 11.3 10.7 9.83 17.2 15.5 34.1 35.0 23.9 30.9 6.25
Livingroom 5.65 435 5.85 6.10 11.9 8.78 12.0 13.4 17.8 13.8 4.55
Newkuba 4.93 493 6.06 5.66 11.1 9.94 8.50 14.2 22.6 32.5 4.81
Plants 11.2 19.1 9.30 6.78 14.1 11.6 14.6 19.1 16.8 65.2 7.32
Staircase 9.27 9.87 12.4 23.6 23.8 24.6 25.7 34.4 48.0 52.9 6.97
Avg (px) 6.51 6.68 7.05 7.67 10.7 10.9 15.1 19.7 19.9 26.2 4.86

online evaluating their accuracy. Secondly, we compare the
proposed stereo matching method with other state-of—the-art
ASW methods on the Middlebury dataset v2 [38]. In this test,
we use 27 stereo pairs from more various scenes. In addition,
we also alone evaluate the cost aggregation performance of
these different ASW methods since the ASW strategy is
mainly applied to the cost aggregation step. Lastly, we also
carry out the experiments on the KITTI benchmark to test the
adaptability of our algorithm.

The experimental parameter settings are defined as fol-
lows. The parameters of GF for cost volume filtering are
{wr, €} = {7 x 7,0.0001}; the single parameter of MF for
cost volume filtering is ¢ = 0.05. In order to make the results
more convincing, all the parameters are kept constant for all
data sets.

B. EVALUATION ON MIDDLEBURY DATASET V3

In order to online evaluate the performance of our whole
stereo matching method, we carry out experiments on the
newest Middlebury dataset v3 and upload their final disparity
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maps after post-processing to the Middlebury stereo evalu-
ation website [28]. Here the quarter resolution image pairs
in Middlebury dataset v3 are used. The error metric is the
same as in [19] and [39], i.e., measuring the average disparity
error and the error rate in non-occluded regions, where the
error rate is the percentage of bad pixels as well as the bad
pixels are the ones having disparity error more than 1 pixel.
They respectively correspond to the metrics “bad 4.0 and
“avgerr” with mask “nonocc” in the online Middlebury
stereo evaluation website [28]. These quantitative evaluation
results can be directly obtained from the Middlebury stereo
evaluation website. The error rate and the average disparity
error of all the 15 test stereo pairs are shown in Table 1 and 2
respectively. In order to avoid bias in image resolution, here
we only compare with the current state-of-the-arts methods
using quarter image resolution on the online platform, and
these quantitative results are presented in Table 1 and 2 in
descending order of overall performance. The visual com-
parisons with some top-performing methods here are shown
in Fig.4.
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(a) (b)

(c)

(d) (e)

FIGURE 4. The disparity map results of Bicycle2, Classroom2, Computer, Crusade and Newkuba in the test set (from left to right). The 1st
row: The reference images; the 2nd row: Ground truth; the 3rd row: Disparity maps computed with DDL; the 4th row: Disparity maps
computed with IGF; the 5th row: Disparity maps computed with DSGCA; the 6th row: Disparity maps computed with ISM; the 7th row:
Disparity maps computed the proposed method (i.e., FASW). Note that all disparity maps coded in false color can be directly obtained from
the Middlebury stereo evaluation website [28]. (a) Bicycle2. (b) Classroom2. (c) Computer. (d) Crusade. () Newkuba.

As can be seen from Tables 1 and 2, no matter whether in
terms of the error rate or the average disparity error, the pro-
posed method ranks at the first place among all 11 methods.
In comparison with second-ranked DDL [39], the average
error rate and average disparity error of the proposed method
respectively decrease by 1.9% and 1.65 px. Note that DDL
performs stereo matching by learning a discriminative dic-
tionary, and DSGCA [40], PSMNet_ROB [41] and DF [46]
attempt to improve the performance of stereo matching by
training deep convolutional neural networks. We can see
that the disparity accuracy of DDL is higher than the other
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three learning methods. In addition, it can be seen that our
algorithm also achieves better performance than ISM [19],
and our average error rate as well as the average disparity
error are respectively 10.8% and 2.81 px lower than ISM.
Obviously, our method also outperforms the remaining four
non-learning stereo methods such as DoGGuided [45] by a
large margin. As illustrated in Fig.4, Bicycle2, Classroom?2,
Computer, Crusade and Newkuba in the test set of the Middle-
bury dataset v3 are used for visual comparison. We can find
that the disparity maps produced with the proposed method
are smoother than the other four state-of-the-art methods. Our
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TABLE 3. The computational time of different methods.

TABLE 4. The error rates of final disparity maps.

Algorithm Environments Rur(\st;me
Nvidia GeForce GTX 1080 Ti /PCle /SSE2
PSMNet_ROB[41] (CUDA. Python/PyTorch) 0.55
i7-4770 @ 3.40 GHz; GTX 1080 GPU
DSGCA[40] (Matlab) 11.0
8 17 cores; Nvidia GTX460 SE
ADSM[42] (CUDA, C/C++) 358
DDL[39] 4 17 cores @ 4.0 GHz (Matlab/C) 112
IGF[20] 1i5 Core@3.2 GHZ (C++/OpenCV) 132
Intel(R) Core(TM)2 Duo CPU P7370 @
BSM[44] 2.00GHz (C++/OpenCV) 244
ISM[19] 1 i5 core @3.2GHz( C/C++) 330
MPSV[43] 1 i5 core @2.7Ghz (Python) 594
DoGGuided[45] 2 i5 cores@3.0GHz (Matlab) 630
DF[46] Matlab 2017 9999
FASW Intel Core 15-6500@3.2GHZ (C++/OpenCV)  40.5

disparity maps not only contain less noise, but also better
preserve the edges of objects. More quantitative compari-
son and visual comparison with more other state-of-the-art
methods can be found from the Middlebury stereo evaluation
website [28].

We briefly analyze the computational complexity of the
proposed algorithm. Suppose that the window size of the
census transform is M x M. As mentioned above, N are
the number of pixels in the guidance image and |D| is the
number of disparity levels in D. As such, the complexity of
each step is characterized as: O(NM? |D|) for the cost com-
putation; O(N | D) for the cost volume aggregation; O(N |D])
for disparity computation with WTA; O(N |D|) for disparity
refinement. Thus, it can be found that the overall complexity
of the proposed stereo matching algorithm is O(NM 2|D))and
the majority of the computational complexity comes from
the cost computation with the census transform. Further-
more, the computational time of the above compared methods
on different environments are listed in Table 3. It can be
observed that our running environment is similar to ISM [19]
and IGF [20], and neither parallelism or acceleration tech-
nique is utilized. However, our method is much faster than
IGF and ISM. In addition, the learning methods such as
PSMNet_ROB and DSGCA need to train models, and the
pre-training is often much more time-consuming.

C. EVALUATION ON MIDDLEBURY DATASET V2

We compare the proposed method with four current state-of-
the-art ASW methods on the Middlebury dataset v2, includ-
ing AGF [17], MST [24], CSCF [21] and ISM [19], since
they are very related to our algorithm and have good per-
formance. For the four compared methods, their parame-
ters follow the settings of the corresponding papers. In this
experiment, we use 27 stereo pairs from various scenes,
including four standard stereo pairs (Tsukuba, Venus, Teddy,
Cones) of the Middlebury dataset v2 [38], to give a more
reliable evaluation. The ground truth disparity maps of these
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Data AGEF[17] MST[24] CSCA[21] ISM[19] FASW
Aloe 3.75 4.94 5.18 7.30 3.27
Art 8.63 10.41 8.83 14.74 7.73
Babyl 3.47 8.54 2.98 3.44 1.67
Baby2 323 15.49 2.23 4.56 2.24
Baby3 3.27 4.10 3.30 6.08 2.56
Books 8.05 9.60 7.55 10.60 7.03
Bowlingl 11.34 20.80 9.30 9.84 3.20
Bowling2 4.88 11.06 4.74 6.73 3.73
Cloth1 0.28 0.48 0.84 0.37 0.21
Cloth2 226 3.97 2.96 4.67 1.22
Cloth3 1.37 191 1.90 2.95 0.95
Cloth4 1.04 1.23 1.50 2.38 0.62
Dolls 4.27 6.42 4.52 8.61 3.66
Flowerpots 9.71 15.26 8.28 10.31 6.52
Lampshadel 7.76 11.36 6.72 10.75 2.85
Lampshade2  16.37 10.71 16.36 12.20 291
Laundry 14.89 10.96 10.31 18.62 12.15
Moebius 8.68 7.97 8.29 10.52 6.38
Reindeer 5.26 8.57 4.28 7.29 3.21
Rocksl 232 2.70 2.71 3.03 1.39
Rocks2 1.09 2.07 1.35 2.54 1.12
Woodl 2.90 10.17 3.28 3.09 1.78
Wood2 0.39 1.47 0.32 1.60 0.46
Tsukuba 1.88 1.52 1.91 4.38 3.98
Venus 0.16 0.42 0.18 1.50 0.45
Teddy 6.59 6.34 6.04 10.21 6.02
Cones 341 322 2.79 6.79 291
Avg (%) 5.08 7.10 4.76 6.85 3.34

27 stereo pairs are provided by the Middlebury benchmark.
In order to evaluate the overall matching performance of
each method, we evaluate their final disparity map results
by computing the error rate with error threshold 1 pixel in
non-occluded regions as in [30]. The quantitative comparison
results are shown in Table 4, while their visual comparison
is presented in Fig.5. To better observe the disparity maps,
the bad pixels are marked in red in Fig.5. As can be seen
from Table 4, the matching error of the proposed method is
3.34%, which is lowest among all the five methods. Besides,
our method is more accurate than the other four methods
in most stereo pairs. The matching error of the proposed
method is respectively decreased by 1.74%, 3.76%, 1.42%
and 3.51% compared with AGF [17], MST [24], CSCA [21]
and ISM [19]. The visual comparison in Fig.5 also shows
that our method has better performance both in low texture
regions and high texture regions. We also observe that MST
can effectively cope with the low texture regions well due to
its non-local aggregation ability, but it is powerless for high
texture regions as shown in Fig.5. In addition, we can see that
the performance of AGF is similar to that of CSCA, and both
AGF and CSCA are more accurate than ISM. However, these
three local ASW methods tend to yield more bad pixels in low
texture areas compared to MST and our method.

Note that the ASW strategy is mainly applied to cost aggre-
gation step. Therefore, it is necessary to evaluate the cost
aggregation accuracy of each ASW method. Firstly, the initial
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(a) (b) (c)

(d) (e) ®

FIGURE 5. The final disparity maps of Lampshadel and Wood1 in Middlebury dataset v2. The bad pixels in the disparity maps are marked red. (a) The
reference images. (b) Disparity maps computed with AGF. (c) Disparity maps computed with MST. (d) Disparity maps computed with CSCA. (e) Disparity
maps computed with ISM. (f) Disparity maps computed with the proposed method (i.e., FASW).

(a) (b) (c)

(d) (e) )

FIGURE 6. The raw disparity maps of Lampshade2 and Baby2 in Middlebury dataset v2. The bad pixels in the disparity maps are marked red. (a) The
reference images. (b) Raw disparity maps computed with AGF. (c) Raw disparity maps computed with MST. (d) Raw disparity maps computed with CSCA.
(e) Raw disparity maps computed with ISM. (f) Raw disparity maps computed with the proposed method (i.e., FASW).

cost volume is calculated by applying the census transform
explained in Section III (A) and it is used as common input to
all the ASW methods for fair comparison. Next, each ASW
strategy is performed on the same initial cost volume and
then its raw disparity map is directly established with the
WTA optimization. Note that here no post-processing for
refining the raw disparity maps is employed for more reliable
evaluation. Accordingly, in order to evaluate the aggregation
accuracy of different ASW methods, we compute the error
rates with error threshold 1 pixel in non-occlusion regions of
the raw disparity maps. Their quantitative evaluation results
are presented in Table 5. For visual comparison, the raw
disparity maps yielded by the above five ASW algorithms are
shown in Fig.6.

Firstly, it can be seen in Table 5 that the aggregation error
of the proposed method is the lowest among all the five
methods. We can also find that the vast majority of the best
results are obtained by our method. The aggregation error
of the proposed method is respectively decreased by 0.99%,
3.46%, 1.21% and 2.19% compared with AGF, MST, CSCA
and ISM. Note that ISM uses a cascade model of IGF and
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BF to smooth the cost volume. It can be found in the visual
comparison of the raw disparity maps in Fig. 6 that ISM
performs worse in low texture regions than AGF and CSCA
since its cascade filter simply utilizes fixed-size window
without spatial adaptivity. In comparison, in order to improve
the performance of cost volume filtering, AGF remodels the
weight kernel of GF by adaptively adjusting local kernel
window, while CSCA enforces the inter-scale consistency on
the multi-scale cost volume when performing cost volume
filtering with GF. However, the support regions of these
local ASW methods are still limited in local windows of
user-specified size. Due to this reason, local aggregation
methods are usually vulnerable to the lack of texture. On the
other hand, we can see from Fig. 6 that the aggregation per-
formance of MST shows better than AGF, CSCA and ISM for
low texture regions. This is because MST performs non-local
cost aggregation in the whole image as each pixel adaptively
receives supports from all other pixels along a MST. However,
it also shows that MST is less accurate than other four meth-
ods in the quantitative evaluation. This is because that MST
removes some important connected edges, which leads to
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FIGURE 7. The final disparity map results of 000000_10, 000001_10, 000002_10, 000003_10 in the KITTI training set (from left to right). The 1st row: The
reference images; the 2nd row: The ground truths; the 3rd row: Disparity maps computed with AGF; the 4th row: Disparity maps computed with MST;
the 5th row: Disparity maps computed with CSCA; the 6th row: Disparity maps computed with ISM; the 7th row: Disparity maps computed with the
proposed method (i.e., FASW). Note that the disparity maps are coded in false color by using the KITTI development kit [29].

the low discrimination for matching ambiguity especially in
highly-textured regions. By adopting dual support windows,
our aggregation method with FASW can effectively solve the
defects of local methods and non-local methods. The visual
comparison in Fig.6 shows that our aggregation method per-
forms better in low texture regions because it performs the
cost volume filtering with the non-local edge-aware filter
over the whole image to establish the non-local optimized
result for each pixel. On the other hand, the visual comparison
in Fig.6 also illustrates that our aggregation method produces
less bad pixels (i.e., the pixels with disparity error more
than 1 pixel) in highly-textured regions since the primitive
connectivity in the local window can be maintained when per-
forming the cost aggregation with the local edge-aware filter.
The above experiment results demonstrate that the proposed
method outperforms the other state-of-the-art ASW methods
in terms of the overall matching performance and the cost
aggregation performance.

D. EVALUATION ON KITTI DATASET

In this section, we carry out the experiments on the KITTI
benchmark [29] to further verify the adaptability of our
method. The KITTI dataset [47] contains 195 test image pairs
and 194 training image pairs for evaluating stereo matching
algorithms. These image pairs from various real complex
road scenes are taken by a pair of high-resolution cam-
eras equipping on an autonomous driving platform. All the
KITTT images are captured under the real-world illumination
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condition. Hence, most image pairs contain large low texture
regions, e.g., sky, walls and cars, and inconsistent illumi-
nation conditions, e.g., shades and light reflection. Hence,
the KITTI benchmark is challenging. We use the whole
194 training image pairs with ground truth disparity maps
available to evaluate our method. In addition, the proposed
method is still compared with the above four state-of-the-
art methods, i.e., AGF [17], MST [24], CSCA [21], and
ISM [19]. The accuracy of the final disparity maps is mea-
sured in terms of the average disparity error, as well as the
error rate with default error threshold 3 pixels. For each stereo
pair in the KITTI dataset, there are two different regions
needed to be evaluated, that is, the whole reference image
region denoted as ““All” and the non-occluded region denoted
as “Noc”. Accordingly, each region has a ground truth of
disparity map available. Table 6 reports the quantitative eval-
uation of the five ASW methods by computing the average
error on the whole training data sets. Fig. 7 illustrates the
visual comparison, where the false color disparity maps are
displayed by using the KITTI development kit [29].

From Table 6, we can see that our proposed algorithm
performs better than the other methods in terms of both
average disparity error and average error rate. As can be
seen in Fig.7, MST has worse performance in roads that
contains a lot of high texture and noise compared to the other
local methods. This makes sense, because the primitive local
Markov random fields of the images are destroyed during
generating the MST. However, the local ASW methods such
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TABLE 5. The error rates of raw disparity maps.

Data AGF[17] MST[24] CSCA[21] ISM[19] FASW
Aloe 5.17 6.19 6.51 6.94 4.50
Art 11.17 12.92 11.91 13.42 10.05
Baby1 3.01 7.37 3.23 3.19 2.26
Baby?2 3.60 13.96 3.77 421 3.51
Baby3 431 7.85 4.63 4.77 3.76
Books 9.24 11.11 9.48 10.49 8.13
Bowlingl 7.58 17.17 5.71 6.38 5.76
Bowling2 7.49 12.58 7.81 7.40 5.29
Clothl 0.77 0.96 1.65 1.09 0.66
Cloth2 2.80 4.60 3.82 3.28 2.15
Cloth3 2.06 2.55 2.48 2.73 1.68
Cloth4 1.74 1.86 2.00 2.06 1.31
Dolls 5.51 7.10 6.68 7.71 4.88
Flowerpots 9.32 15.51 8.87 9.71 8.97
Lampshadel  9.85 10.96 9.91 14.80 6.37
Lampshade2  9.52 12.69 10.65 16.93 6.42
Laundry 18.75 17.84 17.01 20.83 17.13
Moebius 9.14 11.03 10.51 10.98 8.63
Reindeer 7.51 11.14 7.34 7.73 5.62
Rocksl 2.52 3.63 3.61 4.06 222
Rocks2 2.00 291 2.50 2.76 1.75
Woodl 5.16 10.53 4.55 495 2.95
Wood2 3.43 5.95 2.75 2.53 2.42
Tsukuba 4.09 435 3.66 5.79 4.03
Venus 1.71 1.95 1.77 2.14 1.42
Teddy 7.77 7.60 8.20 9.89 7.41
Cones 425 4.07 4.36 522 3.59
Avg (%) 591 8.38 6.13 7.11 4.92
TABLE 6. Quantitative evaluation on the KITTI training set.
Algorithm Out-Noc” Out-All’ Avg-Noc* Avg-All’
AGF[17] 8.59% 9.73% 1.77 px 1.99 px
MST[24] 23.27% 24.41% 3.47 px 4.15 px
CSCA[21] 7.84% 8.96% 1.52 px 1.68 px
IGM[19] 8.88% 10.0% 1.87 px 2.07 px
FASW 6.89% 8.12% 1.31 px 1.45 px

*Qut-Noc: the error rate in non-occluded areas;

®Qut-All: the error rate in total;

¢ Avg-Noc: the average disparity error in non-occluded areas;
4 Avg-All: the average disparity error in total.

AGF and ISM yield more erroneous disparity values in some
large textureless regions, e.g., sky and cars because their local
support windows cannot fit the whole low texture areas adap-
tively. In contrast, our method is adaptive to different texture
regions. It can also be found in Fig.7 that the disparity maps
generated by our method are more smoothing and contain less
outliers.

E. SENSITIVITY OF PARAMETERS

The two key parameters used in our FASW strategy are the
dimension r of GF kernel window and the parameter o of the
MST weighting function in (15). We use the training dataset
in quarter resolution from Middlebury dataset v3 to study the
performance of the proposed stereo matching method with
respect to these two parameters. The average error rate of the
training dataset is evaluated in this test. We first change the
dimension r from 3 to 21 (the interval is 2) while keep all
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FIGURE 8. Performance of the proposed stereo algorithm with respect to
the dimension r of GF kernel window and the parameter ¢ of the MST
weight function. (a) Effect of the dimension r of the GF kernel window.
(b) Effect of the parameter o of the MST weight function.

the other parameters settings constant. Fig.8 (a) shows the
test results with different dimension r of GF kernel window.
Similarly, we vary the parameter o from 0.01 to 0.1 while fix
the values of the other parameters. Fig.8 (b) depicts the effect
of changing the parameter o.

Fig. 8(a) demonstrates that our method is insensitive to
the change of the dimension r of GF kernel window, but
the proposed stereo algorithm shows the best performance
when r = 7. Similarly, it can be seen from Fig. 8(b) that
the variance of the matching error is very low when o ranges
from 0.01 to 0.1, and the error is minimum when o = 0.05.

F. DISCUSSION

A challenge problem of the ASW-based stereo methods is that
the background is the main part of the scene image and the
background itself is mainly occupied by large homogeneous
region or repeated texture. In such case, it is very difficult
to find accurate corresponding points for such background
region as illustrated in Fig.9. On the one hand, in such
background region, it is inherently ambiguous to consider the
color difference or local shallow features such as the census
transform as the measurement of pixel similarity. On the other
hand, as described in [21], [27], the matching ambiguities
in such ill-posed region also cannot be effectively reduced
after performing cost aggregation because the aggregated
cost curve of a pixel in such ill-posed region still contains
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(a) (b) ()

FIGURE 9. The final disparity map result of Midd1 in Middlebury dataset
v2. (a) The reference image. Its background has large homogeneous
region. (b) The ground truth of the disparity map. (c) The final disparity
map computed with the proposed method (i.e., FASW).The bad pixels in
the disparity map is marked red.

multiple local minima or flat valley around the true minimum.
However, the matching performance for such ill-posed region
may be improved by learning more robust and deep discrim-
inative features with deep convolutional neural networks as
the matching cost metric.

V. CONCLUSIONS

This paper describes a novel, yet powerful fusing ASW
framework for stereo matching. By combining a local
edge-aware filter and a non-local edge-aware filter to collab-
oratively smooth the cost volume, this proposed stereo match-
ing algorithm can effectively overcome the disadvantages of
the local ASW methods and the non-local ASW methods. The
quantitative evaluation on, no matter whether the Middlebury
benchmark of the indoor scene or the KITTI benchmark of
the outdoor scene, demonstrates that the proposed method
outperforms the state-of-the-art ASW methods. In the future
work, we will consider more outstanding local or non-local
edge-aware filter and integrate it in our fusing ASW frame-
work. In addition, we would like to apply the proposed fusing
ASW framework to other computer vision tasks.
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