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,is paper proposed the SVD (singular value decomposition) clustering algorithm to cluster wind turbines into some group for a
large offshore wind farm, in order to reduce the high-dimensional problem in wind farm power control and numerical simulation.
Firstly, wind farmwake relationship matrixes are established considering the wake effect in an offshore wind farm, and the SVD of
wake relationship matrixes is used to cluster wind turbines into some groups by the fuzzy clustering algorithm. At last, the Horns
Rev offshore wind farm is analyzed to test the clustering algorithm, and the clustering result and the power simulation show the
effectiveness and feasibility of the proposed clustering strategy.

1. Introduction

Wind energy is renewable energy, and it can solve a shortage
of fossil fuel and an environmental pollution problem. All
wind turbines that will be installed by the end of 2020 can
cover close to 9% of the global electricity demand [1].
Offshore wind farm is a new trend because of less planning
restriction and better wind condition. Compared with the
onshore wind farm, the electrical power production of
offshore wind farms is higher and more stable.

,ere are tens or even hundreds of wind turbines in an
offshore wind farm, and they bring a “dimension cruise”
challenge [2] for a wind farm control [3–5], numerical
simulation [6], and so on. In order to reduce the compu-
tation complexity, the common method is to establish an
equivalent model for wind farm model reduction [7], and it
is a key to cluster the same-feature wind turbines into a
group and an equivalent single machine. In recent years,
several wind turbine clustering algorithms have been pro-
posed [8–14]. A model reduction method is proposed by a
set of orthogonal modes from CFD (computational fluid
dynamics) simulation [8]; however, the simulation time is
too long for several wind turbines. An aggregated wind farm
model is proposed by the average wind speed [9, 10]. A wind

turbine clustering algorithm is considered by Hankel sin-
gular values [11] or selective modal analysis [12]. However,
the wind speed at the downstream wind turbines is smaller
than that at the upstream wind turbines in wind farms; this
phenomenon is defined as wake effects, and these wind
turbine clustering algorithms [9–12] are not considered
wake effects of an offshore wind farm.

Coordinates of wind turbines are very regular in an
offshore wind farm, and the wind speed and direction are
stable, so wake effects of every wind turbine are very regular.
Based on the wind farm wake model, wind turbines can be
clustered into several groups [13, 14]. ,e support vector
clustering technique is used to cluster wind turbines based
on the wind farm layout and incoming wind direction [13].
,e k-means clustering algorithm divides wind turbines into
several groups [14]. However, the wind farm wake model is a
high-dimensional mathematical model, and the k-means
clustering and the support vector clustering algorithms are
inefficient and easily converted to a local minimum with
more dimensions; at the same time, the results of two
clustering algorithms are poor robustness [15]. To solve the
high-dimensional problem of wind turbine clustering, SVD
(singular value decomposition) is an effective clustering
algorithm for large datasets [15].
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In this paper, the SVD clustering algorithm is proposed
for an offshore wind farm to overcome the high-dimensional
problem. A wind farm model is firstly established based on
the Jensen wake model, layout of wind farm, and incoming
wind speed, a wake combination matrix of every wind
turbine is built from a wind farm wake model, and wind
turbines are clustered into some groups by an SVD of the
wake relationship matrix. At last, an order reduction wind
farm model is obtained for power maximizing, power bal-
ance control, and so on.

,is paper is organized as follows: Section 2 introduces the
wind turbine model and the wake model of an offshore wind
farm. ,en, the SVD clustering algorithm is discussed for the
wakemodel in Section 3.,eHorns Rev offshore wind farm is
tested in Section 4. Finally, conclusions are drawn in Section 5.

2. Wind Farm Wake Model

,ere are many wake-effect models, such as the Frandsen
analytical model [16], Jensen model [17], Larsen model, and
CFD (computational fluid dynamics) model [18]. In this
paper, the Jensen wake model [18] is adopted because it is
simple and suitable for engineering applications [18].

,e Jensen wake model is based on the global mo-
mentum conservation and assumption of a linear expansion
of the wake. Figure 1 shows the basic Jensen model, the
radius of the wind turbine is r0, the ambient wind speed is v0,
and the wake decay constant is k. If a wind turbine is not
affected by any upstream wind turbine, k� 0.04; otherwise,
k� 0.08 [19]. r is the radius of the expanding wake, and it can
be calculated by (1). And the wind speed v1 inside the wake
area at a distance x from the single wind turbine can be
calculated by (2), where CT is the wind turbine thrust
coefficient:

r � r0 + kx, (1)

v1 � v0 + v0
������
1 − CT

􏽰
− 1( 􏼁

r0

r
􏼒 􏼓

2
. (2)

In an offshore wind farm, a downstream wind turbine is
affected by multiple wind turbines, and multiple wake effects
can be combined into a single wake effect. And the com-
bining multiple wake effects consider the shadowed areas of
the upstream wind turbines. ,e shadow condition, between
an upstream wind turbine and a downstream wind turbine,
is complete shadowing, quasicomplete shadowing, partial
shadowing, and no shadowing. ,e partial shadowing is
shown in Figure 2, the wind turbines’ radius r0 is the same,
and the swept area of the wind turbine is A0. ,en, the
shadow area between the two wind turbines can be calcu-
lated by

Ashadow,ij � ri xij􏼐 􏼑􏽨 􏽩
2
cos− 1 Lij

ri xij􏼐 􏼑
⎛⎝ ⎞⎠

+ r
2
0 cos

− 1 dij − Lij

ri xij􏼐 􏼑
⎛⎝ ⎞⎠ − dijzij,

(3)

where xij is the distance between the upstream wind turbine
i and the downstream wind turbine j along the wind di-
rection and ri(xij) is the wake stream radius, which can be
calculated by (1).

Based on the law of momentum conservation, the
combining multiple wake model [19] of the jth wind turbine
is calculated by

vj � v0 1 − 􏽘
n

i�1
1 −

�������
1 − CT,i

􏽱
βij􏼒 􏼓􏼔 􏼕

2
⎡⎣ ⎤⎦, (4)

where βij � (r0/ri(xij))(Ashadow,ij/A0).

3. A Wind Turbine Clustering
Algorithm via SVD

,e layout of an offshore wind farm is regular, the distance
between turbines is the same, the wake effects of some
downstream wind turbines are the same, so the same-wake-
effect wind turbines can be clustered as a group and equate a
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Figure 1: ,e Jensen wake model [18].
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Figure 2: Wind turbine wake shadow [18].
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rescaled single wind turbine. From (4), the wind speed of
downstream wind turbines is determined by the geo-
graphical location and the work condition of upstream wind
turbines, and the CT can be regulated by a wind turbine.
Hence, the geographical location is selected as a clustering
index [13, 14]. However, the clustering index is 1D data in
[13, 14], and the dimension is high as the number of wind
turbines increases. A 2D wake relationship matrix can be
established from 1D data by analyzing (2), and it is more
suitable than 1D data for an offshore wind farm and contains
the relative location of wind turbines [20] ,e 2D wake
relationship matrix is a sparse matrix. And the SVD clus-
tering method is effective to solve the high-dimensional
sparse matrix clustering problem [21].

3.1.Estimationof theWakeRelationshipMatrixofEveryWind
Turbine. An offshore wind farm has m rows with n wind
turbines, and the distance of wind turbines is regular. A wake
relationshipmatrix Aij ∈ Rm×n of the ith row and jth column
wind turbine is defined as

Aij � apq􏼐 􏼑 �

a11 . . . a1n

⋮ ⋱ ⋮

am1 . . . amn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where apq is the element of a wake relationship.
From the wind direction and the wind turbine geo-

graphical location, the wake effect between two wind tur-
bines can be obtained. If there is a wake effect between the
ijth wind turbine and the pqth wind turbine, an element of a
wake relationship is βij; otherwise, the element is 0, if there is
not a wake effect, or itself. So the apq of a wake relationship
matrix is defined as

apq �

r0

ri xij􏼐 􏼑
⎛⎝ ⎞⎠

Ashadow,ij

A0
􏼠 􏼡, shadowing,

0, i � p, j � q,

0, no shadowing.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Generally, the shadowing condition of wind turbines can
be judged using the basic geometrical relationship.

3.2. A SVD Clustering Algorithm of Offshore Wind Farm.
,e SVD is an orthogonal matrix reduction, the nonzero
singular values contain the most information of the matrix,
and it has the advantages of dimension reduction, in-
sensitivity to matrix perturbation, scale invariance of sin-
gular values, rotation invariance of singular values, ability to
solving the best approximation matrix, and so on [19]. And
the proposed wind turbine clustering algorithm flow chart is
shown in Figure 3 and is implemented as follows:

Step 1: every wind turbine coordinate, wind direction,
and wind turbine parameters, such as the radius of the
wind turbine and distance between wind turbines, are
obtained.

Step 2: an original coordinate (X, Y) of every wind
turbine is transformed into another coordinate system
(x, y) in the wind direction as (7), where θ is the wind
direction with the positive X-axis:

x � X cos θ − Y sin θ,

y � X sin θ + Y cos θ.
􏼨 (7)

Step 3: the wake stream radius and shadow area of the
wind farm are calculated based on Section 2.
Step 4: the wake relationship matrix Aij is established
from (5) and (6).
Step 5: the singular value decomposition of Aij is
calculated as follows:

U, Sij, V􏽨 􏽩 � svd Aij􏼐 􏼑, (8)

where U and V are the left and right singular
orthogonal vectors, respectively, and Sij �

diag(σ1, . . . , σp), where σ1 ≥ σ2 ≥ . . . ≥ σp [18].
Step 6: the Sij values are clustered by the fuzzy clus-
tering method [15], and these wind turbines can be
clustered into k groups {g1, g2, . . ., gk}. And other
parameters of the wind turbine are aggregated by a
mechanical torque compensation factor method [9].
Finally, the simplified wind farm model is built.

4. Case Study

,e Horns Rev offshore wind farm in Denmark [22] is used
to test this clustering algorithm. It consists of eighty 2MW
wind turbines, and every wind turbine has a hub height
H= 70m and a rotor diameter D= 80m. And the wind farm
layout is parallelogram columns, the distance between two

Start

Obtain wind turbine coordinates, wind direction, and wind
turbine parameters

Transformation of wind turbine based on the wind direction

Calculate wake shadow area based on the Jensen wake model

Establish the wake relationship matrix

SVD of wake relationship matrix

�e fuzzy clustering algorithm based on the singular value

End

Figure 3: Flow chart of the wind turbine SVD clustering algorithm.
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columns is 7D, the distance between turbines is 7D, 9.4D,
and 10.4D for 0°, 48°, and 312°, respectively, and the angle
between the first column and y-axis is approximately 7°. Its
shape is shown in Figure 4, and it has 8 rows and 11 columns.
,e wake model of the wind farm is established under eight
wind directions which are 270°, 246°, 222°, 201°, 180°, 173°,
138°, and 90° based on the wind farm layout. ,e clustering
results are shown in Figure 5. When the wind direction is
270°, the first-columnwind turbines are not affected by other
wind turbines, their wind speeds are the ambient wind

speed, and wind speeds of other-column wind turbines
decrease in turn. And when wind directions are 222° and
312°, the clustering results are similar to the layout of the
wind farm. With the wind direction increases, the clustering
results are very regular, so a wind farm clustering lookup
table can be built for wind farm control and numerical
simulation.

In order to verify the clustering results, suppose that the
CT of all wind turbines is the same and CT � 0.865 and the
ambient wind speed is 12m/s. ,e wind speed of each wind
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Figure 4: ,e Horns Rev wind farm layout.
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Figure 5: Clustering results of the wind farm at different wind directions: (a) 270°; (b) 246°; (c) 222°; (d) 201°; (e) 180°; (f ) 173°; (g) 138°;
(h) 90°.
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turbine is shown in Figure 6. ,e wind speed of wind
turbines is the same if they are in the same group. From
Figure 6, it can be seen that the clustering results are effective
and feasible.

,e Horns Rev offshore wind farm power simulation is
tested by the SVD clustering algorithm and detailed model
in MATLAB, which considers every wind turbine powerout.
And the power simulations are run on a 3.6GHz Core i7-
4790 CPU with 8GB RAM using MATLAB version R2014a.

Suppose that the wind speed is 12m/s and all wind
turbines are maximizing power point tracking. And the
detailed and equivalent wind farm power curves are shown
in Figure 7 at the wind direction range of 180°∼270°. From
Figure 7, it can be seen that the error between the equivalent
model and the detailed model is negligible, and the maxi-
mum error is 0.108MW.

However, when the wind speed of wind farms is over the
rated speed, the results of the proposed clustering algorithm
may be imprecise. When the ambient wind speed is 17m/s, it
is over the rated wind speed, some wind turbines are power
limit controllers, and the CT of them is different with the

MPPT wind turbines. And the detailed and equivalent wind
farm power curves are shown in Figure 8. From Figure 8, it
can be seen that the maximum error is 9.98MW, and the
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Figure 6: Wind speed of each wind turbine: (a) 270°; (b) 246°; (c) 222°; (d) 201°; (e) 180°; (f ) 173°; (g) 138°; (h) 90°.
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error may be large in some wind farm power simulation. So
the proposed algorithm can be used when the ambient wind
speed is less than the rated speed and the CT of the same-
group wind turbines is the same.

And the computational cost of two wind farm models is
shown in Table 1, and the computational efficiency of the
proposed wind farmmodel is higher than that of the detailed
model. Moreover, the SVD clustering algorithm is also used
for the wind farm power control and power grid simulation
considering wind farm, wind farm power-maximizing
control, etc.

5. Conclusion

,e main contribution of this paper is the proposed SVD-
based clustering method for large-scale offshore wind farms
to solve the high-dimensional problem. Wind turbines can
be clustered into several groups based on the location of each
wind turbine and wind direction, and the same-group wind
turbines, whose CT is the same, can be equivalent to a single
wind turbine, in order to solve the high-dimensional
problem in the wind farm control algorithm and numerical
simulation.

Based on the layout of wind farm and wind direction, a
wind farm wake model is established, a wake relationship
matrix is based on the wake model, a singular matrix is
calculated by SVD, and finally, wind turbines can be clus-
tered into groups by the fuzzy-means method from singular
values. SVD can reduce the high dimension of the wind farm
wake model, and the clustering results are relative wind
direction and are very regular. Moreover, the large wind
farm power control or power grid power simulation with
wind farms can reduce the computation time by clustering
wind turbines into some groups using this clustering
algorithm.

Data Availability

Previously reported wind turbine coordinates and the Horn
Rev wind farm parameters data were used to support this
study and are available at DOI: https://doi.org/10.1016/j.
renene.2014.06.019. ,ese prior studies and datasets are
cited at relevant places within the text as reference [22].
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