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ARTICLE INFO ABSTRACT

Keywords: Cuckoo search is a simple yet effective evolutionary algorithm for solving numerical optimization problems.
Cuckoo search Recently, many variants of cuckoo search have been developed to further enhance the performance. These
Ensemble

improved versions have different capabilities in tackling the optimization problems with different properties, so
it is difficult to determine which algorithm is best for all problems. To address this issue, we present a new
cuckoo search algorithm named the ensemble cuckoo search variant. In this developed version, a candidate pool
consisting of three different cuckoo search algorithms is first constructed. According to the previous experiences
in producing promising solutions, an adaptive scheme is then used to determine the probability that each al-
gorithm can be assigned to distinct individuals in the current population. Also, an external archive is embedded
to further discourage premature convergence. To assess the performance of this ensemble algorithm, 42 test
problems derived from CEC 2005 and CEC 2013 are employed. Experimental results indicate that the proposed
algorithm is a competitive method compared with seven well-established cuckoo search variants and several

Selection probability
External archive
Numerical optimization

other well-known evolutionary algorithms.

1. Introduction

Cuckoo search (CS) (Yang & Deb, 2014) algorithm is a meta-heur-
istic optimization technique inspired by the brood parasitism behavior
of some cuckoos. In CS, new individuals can be generated by using Levy
flight and biased random walk, corresponding to exploration and ex-
ploitation respectively (Salgotra, Singh, & Saha, 2018). Because of its
simple concept and effectiveness, CS has attracted wide attention. So
far, CS has been successfully applied in various fields, such as mining
industry (Fouladgar, Hasanipanah, & Amnieh, 2017), reliability re-
dundancy allocation problems (Valian & Valian, 2013), scheduling
(Laha & Gupta, 2018; Majumder, Laha, & Suganthan, 2018), dynamic
optimization (Kordestani, Firouzjaee, & Meybodi, 2018), fault diagnosis
(Cheng, Wang, & Xiong, 2019), damage detection (Samir, Brahim,
Capozucca, & Wahab, 2018), machining process (Yildiz, 2013), hy-
dropower station operation (Meng, Chang, Wang, & Wang, 2019) and
solar photovoltaic system (Chen & Yu, 2019).

Similar to other optimization techniques (Goli, Tirkolaee, Malmir,
Bian, & Sangaiah, 2019; Li & Cheng, 2017; MiarNaeimi, Azizyan, &
Rashki, 2018; Rao, Savsani, & Vakharia, 2012; Salza & Ferrucci, 2019;
Storn & Price, 1997; Tirkolaee, Goli, Hematian, Sangaiah, & Han, 2019;
Vafashoar & Meybodi, 2018), the search capability of CS algorithm
depends heavily on the trade-off between exploration and exploitation.
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As a result, many CS variants have been developed to enhance the
convergence performance. There is no doubt that these CS algorithms
exhibit their respective advantages in different aspects. However, dif-
ferent CS variants may have different search characteristics and are
suitable for solving different types of optimization problems. For a
specific problem, the best generation strategies and parameter settings
may vary at different phases of the search process. Therefore, it is often
very time-consuming and inefficient to use traditional trial-and-error
methods to determine appropriate strategies and parameters, especially
when tackling optimization problems with different properties. Further,
No free lunch theorem has proved that no algorithm is suitable for
solving all optimization problems (Wolpert & Macready, 1997). In re-
sponse to these challenges, the ensemble of multiple strategies or var-
iants of an algorithm has attracted more and more attention, and has
become a promising method to enhance the performance of the algo-
rithm (Wu et al., 2018).

Motivated by these observations, we develop a novel CS algorithm
named the ensemble CS variant (ECSV), in which an adaptive selection
scheme is employed to exploit the merits of different competitive al-
gorithms. In the presented ECSV, three different CS algorithms, namely
chaos-enhanced cuckoo search (CCS) (Huang, Ding, Yu, Wang, & Lu,
2016), nearest neighbour cuckoo search (NNCS) (Wang, Zhong, & Yin,
2016) and peer-learning cuckoo search (PLCS) (Yang, Gao, & Zhang,
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2017), are integrated to complement each other. To achieve the effec-
tive ensemble of these algorithms, the selection probability is defined
according to the success rate of the promising solutions generated by
each CS variant in a certain number of previous generations. It should
be noted that each constituent algorithm has the same selection prob-
ability at the beginning of the iteration. As the iteration proceeds, the
constituent algorithm that produces better solutions has larger prob-
ability of being selected. Next, these algorithms are assigned to distinct
individuals in the population on the basis of the selection probabilities.
Besides, a new parameter named learning period (LP) is predefined to
represent a fixed number of iterations. After LP generations, the success
rate of each CS variant is updated and the probability selection op-
eration is then triggered periodically. The higher the success rate of the
constituent algorithm, the greater the probability of being selected. To
further strengthen the exploration capability, an external archive is
introduced into the biased random walk strategy to store these dis-
carded individuals. In this modified scheme, the random solution is not
selected from the current population, but from the union of the current
population and external archive.

Obviously, unlike previous hybrid CS algorithms, ECSV focuses on
the ensemble of different CS variants. By combining the merits of these
constituent algorithms to maintain population diversity and delay
convergence, ECSV can exhibit better performance in solving optimi-
zation problems with different characteristics. To investigate the ad-
vantages of the presented ECSV algorithm, extensive experiments are
conducted on 42 test problems derived from CEC 2005 (Suganthan,
Hansen, Liang, Deb, Chen, Auger, & Tiwari, 2005) and CEC 2013
(Liang, Qu, Suganthan, & Hernandez-Diaz, 2013). For comparative
purpose, seven recently-developed CS algorithms are employed.
Moreover, the developed ECSV is compared with seven well-known
variants of particle swarm optimization (PSO) and differential evolu-
tion (DE).

In summary, the main contributions of this paper are as follows.

(1) Considering that the search ability of an algorithm may vary sig-
nificantly with different optimization problems, a candidate pool
composed of three different CS variants is constructed, and a new
CS algorithm called ECSV is then developed.

(2) According to the previous experiences in producing improved so-
lutions, an adaptive scheme is employed to determine the prob-
ability of each CS algorithm being selected. Also, a fixed number of
iterations named learning period is predefined and the probability
matching operation is executed periodically.

(3) To further maintain population diversity and delay premature
convergence, an external archive is embedded to store the dis-
carded solutions in the selection phase.

The rest of this paper is organized as follows. Section 2 introduces
the related works, and Section 3 presents the ensemble CS variant. In
Section 4, the experimental results are reported and discussed. Section
5 summarizes the experimental results. Finally, Section 6 concludes this

paper.
2. Related works
2.1. Cuckoo search algorithm

Cuckoo search (CS) algorithm is a newly developed global opti-
mizer, which mimics the obligate brood parasitic behavior of some
cuckoo species. For the sake of finding potential candidate solutions,
Levy flight and biased random walk are used in CS algorithm. Levy
flight is a global random walk which the step-length obeys a heavy-
tailed probability distribution. Because of the application of Levy flight,
CS is more effective in exploring solution space (Cheng, Wang, Jiang,
Cao, & Xiong, 2018).

In the initialization phase, an initial population is randomly
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produced in the solution space of the problem being solved. The process
is described using the following equation:

x=a+rand-(bj—a) (@(=1,2--N, j=1,2,D) 1)
0

where x;; is the initialization solution, a; and b; stand for the lower and
upper bounds of solution space, respectively. N is the population size,
D is the dimension of solution space, and rand is a random number
uniformly distributed within the range [0, 1].

To generate new candidate solutions, Levy flight can be expressed as
follows:

x{t = x{ + step-Levy (1) )

step = a'(xi[ - xbest)

3

where x/ is the current solution, x/*! stands for the new solution, 1
denotes the power coefficient, « is the step size factor, depending on the
scale of the problem being solved, and step stands for the random search
factor, which utilizes the information of the current best solution Xpes.
Levy (1) represents a random number drawn from the Levy distribution
and is given as:

1

m

Levy(1) = i/

@
where m and »n stand for two random numbers following the normal
distribution, f3 represents a distribution parameter.

In biased random walk, a fraction of new solutions are generated by
using the following equation:

t+1 _ .t t t
X =X+ r'(xrl - xrz)

(%)

where r is the scaling factor bounded in the range [0, 11, x,; and x,, are
two randomly chosen solutions in the current population.

2.2. Some variants of CS

Practice has proved that CS algorithm is prone to premature con-
vergence in addressing optimization problems with complex land-
scapes. For the purpose of enhancing the convergence performance,
many attempts have been made in recent years and some promising CS
variants have been developed. Generally speaking, these improved CS
algorithms can be divided into two categories: parameter control and
hybridization (Abdel-Basset, Hessin, & Abdel-Fatah, 2018).

In terms of parameter control, some work has been done to improve
CS. Walton, Hassan, Morgan, and Brown (2011) proposed a modified
CS algorithm while maintaining the attractiveness of the original
method. For this modified version, the step size of Levy flight varied
with the number of generations. Also, the information exchange be-
tween individuals was introduced to accelerate convergence. Then, 7
test problems were considered to investigate the performance of the
proposed algorithm. Jia, Yu, Wu, Wei, and Law (2016) developed an
improved CS to address the affinity propagation model. With respect to
this variant, a parameter was added to regulate the step size and dis-
covery probability. Next, the performance of this improved algorithm
was tested on several benchmark problems. It was seen that the pro-
posed method is superior to CS and other two evolutionary algorithms.
Li and Yin (2015) presented a modified CS with adaptive parameters.
First, two mutation rules were designed to balance the exploitation and
exploration capacities. Next, a linear decreasing probability scheme was
employed to control these mutation rules. Finally, according to the
relative success number of the presented two new parameters, an
adaptive parameter setting strategy was introduced. To investigate the
performance of the proposed algorithm, 16 benchmark test problems
were employed. Ma, Li, Li, Lv, and Wang (2018) developed a dynamic
self-adaption CS for numerical optimization. In this scheme, the popu-
lation was divided into two subgroups, each of which used different
strategy to generate candidate solutions. Also, the step size was adap-
tively controlled to further alleviate premature convergence. The
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simulation experiments were conducted on 9 benchmark test functions.
It was found that the proposed algorithm has better optimization per-
formance.

Additionally, some work has focused on the research of hybrid
schemes. Kanagaraj, Ponnambalam, Jawahar, and Mukund (2014) de-
veloped a hybrid CS and genetic algorithm (GA) for solving engineering
design optimization problems. With regard to this hybrid scheme, ge-
netic operators were used for exploitation, while Levy flight was used
for exploration. After that, this hybrid algorithm was tested on 13
benchmark constrained functions and 3 engineering design problems.
Liu and Fu (2015) introduced frog leaping algorithm (FLA) and chaos
theory into CS to enhance the performance. First, chaos theory was used
to initialize the population. Then, the inertia weight was embedded in
Levy flight strategy to enhance the exploration capability. To balance
the tradeoff between exploration and exploitation, the local search
mechanism of FLA was employed to further strengthen the exploitation
performance. To evaluate the effectiveness of the proposed algorithm,
14 benchmark problems were considered. It was seen that this hybrid
technique displays higher optimization accuracy and faster con-
vergence speed. Wang, Gandomi, Zhao, and Chu (2016) proposed a
hybrid harmony search (HS) and CS for global numerical optimization.
In this hybrid algorithm, the pitch adjustment operation in HS was
introduced into CS as the mutation operator to accelerate convergence.
Next, the performance of this hybrid scheme was tested on 14 bench-
mark problems. Further, the influence of parameter settings on the al-
gorithm performance was also investigated.

With respect to these improved CS algorithms, all the work is to
enhance the ability of CS to handle complex problems. It is widely
accepted that the search capability of an algorithm may vary sig-
nificantly from problem to problem. To cope with this issue, it is a
beneficial attempt to explore an ensemble method to further strengthen
the performance of CS.

2.3. Ensemble methods used in evolutionary algorithms

It is commonly believed that the best search strategy and parameter
setting of the evolutionary algorithm are often different in handling
distinct optimization problems. To enhance the universality and ro-
bustness of the algorithm, some studies have been done on the en-
semble method.

In terms of the ensemble of differential evolution, some attempts
have been made to enhance the performance. Mallipeddi, Suganthan,
Pan, and Tasgetiren (2011) presented a modified DE algorithm with
ensemble of parameters and mutation strategies. During the evolution
process, the combination of successful strategies and parameters was
selected with higher probability. Besides, the authors investigated the
performance of the presented algorithm on 14 test problems. Tong,
Dong, and Jing (2018) developed an improved multi-population en-
semble differential evolution. To improve the convergence accuracy
and speed, the authors designed a new mutation strategy, which made
full use of the information of good and bad solutions to balance ex-
ploration and exploitation. Moreover, the weighted Lehmer mean
scheme was embedded to alleviate premature convergence. The per-
formance of the proposed method was tested on CEC 2005 and CEC
2017 benchmark functions. Awad, Ali, and Suganthan (2018) proposed
a new variant called the ensemble sinusoidal DE with niching reduc-
tion. In this version, the sinusoidal formula and Cauchy distribution
were used to strengthen the convergence performance. Then, a restart
approach was employed to further improve the solution quality. Also, a
niching-based reduction method was introduced to adjust the popula-
tion size. Li et al. (2016) developed a hybrid framework based on CoDE
and JADE, which were executed alternately on the basis of the im-
provement rate of the fitness. The performance of the proposed algo-
rithm was evaluated on CEC 2014 benchmark problems. It was found
that this scheme performs well on most of test functions.

Furthermore, some work has been done to apply the concept of
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ensemble to other evolutionary algorithms. Lynn and Suganthan (2017)
proposed an ensemble particle swarm optimizer to address real-para-
meter optimization problems. In this scheme, a self-adaptive strategy
was adopted to identify the best algorithm based on the previous ex-
perience of producing promising individuals. After that, the proposed
ensemble PSO was evaluated on CEC 2005 benchmark problems and
compared with other state-of-the-art algorithms. Wang et al. (2014)
developed a multi-strategy ensemble artificial bee colony (ABC) algo-
rithm. For this version, three different search strategies coexisted
throughout the evolution process and competed to generate new in-
dividuals. Also, experiments were conducted on 40 test functions. It was
seen that this scheme performs better than some well-established evo-
lutionary algorithms. Xiong, Shi, and Duan (2013) introduced a multi-
strategy ensemble biogeography-based optimization method for eco-
nomic dispatch. To balance exploration and exploitation, the authors
extended three components of biogeography-based optimization (BBO).
First, the migration model on the basis of sinusoidal curve was adopted.
Next, a migration operator which combined perturb operator with
blended operator was developed to further enhance the exploitation
capability. Finally, a mutation operator combining differential muta-
tion and Levy local search was designed by using the backup me-
chanism. Vrugt, Robinson, and Hyman (2009) designed a multi-algo-
rithm genetically adaptive scheme based on the concept of self-adaptive
multiple approaches. This scheme merged the advantages of covariance
matrix adaptation evolutionary strategy, GA and PSO. During the
search process, a self-adaptive learning method was employed to pro-
duce more offspring.

3. Ensemble of cuckoo search variants

It is generally accepted that the search ability of an algorithm may
vary significantly as the problem changes. Therefore, for a given pro-
blem, it is difficult to determine the appropriate algorithm. Practice has
proved that the ensemble method is efficient and effective for online
adjustment of distinct strategies or control parameters (Mallipeddi &
Suganthan, 2010). As a result, to solve different types of optimization
problems, this paper proposes an ensemble of multiple CS variants
named the ensemble CS variant (ECSV), in which several different CS
algorithms coexist throughout the evolution process and compete to
generate better offspring.

3.1. Constituent algorithms

In this work, we choose three efficient CS variants as the constituent
algorithms, namely CCS (Huang et al., 2016), NNCS (Wang et al., 2016)
and PLCS (Yang et al., 2017). The reason is that these algorithms have
diverse properties and can display different performance characteristics
when dealing with different types of optimization problems. Specifi-
cally, CCS shows extraordinary performance in solving some unimodal
and basic multimodal problems, NNCS works well on some basic mul-
timodal problems, and PLCS is very effective in handling some unim-
odal and composition problems. Therefore, these constituent algorithms
can support each other during the search process, not just compete for
resources. The three CS variants are briefly described as below.

3.1.1. Chaos-enhanced cuckoo search (CCS)

CCS, developed by Huang et al., is an efficient CS variant. In CCS,
chaos theory is mainly used in three aspects, namely the initial popu-
lation, parameter adjustment and boundary handling.

For population initialization, five different chaotic equations such as
logistic map, tent map, gauss map, sinusoidal iterator and circle map
are employed to enhance the quality of the initial population dis-
tribution.

To strengthen the ability of CS algorithm to deal with different
optimization problems, chaotic sequence is used to adjust the step size
factor «. In case the chaotic sequence cc is larger than 0.3, the step size
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Table 1

Comparison results of ECSV with different LP values.
Value Term f1 3 f4 fo 7 f9 f10 f14
5 Mean 0.00E + 00 5.41E+04 2.06E—01 6.04E-01 3.23E-04 9.95E - 02 6.44E+01 1.26E+01
10 Mean 0.00E + 00 5.54E+04 2.47E-01 1.25E+00 8.22E—-04 2.66E—01 6.22E+01 1.26E+01
15 Mean 0.00E + 00 5.47E+04 1.47E-01 1.16E+00 2.80E - 04 2.99E-01 6.39E+01 1.27E+01
20 Mean 0.00E+00 4.71E+04 1.49E-01 2.57E+00 1.10E-03 2.67E—-01 6.47E+01 1.27E+01
25 Mean 0.00E +00 6.65E +04 1.63E-01 2.63E+00 4.93E—-04 1.66E—01 6.97E+01 1.27E+01
30 Mean 0.00E + 00 6.79E+04 6.36E—01 2.09E+00 7.51E—-04 3.67E-01 6.53E+01 1.27E+01
35 Mean 0.00E + 00 7.30E+04 6.21E-01 9.56E—01 4.93E—-04 3.32E-01 7.31E+01 1.27E+01
40 Mean 0.00E +00 5.61E+04 2.81E-01 1.25E+00 1.10E-03 3.65E—01 6.25E+01 1.27E+01
45 Mean 0.00E + 00 6.84E + 04 2.55E-01 3.59E+00 5.53E—04 3.01E-01 6.72E+01 1.27E+01
50 Mean 0.00E + 00 3.39E+04 4.64E-01 1.23E+00 4.93E-04 2.66E—01 7.25E+01 1.28E+01

Table 2 Table 3

Comparison results of ECSVO and ECSV on the first test suite with different
variables.

Fun Term 30 variables 50 variables
ECSVO ECSV ECSVO ECSV

f1 Mean 0.00E + 000 0.00E + 000 6.73E—030 0.00E + 000
2 Mean 6.65E—010 2.86E—-011 3.25E-004 2.60E — 005
3 Mean 1.83E+005 5.60E + 004 1.37E+007 9.99E + 006
f4 Mean 2.80E+000 2.14E-001 4.01E+003 2.20E+003
f5 Mean 1.19E+003 1.14E+003 5.79E+003 4.93E+003
f6 Mean 1.21E+000 3.50E + 000 2.61E+000 5.25E + 000
7 Mean 1.30E—003 1.70E—003 5.50E—003 8.22E—-004
f8 Mean 2.09E+001 2.09E+001 2.11E+001 2.11E+001
f9 Mean 3.66E—001 2.66E —001 5.73E+000 4.20E + 000
f10 Mean 8.12E+001 6.88E + 001 1.77E+002 1.54E + 002
fl1 Mean 2.34E+001 2.42E+001 4.50E + 001 4.57E+001
f12 Mean 4.11E+003 3.31E+003 2.82E+004 2.77E+004
f13 Mean 2.76E + 000 2.76E + 000 5.69E + 000 5.68E + 000
f14 Mean 1.27E+001 1.27E+001 2.22E+001 2.22E+001

factor « is set to 0.3. If cc is less than 0.1, « is then set as 0.1. Otherwise,
the step size factor is set to the chaotic sequence.

Also, in CS algorithm, the solution flying out of the boundary is set
on the boundary, which is not suitable for solving the optimization
problem that the optimal solution is located on the boundary. As a
result, the boundary handling scheme is defined as:

Xi[j—l = Lbj + CC'(Ubj - Lbj)

(6)
where cc is the chaotic sequence, Ub and Lb are the upper and lower
bounds, respectively.

3.1.2. Nearest neighbour cuckoo search (NNCS)

In the conventional CS, each individual interacts with the best so-
lution obtained so far in the population, which accelerates the con-
vergence rate, but may lead to the individual getting trapped in the
local optimum. NNCS, proposed by Wang et al., is a nearest neighbour
CS algorithm. With regard to this improved version, the nearest
neighbor solution, rather than the best solution found so far, is used to
guide individual search behavior.

Besides, a probabilistic mutation scheme is employed to allow in-
dividuals to learn from their nearest neighbors only in specific dimen-
sions. The probabilistic mutation scheme is described as follows:

x[+1 xit + r'(xit - xi{nearesl)'Levy(A) rand < p

1
x!

otherwise )
where r and rand are two uniformly distributed random numbers in the
range [0, 1], p represents the conversion probability, X/, stands for
the nearest neighbor of x/, which can be selected by the solution-based

and fitness-based indicators.

302

Parameter settings of these algorithms.

Algorithm Parameter settings

ACS Py = 0.25.

Cccs a =01 03, p, =0.25.

CSPSO Amax = 0.5, tmin = 0.01, p, = 0.25.
NNCS p =0.25, p, = 0.25.

0ocCs a = 0.01, p, = 0.25.

PLCS a = 0.01, p, = 0.25, sp = 0.13.
QCCS a=1,8=16, p, = 0.25.

ECSV LP =5, p, =0.25.

3.1.3. Peer-learning cuckoo search (PLCS)

PLCS, initially presented by Yang et al., is a CS algorithm based on
peer learning. In PLCS, each individual is allowed to learn from an
exemplar randomly chosen among its peers. For minimization pro-
blems, the exemplar with smaller fitness is more likely to be selected.
That is, individuals tend to learn from exemplars with more useful in-
formation. The selection probability is defined as:

— f;vorst _f(xe,-)
f;vorsl - J%esl ®

where f,,, and f,, ., stand for the best and worst fitness of the exemplar
candidates, respectively. f (x,;) is the fitness of the exemplar x,;, which
is distinct from x;.

To take advantage of the useful information of the exemplar, the
peer-learning scheme is given as:

—x)

where r is a random number between 0 and 1.

Additionally, a handover probability S, is set to control the com-
bination of peer-learning and Levy flight strategies. The combination
scheme is given as follows:

i€

xt = xl 4 r(x

)]

x{ + a-(X{ = Xpes)-Levy(1) rand > S,

x[+1_ .
= X;)

X+ r(x, otherwise (10)

3.2. Ensemble algorithm

As mentioned above, CCS, NNCS and PLCS are used as the con-
stituent methods of the developed ECSV. For CCS, chaotic sequences are
introduced into CS, but neither Levy flight nor biased random walk is
modified. For NNCS and PLCS, the main difference between them and
CS lies in Levy flight component. In ECSV, these three constituent al-
gorithms coexist in the entire search process and compete to produce
promising solutions.

According to the previous success and failure memories of the
promising solutions found by each constituent algorithm, an adaptive
selection scheme is employed to determine the probability of each al-
gorithm being selected. With respect to this selection scheme, a fixed
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Table 4
Comparison results of ACS, CCS, CSPSO, NNCS, OCS, PLCS, QCCS and ECSV on the first test suite with 30 variables.
Fun Term ACS CCs CSPSO NNCS 0Cs PLCS QCCS ECSV
f1 Mean 6.57E—022 0.00E + 000 7.06E—028 0.00E + 000 1.01E-029 0.00E + 000 0.00E + 000 0.00E + 000
SD 6.52E—022 0.00E + 000 5.62E—028 0.00E + 000 3.84E-029 0.00E+ 000 0.00E+ 000 0.00E + 000
2 Mean 1.24E—-004 7.90E—007 2.06E—005 2.67E—008 2.97E-013 2.69E-012 2.36E—011 2.86E—011
SD 1.78E—-004 1.38E—-006 9.69E—005 3.81E—-008 7.54E—-013 3.36E—012 3.39E-011 4.42E-011
3 Mean 2.08E+005 8.52E+004 1.80E + 005 1.25E+ 005 2.55E+005 8.20E+004 1.05E + 006 5.60E + 004
SD 2.01E+005 1.63E+005 1.94E + 005 2.84E+005 3.08E+005 1.14E+ 005 9.79E+ 005 9.47E + 004
f4 Mean 1.66E+ 002 7.83E+000 1.01E+001 8.96E + 000 1.60E + 002 4.43E-001 3.76E + 002 2.14E-001
SD 1.79E+002 1.68E + 001 2.05E+001 1.92E +001 2.08E+002 4.58E—001 4.26E+002 2.97E-001
5 Mean 2.03E+003 6.32E + 002 1.07E+003 1.59E+ 003 4.09E+003 1.39E+003 3.66E+003 1.14E+003
SD 7.76E+ 002 5.39E+002 4.52E + 002 4.69E + 002 1.84E+003 5.49E + 002 1.10E+003 5.29E+002
f6 Mean 2.57E+001 2.50E+001 2.82E+000 1.47E+001 6.65E—001 2.70E+000 3.53E+000 3.50E +000
SD 2.38E+001 2.93E+001 3.64E+000 1.59E+ 001 1.51E+000 2.52E+000 1.34E+001 1.26E+001
7 Mean 2.20E—-003 4.40E—003 1.43E-002 1.89E - 007 1.35E—-002 8.30E—003 1.58E—-002 1.70E—-003
SD 4.50E—-003 8.10E—003 1.35E—-002 9.51E-007 1.48E—-002 9.30E—003 1.35E—-002 5.60E—003
f8 Mean 2.10E+001 2.09E+001 2.09E+001 2.09E+001 2.08E+001 2.09E + 001 2.09E + 001 2.09E+001
SD 5.20E—002 7.02E—002 4.08E - 002 4.79E—002 7.09E—002 5.61E—002 5.05E—002 5.93E—-002
f9 Mean 3.15E+001 3.68E+001 4.16E+001 1.09E+ 001 2.07E+001 5.07E+000 4.37E+001 2.66E—-001
SD 8.30E +000 1.17E+001 1.07E+001 3.47E+000 6.96E + 000 2.56E + 000 1.16E+001 4.48E-001
f10 Mean 6.32E+001 8.78E+001 8.18E+001 7.66E+001 1.08E + 002 9.86E +001 7.03E+001 6.88E+001
SD 1.74E+001 2.55E+001 1.78E+001 1.57E+001 2.86E+001 1.90E+001 1.91E+001 1.42E+001
f11 Mean 2.42E+001 2.11E+001 2.57E+001 2.41E+001 2.46E+001 2.42E+001 2.66E+001 2.42E+001
SD 3.60E +000 4.69E +000 2.94E+000 2.46E + 000 3.30E+000 2.74E+ 000 3.98E+000 2.89E+000
f12 Mean 4.86E+003 7.19E+003 4.38E+003 3.41E+003 5.96E+003 3.70E+003 7.75E+003 3.31E+003
SD 4.39E+003 6.33E+003 4.29E+003 3.87E+003 5.81E+003 3.47E+003 9.11E+003 3.25E+003
f13 Mean 4.90E+ 000 4.88E+000 3.55E+000 3.50E+000 3.59E+000 2.49E+ 000 3.04E+000 2.76E+000
SD 2.30E+000 2.05E+000 1.22E+ 000 7.90E—001 9.68E—001 4.33E—-001 7.13E—-001 6.38E—-001
f14 Mean 1.30E+001 1.28E+001 1.24E+001 1.26E+ 001 1.26E+001 1.26E+001 1.25E+001 1.27E+001
SD 2.31E-001 3.53E—-001 4.41E-001 2.62E—001 3.59E-001 2.71E-001 4.00E—-001 2.06E-001
ARV 5.8214 4.7857 4.7857 3.7857 5.0000 3.3929 5.6786 2.7500
Rank 8 4 4 3 6 2 7 1

The best results, i.e., the lowest mean and standard deviation (SD), are shown in bold.

number of iterations named learning period (LP) is defined in advance,
and each algorithm has the same probability of being selected at the
beginning of the iteration. As the iteration proceeds, the success and
failure memories are separately recorded in each learning period. Then,
for each constituent algorithm, the success rate is computed to update
the selection probability in the following generations. Also, the con-
stituent algorithm is selected in terms of probability matching to gen-
erate new candidate solutions. In other words, at subsequent genera-
tions, the algorithm with higher success rate is considered to be more
suitable for finding the global optimal solution, so it has a higher
probability of being selected to produce more offspring. It should be
noted that the process is performed periodically with LP being the
period.

After LP generations, the probability of selecting each constituent
algorithm is defined as:

I
k = K
Y1 SRk an
1 il
SRE = =tk
1= rp St 2imypp 1 12)

where t > LP, p/ represents the selection probability of the kth con-
stituent algorithm, K is the number of constituent algorithms, SR re-
presents the success rate of the kth constituent algorithm, sn stands for
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the number of success memories, frn denotes the number of failure
memories, € is set as 0.01 to avoid the null success rate during the
evolutionary process.

Moreover, for these constituent CS algorithms, the biased random
walk strategy is not modified. In the original scheme, two solutions are
randomly selected from the current population. Due to the stochastic
nature, the wrong moving direction may be provided in some cases. To
further enhance the convergence performance, an external archive A is
introduced into ECSV to store the current solution defeated by the new
solution in the selection phase. Note that, the external archive is in-
itiated to be empty. Let P represent the current population. The biased
random walk is modified as follows:

Xt =xf 4 () — %) 13)
where x/ is a random solution chosen from the current population, X/,
represents a random solution chosen from the union of P and A.

With the increasing of generations, more and more individuals will
be stored in the external archive. In general, the larger the archive size,
the better the population diversity. Nevertheless, too large archive size
may reduce the convergence rate of the algorithm. Therefore, the
maximum size of the external archive is set as the population size N. In
case the archive size exceeds N, the redundant solutions are randomly
removed from A.
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Table 5
Comparison results of ACS, CCS, CSPSO, NNCS, OCS, PLCS, QCCS and ECSV on the first test suite with 50 variables.
Fun Term ACS CCS CSPSO NNCS ocCs PLCS QCCs ECSV
f1 Mean 1.56E—018 0.00E + 000 2.07E-027 0.00E + 000 1.78E—028 3.20E-029 6.73E—-030 0.00E + 000
SD 1.30E—-018 0.00E + 000 1.23E-027 0.00E + 000 1.55E—-028 7.44E - 029 3.69E —-029 0.00E + 000
2 Mean 1.98E+002 5.65E—002 1.40E—-003 7.10E—-003 6.94E - 005 1.50E - 005 1.78E—004 2.60E—005
SD 1.07E+003 6.23E—002 2.50E—-003 6.80E—003 9.60E—-005 1.90E - 005 2.60E—-004 2.27E-005
f3 Mean 1.64E+ 007 1.33E+006 1.41E+007 1.06E+ 007 1.99E+ 007 7.85E+006 2.03E+007 9.99E + 006
SD 6.89E + 006 6.75E + 005 7.65E+006 4.83E+006 1.16E+ 007 4.41E+006 2.97E+007 3.95E+006
f4 Mean 1.86E+ 004 7.92E+003 1.02E+ 004 4.09E+003 1.32E+ 004 2.27E+003 1.75E+ 004 2.20E+003
SD 6.17E+003 4.36E+003 5.08E+003 1.71E+003 5.75E+003 1.29E+003 5.51E+003 1.24E+003
f5 Mean 7.44E+003 4.00E + 003 4.00E +003 5.66E+003 9.20E+003 5.24E+003 1.17E+ 004 4.93E+003
SD 1.38E+003 9.60E + 002 7.78E+ 002 1.12E+003 1.94E+003 9.17E+002 2.56E +003 1.18E+003
fo Mean 4.62E+001 5.43E+001 1.05E+ 001 4.24E+001 7.69E +000 9.42E+000 1.53E+001 5.25E+ 000
SD 2.10E+001 3.14E+001 2.38E+001 2.62E+001 1.36E+001 1.50E+001 4.11E+001 1.41E+001
7 Mean 4.70E—003 1.80E—-003 1.43E—-002 2.50E—-003 1.14E-002 9.70E—-003 8.30E—-003 8.22E-004
SD 8.10E—003 6.40E—003 1.24E-002 6.00E—-003 1.03E—-002 1.40E—-002 1.12E-002 2.50E-003
f8 Mean 2.11E+001 2.11E+001 2.11E+001 2.11E+001 2.10E+001 2.11E+001 2.11E+001 2.11E+001
SD 4.95E—-002 2.64E—002 4.32E-002 3.66E—002 9.39E-002 3.75E-002 4.34E—-002 3.74E-002
f9 Mean 8.11E+001 7.69E+001 9.96E+001 3.91E+001 3.89E+001 2.95E+001 9.83E+001 4.20E + 000
SD 2.34E+001 1.98E+001 2.34E+001 1.08E+001 1.21E+001 7.92E + 000 2.70E+001 1.93E+000
f10 Mean 1.24E + 002 1.93E+002 1.81E+002 1.79E+ 002 2.95E+002 2.54E+002 2.13E+002 1.54E+002
SD 2.46E+001 4.37E+001 4.51E+001 3.08E+001 5.32E+001 4.19E+001 3.94E+001 2.22E+001
fl1 Mean 4.26E+ 001 3.61E+001 5.17E+001 4.52E+001 5.20E+001 4.72E+001 5.22E+001 4.57E+001
SD 9.09E+ 000 6.59E +000 5.12E+000 5.38E+000 5.32E+000 4.40E + 000 6.83E+000 5.95E+000
f12 Mean 8.70E+ 004 4.38E+004 7.37E+004 3.04E+004 1.35E+ 005 1.97E+004 4.75E+ 004 2.77E+ 004
SD 4.65E+ 004 3.19E+004 4.55E+004 2.71E+004 1.52E+ 005 1.53E +004 8.68E + 004 2.53E+004
f13 Mean 7.35E+000 7.29E+000 7.29E+000 6.92E+000 6.64E+000 5.66E+ 000 7.45E+000 5.68E+000
SD 2.51E+000 1.92E+000 1.70E+ 000 1.94E+ 000 1.28E+000 1.16E+000 2.49E + 000 1.28E+000
f14 Mean 2.24E+001 2.25E+001 2.19E+001 2.22E+001 2.18E+001 2.22E+001 2.17E+001 2.22E+001
SD 4.12E—-001 2.99E-001 4.42E—-001 3.61E—-001 5.84E—001 2.44E-001 7.09E-001 3.25E-001
ARV 5.6071 4.3929 5.0357 4.1786 4.8929 3.4643 5.8214 2.6071
Rank 7 4 6 3 5 2 8 1

The best results, i.e., the lowest mean and standard deviation (SD), are shown in bold.

The framework of the proposed ECSV algorithm is given in 25 Sy = frye + 1
Algorithm 1. 26 end if
27 if rand (0, 1) > p, then
Algorithm 1 (The proposed ECSV algorithm). 28 Produce the new solution X; sey using Eq. (13) and calculate its fitness
f (i new)s
29 if f (Xinew) < f(x;) then

1 Initialize the necessary parameters, including the population size N problem 30 Xi = A, Xi = Xinew and f (%) = f Ko new);

dimension D, maximum number of generations tyqx, discovery probability p, 31 end if

and learning period LP; 32 end if

Initialize the parameters of CCS, NNCS and PLCS; 33 end for
2 Randomly initialize the solution x; and evaluate its fitness f(x;); 34 Record the best solution;
3 t=0,A=¢; 35 if size(A) > N then
4 while ¢ < tya do 36 M = size(A) — N;
5 t=t+1; 37 Remove M solutions from A randomly;
6 fori=1to N do 38 end if
7 ift <1 then 39 end while
8 p=1[1/3,1/3,1/3], rk = [0, 1/3, 2/3, 1], sn = 0 and fn = 0;
9 else if mod(t, LP) = =0 then
10 Calculate the selection probability p using Eq. (11);
11 rk = [0, cumsum(p)], sn = 0 and fn = 0;
12 end if 4. Experimental results
13 Generate a random number rand, and prob = rand;
14 if prob > rk(1)&prob < rk(2) then
15 Produce the new solution X; ey by executing CCS, and k = 1; 4.1. Testp roblems
16 else if prob > rk(2)&prob < rk(3) then
17 Produce the new solution X; ey by executing NNCS, and k = 2; To fully investigate the efficiency of the proposed ECSV algorithm,
18 else if prob > rk(3)&prob < rk(4) then 42 popular benchmark problems from two different test suites are
19 Produce the new solution X new by executing PLCS, and k = 3; considered. The first test suite consists of the front 14 problems in CEC
20 end if 2005 competition on real-parameter optimization, and the second test
2 'Calc“late the fitness f(xi new); suite includes 28 problems proposed in CEC 2013. These test functions
22 i/ Ctinew) </ () then span a diverse set of properties, such as unimodality, multimodality,
23 Xi = Xinew> [ (i) = f (Xi new) and sng = sng + 1; . . e . .
24 else separation and non-separation. Specifically, with respect to the first test

suite, f1 — f5 are unimodal problems, f6 — f12 are basic multimodal
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problems and f13 — f14 are expanded multimodal functions. For the
second test suite, F1 — F5 are unimodal problems, F6 — F20 are basic
multimodal problems and F21 - F28 are composition problems. It
should be noted that all functions should be treated as black-box pro-
blems. Furthermore, these test functions are complex shifted and ro-
tated problems, which can make the experimental results more con-
vincing.

4.2. Influence of the learning period

In the proposed ECSV algorithm, two important parameters, namely
the learning period LP and discovery probability p,, need to be preset.
With respect to the discovery probability, it is set as 0.25 according to
the original CS algorithm. To investigate the effect of learning period on
the performance of ECSV, some experiments are conducted on several
functions in the first test suite with 30 decision variable. In this sub-
section, the population size N is set to be 50, the learning period LP is
set from 5 to 50 with the step size of 5, and the maximal function
evaluation is set to 300,000 for each test problem. Moreover, for each
function, 30 independent trials are run for each value of the learning
period. The mean errors are recorded for comparison, as shown in
Table 1, where the best result is highlighted in bold. In this paper, all
the experiments are conducted in MATLAB R2016a on a computer
(Intel i7-4790 CPU, 8.00 GB RAM and Windows 7 system).

From Table 1, it can be observed that the convergence performance
of ECSV is less sensitive to the setting of the learning period LP. In
terms of solution quality, LP = 5 provides reasonable results on f1, f6,
f9 and f14, and it is the second best on f7. LP = 10 is competitive in
solving f1, f10 and f14, LP = 15 does well in tackling f1, f4 and {7, and
LP = 50 outperforms others on f3. Also, for the problem f1, ECSV can
converge to the global optimal solution when using these different LP

(f10)
Fig. 1. Convergence graphs of ACS, CCS, CSPSO, NNCS, OCS, PLCS, QCCS and ECSV on the first test suite with 30 variables.

Mean Fitness Value

(f12)

values. According to the above results, the learning period LP is sug-
gested to set as 5 in the following experiments.

4.3. Performance enhancement using the external archive

As discussed above, the external archive A is embedded into the
ensemble algorithm. To illustrate the performance enhancement
brought about by the external archive, the ensemble scheme without
introducing the archive A is named ECSVO. For the purpose of com-
parison, experiments are conducted on the first test suite. For these test
problems with 30 and 50 decision variables, the maximal function
evaluation is set as 300,000 and 500,000, respectively. Also, with re-
spect to the two ensemble algorithms, the population size N is set to 50,
the learning period LP is set as 5, and the discovery probability p, is
equal to 0.25. For each algorithm, 30 independent runs are executed for
each problem. Table 2 presents the comparison results of these two
algorithms, and the lowest mean error is shown in bold.

As shown in Table 2, with respect to these test problems with 30
variables, ECSV surpasses ECSVO on 2, {3, f4, {5, 9, f10 and f12, and
they get the same results on f1, f8, f13 and f14. Similarly, for these
problems with 50 variables, ECSV performs best on f1, f2, {3, f4, {5, {7,
9, 10, f12 and f13 in terms of solution quality, and these two algo-
rithms obtain similar solutions on f8 and f14. Also, ECSV is inferior to
ECSVO on f6 and f11 in tackling the first test suite. Regarding the
problem f6, there is a very narrow valley from local optimum to global
optimum, while f11 is a continuous function, but it is differentiable only
on a set of points. Therefore, in solving these two kinds of problems, the
algorithm may need to focus on exploitation capability for fine search.
In a word, ECSV is superior to ECSVO on most cases, which means that
the introduction of the external archive is conducive to improving the
solution quality. In subsequent experiments, we only test the
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Table 6
Comparison results of ACS, CCS, CSPSO, NNCS, OCS, PLCS, QCCS and ECSV on the second test suite with 30 variables.
Fun Term ACS CCS CSPSO NNCS ocCs PLCS QCCSs ECSV
F1 Mean 1.14E-013 1.21E-013 3.94E-013 1.36E—-013 3.71E-013 2.35E-013 2.88E—-013 6.82E-014
SD 1.16E-013 1.15E-013 1.18E-013 1.13E-013 1.14E-011 4.15E-014 1.02E-013 1.06E—013
F2 Mean 7.89E+ 004 9.44E + 004 7.83E+004 2.08E+003 5.22E+002 1.12E+003 2.18E+005 3.30E+ 002
SD 6.88E+ 004 9.92E +004 7.06E + 004 3.00E+003 1.12E+003 3.00E +003 1.40E + 005 1.07E+003
F3 Mean 1.93E+006 2.57E+004 2.16E+006 6.85E +005 3.65E+005 1.12E+005 1.35E+ 007 7.51E+003
SD 4.73E+ 006 1.08E+005 6.27E+006 1.48E+ 006 1.01E+006 4.26E+ 005 1.94E+ 007 3.63E+004
F4 Mean 2.53E — 002 2.71E—002 1.10E + 002 1.11E-001 2.36E— 001 2.30E — 002 2.14E+001 8.80E— 003
SD 3.26E—002 3.58E—-002 1.33E+002 9.97E—-002 3.14E-001 2.37E—-002 5.96E +001 4.20E—-002
F5 Mean 3.93E-012 1.21E-013 6.03E—-013 1.14E-013 4.05E—-013 2.69E—-013 2.99E-013 1.17E-013
SD 2.95E—012 2.88E—014 1.47E-013 0.00E + 000 8.80E—014 1.14E-013 8.17E—014 2.08E—014
F6 Mean 1.67E+001 3.61E+000 1.29E+001 2.85E+000 7.23E+000 4.19E+000 4.16E+000 1.86E +000
SD 1.56E+001 4.93E+000 6.75E+000 4.63E+000 1.18E+001 4.62E+ 000 8.91E+000 6.68E+000
F7 Mean 4.27E+001 2.94E+ 001 4.45E+001 7.03E+001 9.97E+001 6.69E + 001 8.39E+001 4.95E+001
SD 1.63E+001 1.42E+001 1.99E +001 1.49E+ 001 3.33E+001 1.91E+001 4.28E+001 1.50E+001
F8 Mean 2.09E + 001 2.09E + 001 2.09E + 001 2.09E + 001 2.09E + 001 2.09E + 001 2.09E + 001 2.09E + 001
SD 5.75E—-002 4.65E—002 4.65E—002 4.55E—002 3.74E-002 5.36E—002 4.23E—-002 4.50E—-002
F9 Mean 2.37E+001 2.23E + 001 2.78E +001 2.42E + 001 2.55E +001 2.56E + 001 2.59E+001 2.56E+001
SD 3.14E+ 000 3.87E + 000 3.03E + 000 2.12E + 000 2.68E + 000 1.92E + 000 3.70E + 000 1.82E + 000
F10 Mean 1.66E—002 1.83E—002 3.00E—-002 6.90E—003 2.75E—-002 1.79E-002 5.75E—-002 6.90E—-003
SD 1.52E-002 1.59E—-002 2.05E —-002 9.70E—-003 2.05E—-002 1.42E-002 4.05E—002 6.30E—-003
F11 Mean 3.16E+001 3.56E + 001 5.02E + 001 1.35E+001 1.87E+001 5.07E + 000 4.59E + 001 6.63E — 002
SD 9.65E+ 000 1.35E+001 1.53E+001 3.18E+000 6.78E+000 3.25E+000 1.69E+ 001 2.52E-001
F12 Mean 5.01E+001 7.02E + 001 7.94E + 001 6.39E + 001 1.30E + 002 9.61E+001 9.63E+001 5.55E+001
SD 1.97E+001 1.81E+001 2.14E+001 1.44E+001 4.00E+001 2.08E+001 2.72E+001 1.35E+001
F13 Mean 9.51E+001 1.19E + 002 1.36E + 002 1.07E + 002 1.91E + 002 1.43E + 002 1.50E + 002 9.76E+ 001
SD 1.87E+001 2.83E+001 3.09E + 001 2.54E + 001 4.86E + 001 2.53E +001 2.89E + 001 2.37E+001
F14 Mean 3.37E+003 2.06E+003 3.71E+003 1.12E+003 1.43E+003 3.26E+ 002 3.71E+003 6.08E +002
SD 1.17E+003 7.19E + 002 1.25E + 003 2.21E + 002 3.72E + 002 1.26E + 002 7.09E + 002 2.27E + 002
F15 Mean 4.53E+003 4.43E+003 5.06E+003 4.07E+003 3.46E+003 4.16E+003 4.33E+003 4.04E+003
SD 9.28E+ 002 6.96E + 002 9.64E + 002 5.29E +002 3.97E+ 002 4.87E+002 1.08E+003 5.92E +002
F16 Mean 2.09E + 000 2.01E + 000 2.26E + 000 1.57E + 000 1.05E + 000 1.91E + 000 2.08E + 000 1.78E + 000
SD 4.18E—-001 4.31E-001 2.41E-001 4.17E-001 2.45E-001 3.12E-001 5.05E—-001 2.86E—001
F17 Mean 8.73E+001 1.04E+002 8.32E+001 6.77E+001 9.20E+001 4.88E+001 1.27E+002 5.12E+001
SD 3.04E+001 3.66E + 001 1.52E + 001 6.56E + 000 1.72E+001 4.75E + 000 2.39E + 001 5.49E + 000
F18 Mean 1.26E+002 1.27E+002 1.47E+002 1.07E + 002 1.48E+002 1.47E+002 1.28E+ 002 1.20E+ 002
SD 3.46E+001 4.01E+001 3.61E+001 1.98E +001 2.86E+001 2.00E+001 3.20E+001 2.23E+001
F19 Mean 4.47E+ 000 4.66E + 000 3.85E+000 3.63E+000 4.14E+000 4.71E+000 5.77E+000 3.06E + 000
SD 1.93E+000 2.02E+000 8.70E—-001 7.24E-001 1.43E+000 2.06E+000 2.12E+000 7.57E—-001
F20 Mean 1.27E+001 1.21E+001 1.14E+001 1.21E+001 1.25E+001 1.17E+001 1.21E+001 1.24E + 001
SD 4.13E-001 7.15E-001 5.93E-001 3.80E—-001 1.14E+000 4.92E-001 7.14E-001 5.65E—001
F21 Mean 3.04E+002 3.71E+002 3.49E + 002 2.84E+ 002 3.09E + 002 3.02E +002 3.86E +002 3.81E+002
SD 7.49E + 001 8.86E +001 9.03E +001 8.61E+001 7.91E + 001 6.77E+ 001 8.75E +001 7.23E+001
F22 Mean 3.36E+003 2.04E+003 2.87E+003 1.27E+003 1.45E+003 2.37E+002 3.64E+003 7.55E+002
SD 9.93E+002 1.12E+003 1.13E+003 3.26E +002 3.86E +002 1.19E+002 1.05E+003 2.44E +002
F23 Mean 4.78E+ 003 4.65E + 003 5.54E + 003 4.72E+ 003 4.20E + 003 4.83E+003 4.92E + 003 4.91E+003
SD 1.07E+003 8.48E+002 7.93E+002 5.53E+002 4.70E + 002 5.40E +002 9.28E+002 6.52E+002
F24 Mean 2.62E + 002 2.30E + 002 2.90E + 002 2.70E + 002 2.79E + 002 2.59E + 002 2.81E + 002 2.69E + 002
SD 1.24E+001 1.33E+001 7.55E+000 9.81E+000 8.63E+000 1.20E+001 1.38E+001 9.46E + 000
F25 Mean 2.68E + 002 2.76E + 002 2.96E + 002 2.85E + 002 2.89E + 002 2.86E + 002 2.99E + 002 2.81E + 002
SD 7.88E + 000 1.09E + 001 4.64E + 000 5.96E + 000 6.77E + 000 7.44E + 000 1.36E + 001 7.22E + 000
F26 Mean 2.00E + 002 2.10E+002 2.06E+002 2.00E + 002 2.10E+002 2.00E + 002 3.34E+002 2.00E + 002
SD 7.90E—003 3.76E+001 3.00E+001 4.43E—-004 3.94E+001 6.38E —004 6.16E +001 2.60E—004
F27 Mean 8.95E+002 7.55E+002 1.10E+003 8.81E+002 1.04E+003 9.37E+002 1.04E+ 003 9.04E+002
SD 1.18E+002 1.57E+002 8.44E+001 2.25E+002 7.41E+001 9.34E+001 1.48E+002 1.57E+002
F28 Mean 3.00E + 002 3.37E+ 002 2.60E + 002 3.00E + 002 4.17E+ 002 3.00E + 002 5.24E + 002 3.00E + 002
SD 3.10E-009 2.03E+002 8.14E+001 1.79E-013 3.58E+002 2.11E-013 5.09E +002 2.31E-013
ARV 4.2321 4.1786 5.8036 3.2500 5.0536 3.8036 6.6964 2.9821
Rank 5 4 7 2 6 3 8 1

The best results, i.e., the lowest mean and standard deviation (SD), are shown in bold.
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Table 7
Comparison results of ACS, CCS, CSPSO, NNCS, OCS, PLCS, QCCS and ECSV on the second test suite with 50 variables.
Fun Term ACS CCS CSPSO NNCS ocCs PLCS QCCSs ECSV
F1 Mean 2.80E-013 2.50E-013 8.49E-013 2.58E-013 7.65E—-013 5.23E-013 6.90E—013 2.27E-013
SD 9.78E—014 6.94E—014 2.23E—013 7.86E—014 1.26E—013 1.22E-013 1.52E-013 0.00E + 000
F2 Mean 2.58E + 006 1.10E+ 006 1.73E+006 3.21E+005 1.38E+005 1.94E+ 005 4.99E +005 1.97E+005
SD 1.83E+006 5.34E +005 7.69E + 005 1.34E+005 6.87E+ 004 8.48E + 004 1.95E+005 8.69E + 004
F3 Mean 9.59E+ 007 2.53E+006 4.88E+007 3.30E+006 2.94E+007 3.27E+005 1.89E+ 008 1.55E+005
SD 1.75E+008 3.99E+006 7.10E+007 7.78E+006 7.49E+ 007 6.67E+005 2.10E+008 3.23E+005
F4 Mean 1.42E + 000 1.33E+000 1.54E + 003 7.61E + 000 2.22E + 001 2.07E + 000 3.79E + 001 7.05E—001
SD 9.42E-001 1.32E+000 5.82E+002 4.55E+000 1.56E+001 1.61E+ 000 4.90E+001 5.08E-001
F5 Mean 1.44E-010 2.96E—-013 1.55E-012 2.92E-013 7.54E—-013 5.99E-013 6.78E—-013 2.31E-013
SD 1.12E-010 8.23E—014 5.67E—013 5.73E—014 1.21E-013 1.52E-013 1.45E-013 5.57E—014
F6 Mean 4.36E+001 4.18E+001 3.61E+001 4.36E+001 4.28E+001 3.82E+001 4.12E+001 4.36E+001
SD 1.04E + 000 8.08E +000 1.67E+001 1.04E+000 1.64E+001 1.24E+001 1.99E+001 1.04E + 000
F7 Mean 8.92E+001 6.79E+001 6.03E+001 8.97E+001 1.00E + 002 8.13E+001 9.74E+001 9.18E+001
SD 1.83E+001 1.52E+001 1.74E+001 1.22E+001 1.81E+001 9.70E + 000 1.97E+001 1.09E +001
F8 Mean 2.11E+001 2.11E+001 2.11E+001 2.11E+001 2.11E+001 2.11E+001 2.11E+001 2.11E+001
SD 3.58E—-002 4.98E—002 4.19E-002 3.11E-002 3.59E-002 4.52E-002 3.55E—-002 5.14E—-002
F9 Mean 4.33E+001 3.85E+001 5.49E + 001 4.81E+001 5.30E+001 4.95E +001 4.73E+001 4.96E + 001
SD 6.73E +000 6.09E + 000 4.38E + 000 5.83E + 000 4.28E + 000 3.79E + 000 5.31E + 000 4.51E + 000
F10 Mean 3.00E—-002 3.00E—-002 3.51E—-002 2.78E—002 3.78E—-002 7.32E—-002 5.24E—-002 2.64E—-002
SD 1.82E—002 2.36E—-002 2.65E —002 2.59E—-002 2.18E—-002 5.19E-002 4.41E-002 1.44E—-002
F11 Mean 7.37E+001 6.19E + 001 1.24E + 002 4.82E+001 3.76E+001 3.66E + 001 1.24E + 002 2.30E + 000
SD 1.58E+001 2.04E+001 2.75E+001 1.72E+001 1.47E+001 1.26E+001 3.15E+001 1.37E+000
F12 Mean 1.09E + 002 1.63E + 002 1.95E + 002 1.60E + 002 3.16E + 002 2.07E + 002 2.71E+002 1.41E + 002
SD 1.44E+001 4.41E+001 4.49E +001 2.99E+001 5.03E+001 3.04E+001 5.32E+001 2.83E+001
F13 Mean 2.24E + 002 2.65E + 002 3.01E +002 2.55E + 002 4.47E + 002 3.21E+002 4.02E + 002 2.43E+ 002
SD 4.47E+001 4.98E + 001 5.53E + 001 3.93E+001 6.65E +001 3.82E +001 6.89E + 001 3.70E + 001
F13 Mean 5.68E+003 3.11E+003 7.47E+003 2.69E+003 2.30E+003 6.48E + 002 6.87E+003 1.39E+003
SD 1.69E+003 1.59E+003 2.17E+003 8.12E + 002 5.70E + 002 2.56E + 002 9.82E + 002 5.91E + 002
F15 Mean 8.16E+003 7.47E+003 9.39E+003 8.02E+003 6.99E+ 003 8.24E+003 8.55E+003 7.81E+003
SD 1.69E+003 9.51E+002 1.74E+003 1.01E4+003 7.69E + 002 1.11E4+003 1.21E+003 1.18E+003
F16 Mean 2.79E + 000 2.62E + 000 3.07E + 000 2.37E + 000 1.29E + 000 2.70E + 000 2.85E + 000 2.44E + 000
SD 4.51E-001 5.93E-001 2.52E-001 3.26E—001 4.43E—-001 3.46E—001 4.57E-001 3.89E-001
F17 Mean 1.56E + 002 1.77E + 002 1.68E + 002 1.52E + 002 1.77E + 002 1.24E + 002 2.65E + 002 1.22E + 002
SD 4.95E + 001 4.96E + 001 1.90E + 001 2.63E +001 2.62E + 001 1.38E+001 5.92E + 001 1.79E + 001
F18 Mean 2.11E+002 1.92E +002 2.33E+002 2.00E+002 3.34E+002 3.07E+002 2.98E+002 2.07E+002
SD 4.61E+001 5.47E+001 7.19E+001 4.63E+001 5.20E+001 3.84E+001 7.40E +001 4.63E+001
F19 Mean 9.92E+ 000 8.91E+000 8.33E+000 7.15E+000 9.14E+000 2.74E+001 1.59E+ 001 6.69E + 000
SD 3.12E+000 2.87E+000 1.80E + 000 1.85E+ 000 2.20E+000 6.57E+000 4.79E+000 1.89E + 000
F20 Mean 2.23E+001 2.18E+001 2.04E + 001 2.12E+001 2.23E+001 2.10E +001 2.16E + 001 2.18E+001
SD 8.08E—-001 7.55E—-001 8.81E—-001 9.22E-001 1.23E+000 7.56E—001 1.06E + 000 5.28E-001
F21 Mean 7.06E+002 6.27E+002 8.94E + 002 2.94E + 002 7.69E +002 7.79E +002 5.12E+002 3.44E +002
SD 4.32E + 002 3.95E + 002 3.08E + 002 2.49E + 002 3.97E + 002 4.02E + 002 3.99E + 002 3.31E+002
F22 Mean 5.18E+003 3.54E+003 7.27E+003 3.10E+003 2.53E+003 2.65E + 002 7.49E+003 1.83E+003
SD 1.68E+003 1.36E+003 1.91E+003 6.85E +002 5.53E+002 1.11E+002 1.26E+003 8.69E + 002
F23 Mean 9.03E+003 8.63E+003 1.02E + 004 8.71E+003 8.06E +003 9.69E + 003 8.19E+003 8.95E + 003
SD 1.29E+003 1.32E+003 1.84E+003 1.08E+ 003 8.56E + 002 9.28E+002 1.38E+ 003 1.18E+003
F24 Mean 3.14E + 002 2.74E + 002 3.77E + 002 3.28E + 002 3.56E + 002 3.13E+002 3.57E + 002 3.16E + 002
SD 1.71E+001 1.76E+001 4.39E+ 000 1.35E+001 1.21E+001 1.61E+001 2.03E+001 1.62E+001
F25 Mean 3.35E+002 3.41E+002 3.81E+002 3.65E +002 3.81E+002 3.64E +002 4.08E +002 3.57E+002
SD 2.03E+001 1.71E+001 4.70E + 000 9.62E + 000 1.09E + 001 1.44E +001 2.34E + 001 1.45E +001
F26 Mean 2.64E+002 2.07E+002 2.56E+002 2.00E + 002 2.41E+002 2.00E + 002 4.34E+002 2.00E + 002
SD 9.96E+001 3.80E +001 1.02E + 002 1.41E—-002 9.26E + 001 8.50E— 003 1.27E+001 1.46E — 002
F27 Mean 1.44E+003 1.32E+003 2.06E+003 1.61E+003 1.75E+003 1.52E+003 1.72E+003 1.57E+003
SD 1.71E+ 002 1.60E + 002 8.59E + 001 1.22E + 002 9.81E+001 1.54E + 002 2.02E + 002 1.26E + 002
F28 Mean 5.04E + 002 5.01E + 002 1.02E + 003 4.00E + 002 9.44E + 002 4.00E + 002 1.38E + 003 4.00E + 002
SD 5.69E + 002 5.51E+002 1.26E+003 1.68E-013 1.24E+003 2.73E-013 1.65E+ 003 2.35E-013
ARV 4.6250 3.5714 5.8393 3.6607 5.1071 4.0179 6.1071 3.0714
Rank 5 2 7 3 6 4 8 1

The best results, i.e., the lowest mean and standard deviation (SD), are shown in bold.
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Fig. 2. Convergence graphs of ACS, CCS, CSPSO, NNCS, OCS, PLCS, QCCS and ECSV on the second test suite with 30 variables.

optimization performance of the ensemble algorithm with an external
archive.

4.4. Comparison of ECSV with other CS variants

For comparison purposes, seven well-established CS variants are
employed in this subsection. These CS algorithms include adaptive CS
(ACS) (Sarangi, Panda, Das, & Abraham, 2018), chaos-enhanced CS
(CCS) (Huang et al., 2016), the hybridization of CS and PSO (CSPSO)
(Chi, Su, Zhang, Chi, & Zhang, 2019), nearest neighbour CS (NNCS)
(Wang et al., 2016), oriented CS with Levy distribution and Cauchy
distribution (OCS) (Cui, Sun, Wang, Xue, & Chen, 2017), peer-learning
CS (PLCS) (Yang et al., 2017) and quantum chaotic CS (QCCS)
(Boushaki, Kamel, & Bendjeghaba, 2018). Considering the stochastic
characteristics, each algorithm is run 30 times independently for each
problem. The population size is set to 50 for all the involved algorithms,
and the allowed maximum number of function evaluations for these test

15 2 25 3 "o 0.5 1 15 2 25 3
FEs «10° FEs «10°
(F22) (F26)
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problems with 30 and 50 decision variables is set to 300,000 and
500,000, respectively. The mean value and standard deviation (SD) are
used as the performance metrics for comparison, and the best result is
marked in boldface. Further, to get statistically sound conclusion, the
Friedman test is conducted, the average ranking value (ARV) and the
final rank (Rank) of each algorithm are presented. The parameter set-
tings of these algorithms are given in Table 3.

4.4.1. Results and comparisons on the first test suite

In this subsection, ECSV is compared with other CS variants on the
first test suite with 30 and 50 variables, and the comparison results are
listed in Tables 4 and 5, respectively. For each algorithm, the average
ranking value and the final rank are provided at the bottom of these
tables. Additionally, to investigate the convergence rate of the proposed
algorithm, the convergence graphs of some test problems with 30
variables are plotted in Fig. 1, where FEs represents the number of
function evaluations. For the test problems with 50 variables, the
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Table 8
Comparison results of CLPSO, DNLPSO, LFPSO, BBDE, jDE, SaDE, EPSDE and ECSV on the first test suite with 30 variables.
Fun Term CLPSO DNLPSO LFPSO BBDE JjDE SaDE EPSDE ECSV
f1 Mean 1.40E—023 2.90E-029 5.35E—028 0.00E + 000 0.00E + 000 0.00E + 000 6.73E—-030 0.00E + 000
SD 9.85E—-024 6.96E —029 4.93E-028 0.00E + 000 0.00E + 000 0.00E+ 000 3.69E —-029 0.00E + 000
2 Mean 3.12E+003 1.80E—-016 1.06E—002 5.82E—013 9.81E—-007 6.88E—006 4.97E—-026 2.86E—011
SD 7.34E+002 5.10E—-016 7.30E—003 7.34E—013 3.05E—-006 1.93E-005 6.27E—-026 4.42E-011
3 Mean 1.74E+ 007 1.37E+ 006 2.40E+006 5.56E +005 1.60E + 005 4.78E+005 1.63E+ 006 5.60E + 004
SD 4.58E+ 006 1.15E+006 1.04E+ 006 2.83E+005 1.03E+ 005 2.11E+005 6.12E+006 9.47E + 004
f4 Mean 1.38E+004 8.67E+000 3.78E+002 3.80E—-003 6.19E - 002 1.68E + 002 7.63E+001 2.14E-001
SD 3.23E+003 1.33E+001 4.04E +002 8.10E—-003 7.02E—-002 2.91E+002 4.14E+002 2.97E-001
5 Mean 4.96E+003 2.75E+003 2.07E+003 2.54E+003 2.28E+ 002 3.30E+003 1.39E+003 1.14E+003
SD 4.86E+ 002 8.34E+002 7.34E+002 7.46E +002 2.64E+ 002 4.50E +002 6.85E +002 5.29E+002
fo Mean 1.40E+000 3.84E+001 7.78E+001 1.98E+001 1.50E+001 4.49E +001 3.66E—001 3.50E+000
SD 1.71E+000 6.42E+001 9.86E+001 3.12E+001 1.94E+001 3.11E+001 1.01E+000 1.26E+001
7 Mean 8.54E—-001 1.93E-002 1.53E-002 1.97E-002 1.32E-002 1.92E-002 1.67E—002 1.70E—-003
SD 1.51E-001 1.32E-002 1.37E—-002 1.56E—002 6.40E—003 1.55E—-002 1.27E-002 5.60E—-003
f8 Mean 2.09E + 001 2.09E+001 2.09E+001 2.09E+001 2.11E+001 2.09E+001 2.09E+001 2.09E + 001
SD 3.75E-002 5.82E—002 6.17E—002 6.00E —002 7.49E—002 5.15E—-002 5.64E—-002 5.93E—-002
f9 Mean 0.00E + 000 6.32E+001 5.98E+001 5.20E+001 0.00E + 000 1.33E-001 0.00E + 000 2.66E—001
SD 0.00E + 000 1.52E+001 1.59E+001 3.37E+001 0.00E + 000 3.44E-001 0.00E + 000 4.48E—001
f10 Mean 1.32E+002 7.06E+001 7.32E+001 1.74E+ 002 1.80E+ 002 4.84E+001 4.24E+ 001 6.88E+001
SD 1.81E+001 1.86E+ 001 1.64E+001 1.18E+001 4.70E+001 1.27E+001 9.27E+000 1.42E+001
f11 Mean 2.62E+001 1.58E+001 1.39E+001 1.90E+ 001 4.08E+001 1.68E+001 3.47E+001 2.42E+001
SD 1.49E+000 3.08E+000 3.09E+000 1.28E+001 3.51E+000 2.43E+000 3.97E+000 2.89E+000
f12 Mean 1.61E+004 2.05E+004 5.74E+003 1.84E+ 004 5.74E+ 004 4.27E+003 3.60E + 004 3.31E+003
SD 5.04E+003 2.00E +004 4.26E+003 2.18E+004 5.02E+004 3.98E+003 6.00E+003 3.25E+ 003
f13 Mean 1.91E+000 2.79E+000 3.01E+000 1.25E+001 4.47E+000 3.95E+000 1.94E + 000 2.76E+000
SD 2.59E-001 7.12E—001 8.21E—001 1.75E+ 000 1.30E+ 000 3.54E-001 1.65E—-001 6.38E—001
f14 Mean 1.27E+001 1.21E+001 1.22E+ 001 1.30E+001 1.39E+001 1.26E+001 1.35E+001 1.27E+001
SD 1.91E-001 6.03E—001 5.00E—001 2.73E-001 1.66E—001 2.38E—001 2.92E-001 2.06E—001
ARV 5.2857 4.5000 4.8214 4.9286 4.9643 4.4643 4.0000 3.0357
Rank 8 4 5 6 7 3 2 1

The best results, i.e., the lowest mean and standard deviation (SD), are shown in bold.

convergence graphs are similar to those with 30 variables and are
therefore not reported.

As indicated in Table 4, in terms of solution quality, ECSV produces
the lowest mean value for five test problems. Followed by CCS and OCS,
they all get the lowest values for three functions. Specifically, ACS
performs better than others on f10, CCS provides promising solutions
on fl, f5 and f11, CSPSO is competitive in tackling f14, NNCS finds
reasonable results on f1 and {7, PLCS performs well on f1 and f13, OCS
does well in handling {2, f6 and f8, while it does not work for improving
the solution accuracy on f4 and f10. Similarly, ECSV performs well on
f1, £3, f4, f9 and f12, and it is the second best on f7, f10 and f13. Re-
garding the unimodal problem f1, CCS, NNCS, PLCS, QCCS and ECSV
converge to the global optimal solution zero. Also, in terms of the
statistical results using Friedman test, ECSV provides the lowest average
ranking value of 2.7500, which illustrates that ECSV can well balance
the exploration and exploitation capabilities for these test problems
with different characteristics. Therefore, the proposed ECSV is very
competitive in handling the first test suite with 30 decision variables.

From Table 5, CCS can produce reasonable results on f1, f3, f5 and
f11, but it does not work for f6, f9 and f14. Also, PLCS does well in
solving the functions 2, f12 and f13, ECSV finds promising solutions on
f1, f4, f6, f7 and f9, while ACS, CSPSO, NNCS, OCS and QCCS can only
get the lowest mean value of one of these test functions. Note that,
NNCS exhibits good overall performance in dealing with these pro-
blems. With respect to the unimodal function f1 with 50 variables, CCS,
NNCS and ECSV can converge to the global optimum, while the search
behavior of PLCS and QCCS may lead to individual oscillation, and they
cannot produce the optimal solution. Further, using the Friedman test,
these involved CS algorithms are sorted in the following order: ECSV,
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PLCS, NNCS, CCS, OCS, CSPSO, ACS and QCCS, which means that ECSV
provides the best performance and ranks first among these CS algo-
rithms. Besides, for these test problems with different variables, ECSV
algorithm produces the smallest standard deviation for more functions,
which indicates that ECSV has better robustness. In terms of the above
analysis, we can conclude that ECSV exhibits outstanding and robust
performance over other CS variants in tackling these test problems with
30 and 50 variables.

Since ECSV is an ensemble algorithm, its convergence speed de-
pends largely on that of the three constituent methods. As shown in
Fig. 1, among these involved CS variants, ECSV may converge slower
than some other algorithms, but it exhibits better overall performance.
More specifically, for f1, ECSV converges slower than QCCS, while it
can also find the optimal solution at the cost of fewer function eva-
luations. For {3, the curve of ECSV descends faster than those of others.
With respect to f10, only ACS and QCCS converge faster than ECSV.
Also, for f4, f9 and f12, ECSV converges relatively slowly in the initial
stage of evolution, but it has stronger search ability in the later stage. In
summary, ECSV can be regarded as a promising optimization technique.

4.4.2. Results and comparisons on the second test suite

For a comprehensive comparison, the convergence performance of
ECSV is further investigated on the second test suite with 30 and 50
variables. The parameter settings of all algorithms are the same as those
mentioned above. The comparison results in terms of mean value and
standard deviation are provided in Tables 6 and 7, and the Friedman
test is also conducted. For these test problems with 30 variables, the
convergence graphs of some functions are presented in Fig. 2.

From Table 6, it is found that ECSV demonstrates promising
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Table 9
Comparison results of CLPSO, DNLPSO, LFPSO, BBDE, jDE, SaDE, EPSDE and ECSV on the second test suite with 30 variables.
Fun Term CLPSO DNLPSO LFPSO BBDE JjDE SaDE EPSDE ECSV
F1 Mean 2.27E-013 2.12E-013 2.35E-013 2.73E-013 0.00E + 000 0.00E + 000 5.31E-014 6.82E—014
SD 0.00E + 000 5.77E-014 4.15E-014 9.25E-014 0.00E + 000 0.00E+ 000 9.78E—-014 1.06E—013
F2 Mean 2.01E+007 1.95E+006 2.22E+006 5.08E+005 1.13E+005 2.94E+005 2.26E+006 3.30E + 002
SD 4.97E+ 006 1.08E+ 006 1.02E+ 006 6.33E+005 4.88E+004 1.18E+005 8.21E+003 1.07E+003
F3 Mean 1.27E+ 009 9.00E +007 8.99E +007 2.12E+007 5.05E+006 1.01E+007 8.43E+007 7.51E+003
SD 7.90E+008 1.19E+008 1.19E+ 008 3.79E+007 7.25E+006 2.34E+007 2.25E+008 3.63E + 004
F4 Mean 4.01E+ 004 1.42E+002 4.96E + 002 1.99E+003 5.73E+003 6.67E+001 9.76E + 003 8.80E—-003
SD 9.15E+003 8.68E+001 2.00E +002 5.07E+002 2.12E+004 1.28E+ 002 2.85E+004 4.20E—-002
F5 Mean 2.77E—-013 2.20E-013 2.43E-013 2.73E-013 1.14E-013 0.00E + 000 1.40E-013 1.17E-013
SD 5.73E-014 6.63E—-014 5.77E-014 7.07E—-014 0.00E + 000 0.00E+ 000 5.73E-014 2.08E—-014
F6 Mean 3.34E+001 3.52E+001 3.18E+001 2.16E+001 1.37E+001 3.16E+001 9.39E+000 1.86E+000
SD 7.53E+000 2.36E+001 2.32E+001 2.13E+001 5.13E+000 2.93E+001 1.72E+000 6.68E+ 000
F7 Mean 9.58E +001 5.11E+001 3.92E+001 3.96E+001 4.34E+ 000 1.79E+001 6.29E+001 4.95E+001
SD 1.13E+001 2.60E+001 2.00E+001 2.51E+001 2.98E + 000 1.08E+001 3.08E+001 1.50E+001
F8 Mean 2.10E+001 2.09E+001 2.09E+001 2.09E+001 2.11E+001 2.10E+001 2.09E+001 2.09E + 001
SD 5.53E—002 6.62E—002 4.94E—002 5.19E-002 4.86E—002 4.51E-002 5.29E-002 4.50E - 002
F9 Mean 2.82E+001 1.77E+001 1.71E+001 1.16E+ 001 4.00E+001 1.72E+001 3.38E+001 2.56E+001
SD 1.91E+000 3.13E+000 2.90E + 000 2.25E+000 4.38E + 000 3.10E +000 3.67E +000 1.82E+000
F10 Mean 6.96E + 000 1.56E—001 1.61E—-001 2.18E-001 3.30E—-002 2.40E-001 7.47E—002 6.90E—-003
SD 2.03E+000 1.17E-001 8.31E—-002 9.22E—-002 1.71E-002 1.34E-001 3.66E—002 6.30E—-003
F11 Mean 7.01E—-014 3.78E+001 3.42E+001 9.13E+001 1.89E-015 4.25E+000 1.89E-015 6.63E—002
SD 2.45E—-014 1.07ZE+001 9.19E+000 4.12E+001 1.04E-014 1.95E + 000 1.04E-014 2.52E-001
F12 Mean 1.47E+002 5.99E+001 6.14E+001 1.71E+002 1.70E+002 4.22E+001 5.21E+001 5.55E+001
SD 1.79E+ 001 1.64E+001 1.61E+001 1.49E+ 001 4.68E+001 1.11E+001 1.48E+001 1.35E+001
F13 Mean 1.90E+ 002 1.31E+002 1.38E+002 1.73E+002 2.05E +002 9.64E + 001 7.91E+001 9.76E+001
SD 1.61E+001 2.62E+001 2.75E+001 1.20E+001 2.59E +001 2.70E+001 2.12E+001 2.37E+001
F14 Mean 1.36E+001 1.35E+003 1.33E+003 5.62E+003 8.26E+000 4.05E+002 2.98E-001 6.08E+002
SD 4.73E+ 000 2.96E +002 2.63E+002 6.85E +002 1.59E+001 1.25E+002 2.29E-001 2.27E+002
F15 Mean 4.74E+003 3.43E+003 3.46E+003 7.19E+003 8.23E+003 6.10E+003 6.67E+003 4.04E+003
SD 3.78E+002 6.41E+002 7.89E+002 3.10E+002 5.30E+002 7.37E+002 8.40E + 002 5.92E+002
F16 Mean 1.72E+000 1.90E+ 000 1.93E+000 2.38E+000 3.91E + 000 2.40E + 000 2.45E + 000 1.78E+ 000
SD 2.92E-001 6.62E—001 3.52E-001 2.48E-001 6.16E—001 2.93E-001 2.53E-001 2.86E—001
F17 Mean 3.11E+001 5.49E+001 5.91E+001 1.84E+002 3.07E+001 5.32E+001 3.04E+001 5.12E+001
SD 1.75E-001 8.46E+001 9.64E + 000 1.17E+001 2.88E—-001 3.67E +000 2.88E—004 5.49E + 000
F18 Mean 2.04E+002 1.41E+ 002 2.18E+002 2.01E+002 2.35E+002 1.85E+ 002 1.33E+002 1.20E + 002
SD 1.77E+001 4.60E+001 1.60E+ 001 1.32E+001 1.92E+001 8.71E+000 1.31E+001 2.23E+001
F19 Mean 6.32E-001 2.53E+000 2.62E+000 1.26E+ 001 4.49E + 000 6.75E+000 1.92E+ 000 3.06E+000
SD 1.62E-001 5.14E-001 8.09E—-001 1.60E + 000 1.70E + 000 1.56E + 000 1.78E—-001 7.57E—001
F20 Mean 1.32E+001 1.20E+001 1.19E+001 1.45E+001 1.33E+001 1.13E+001 1.31E+001 1.24E+001
SD 4.09E-001 1.61E+ 000 1.26E + 000 1.06E + 000 3.10E-001 3.49E-001 6.51E—-001 5.65E—001
F21 Mean 2.61E+002 2.96E + 002 3.18E+002 2.94E +002 2.86E +002 3.41E+002 2.94E +002 3.81E+002
SD 4.19E + 001 7.70E+001 8.61E+001 8.14E+001 6.03E +001 7.77E+001 8.13E+001 7.23E+001
F2 Mean 1.49E + 002 1.48E+003 1.74E+ 003 5.01E+003 9.79E+002 4.79E+002 2.78E+002 7.55E+002
SD 2.30E+001 5.90E+002 4.79E+002 1.25E+003 6.84E+002 3.89E+002 1.37E+002 2.44E+002
F23 Mean 5.17E+003 4.25E+003 3.98E+003 7.11E+003 8.48E+003 6.35E +003 6.87E +003 4.91E+003
SD 3.26E+002 7.72E+002 8.34E+002 2.98E + 002 6.97E+002 4.29E+002 6.63E+002 6.52E+002
F24 Mean 2.82E+002 2.66E +002 2.58E+002 2.47E+002 2.57E+002 2.18E+ 002 2.91E +002 2.69E + 002
SD 3.65E+000 1.06E+ 001 1.24E+001 1.03E+ 001 2.43E+001 5.49E+000 4.99E +000 9.46E+ 000
F25 Mean 2.94E+002 2.90E +002 2.80E +002 2.63E+002 2.67E+002 2.54E+ 002 2.99E + 002 2.81E+002
SD 5.58E+000 1.19E+001 8.50E + 000 6.60E + 000 2.32E+001 1.64E+001 3.67E+ 000 7.22E+000
F26 Mean 2.02E+002 3.11E+002 3.27E+002 2.94E+002 2.00E + 002 2.04E+002 3.75E+002 2.00E + 002
SD 5.54E—-001 6.23E+001 5.14E+001 6.29E +001 1.49E-001 2.18E+001 4.47E+001 2.60E—004
F27 Mean 1.02E+ 003 8.37E+002 7.85E+002 6.86E +002 1.20E+003 5.33E+002 1.21E+003 9.04E+002
SD 1.26E+002 1.05E+002 1.01E+002 7.43E+001 1.11E+002 5.49E+ 001 6.22E+001 1.57E+002
F28 Mean 3.00E +002 3.00E +002 4.76E +002 3.37E+002 3.00E +002 2.93E+002 3.00E +002 3.00E +002
SD 1.80E—-003 2.89E-013 4.41E+002 2.02E+002 8.44E—-014 3.65E+001 0.00E + 000 2.31E-013
ARV 5.0179 4.5714 4.7143 5.2679 4.7321 3.6964 4.5179 3.4821
Rank 7 4 5 8 6 2 3 1

The best results, i.e., the lowest mean and standard deviation (SD), are shown in bold.
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Fig. 3. Classification results of ECSV-BP, CS-BP and PSO-BP models.
0.016 ' ' test, it is impressive noting that ECSV ranks first among these algo-
- — CS-BP rithms. CCS ranks second, while QCCS gets the highest average ranking
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0.012 | In summary, ECSV exhibits significantly better performance in solving
’ these benchmark functions with different variables.
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results. Also, ECSV converges only slower than PLCS on F22, and it
performs the second best. Apparently, ECSV can find more promising
0.006 ¢ - solutions compared with its competitors. To sum up, ECSV is very
competitive in dealing with CEC 2013 benchmark problems.
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Fig. 4. Fitness curves of ECSV-BP, CS-BP and PSO-BP models.

performance. In more detail, ECSV obtains the best results on ten pro-
blems namely F1, F2, F3, F4, F6, F8, F10, F11, F19 and F26, and it is the
second best on F5, F12, F13, F14, F15, F17, F18, F22 and F28. Further,
NNCS gets the lowest mean value for six problems, followed by ACS,
CCS and PLCS for five functions. CSPSO provides the best performance
on F8, F20 and F28, OCS produces reasonable results on F8, F15, F16
and F23, while QCCS is not good at solving any problem except F8. As
for the statistical results of Friedman test, ECSV produces the lowest
average ranking value of 2.9821, which further illustrates that ECSV
can effectively exploit the merits of these constituent algorithms. With
respect to NNCS, it exhibits the second best convergence performance,
which may be due to the use of the nearest neighbor scheme and
probability mutation mechanism. Also, QCCS has the worst search
ability in solving these test problems among the involved algorithms. In
conclusion, ECSV exhibits the competitive overall performance when
dealing with the second test suite with 30 variables.

With regard to the comparison results reported in Table 7, it can be
seen that the search ability of these algorithms will deteriorate to some
extent with the increase of problem variables. Actually, ECSV is su-
perior to or at least comparable to others on F1, F3, F4, F5, F8, F10,
F11, F17, F19, F26 and F28, ACS performs best on F12, F13 and F25,
and CCS provides the solutions with higher quality on F9, F18, F24 and
F27. Also, CSPSO finds reasonable results on F6, F7, F8 and F20, NNCS
provides promising solutions on F8, F21, F26 and F28, OCS is the best
algorithm for the problems F2, F15, F16 and F23, PLCS performs well
on F8, F14, F22, F26 and F28, while QCCS is the loser of the CEC 2013
competition. Further, according to the statistical results of Friedman

4.5. Comparison of ECSV with other evolutionary algorithms

PSO and DE are two popular optimization techniques. Experimental
studies show that they have good convergence performance in solving
complex optimization problems. To provide a more comprehensive
comparison, the proposed ECSV is compared with several well-known
variants of the two algorithms, including CLPSO (Liang, Qin,
Suganthan, & Baskar, 2006), DNLPSO (Nasir et al., 2012), LFPSO (Hakl1
& Uguz, 2014), BBDE (Omran, Engelbrecht, & Salman, 2009), jDE
(Brest, Greiner, Boskovic, Mernik, & Zumer, 2006), SaDE (Qin, Huang,
& Suganthan, 2009) and EPSDE (Mallipeddi et al., 2011). In this sub-
section, the two test suites with 30 variables mentioned above are
considered to further investigate the performance of ECSV. Regarding
these compared PSO and DE variants, the population size is set to 40,
50, 50, 50, 100, 50 and 50, respectively. Additionally, the maximal
function evaluation for all algorithms is set to 300,000, and each
method for each test problem is run 30 times. For the two test suites, the
mean value and standard deviation obtained by these algorithms are
recorded in Tables 8 and 9, respectively. Further, the Friedman test is
conducted to compare the performance of all algorithms.

Table 8 provides the comparison results obtained by these involved
algorithms on the first test suite with 30 variables. As seen, there is no
algorithm that can produce promising solutions for all problems. Spe-
cifically, in terms of solution quality, CLPSO wins on f8, f9 and f13,
DNLPSO performs best on f14, LFPSO achieves better results on {8 and
f11, BBDE finds reasonable solutions on f1, f4 and {8, jDE performs well
on f1, f5 and f9, SaDE converges to the global optimum on f1, EPSDE
yields better results on f2, f6, {8, f9 and f10, and ECSV produces pro-
mising solutions on f1, f3, f7, f8 and f12. According to the results of
Friedman test, ECSV is superior to other methods, which illustrates that
ECSV is universal in handling various test functions. To sum up, the
proposed ECSV algorithm is efficient and effective optimizer in solving
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CEC 2005 test problems.

Table 9 presents the comparison results on the second test suite with
30 variables. In more detail, CLPSO outperforms others on F16, F19,
F21 and F22, DNLPSO performs well on F8 and F15, LFPSO has the best
performance on F23, BBDE produces better solutions on F8 and F9, jDE
provides promising results on F1, F7, F11 and F26, SaDE wins on eight
test functions, especially in solving some composition problems. EPSDE
yields reasonable solutions on F8, F11, F13, F14 and F17, while ECSV
does well in tackling the functions F2, F3, F4, F6, F8, F10, F18 and F26.
Also, the performance of these methods ranks as follows: ECSV, SaDE,
EPSDE, DNLPSO, LFPSO, jDE, CLPSO and BBDE. Apparently, ECSV
exhibits the best search capability, while BBDE is the loser among these
competitors. Further, for these 42 test functions, ECSV also has good
stability by comparing the standard deviation. From the experimental
results on the two test suites, it can be seen that the comprehensive
performance of ECSV is the best among these involved methods.

4.6. Power transformer fault diagnosis

In this subsection, the fault diagnosis of power transformer is used
as a practical application problem to investigate the application ability
of the proposed ECSV algorithm.

Power transformer is one of the most important equipments in
power system, which is mainly responsible for voltage change and en-
ergy conversion. Faults in the transformer will seriously endanger the
safety of power grid, and even cause huge economic losses. Therefore,
timely and accurate diagnosis of potential transformer faults is critical
to the safe operation of power system. Dissolved gas analysis (DGA) is
one of the effective techniques to detect and identify power transformer
faults. The existing DGA methods include Roger’s ratio method, Duval’s
triangle method and IEC 60,599 method (lllias, Chai, & Bakar, 2016).
Although these methods are easy to implement, they may produce in-
correct diagnostic results because their ratio boundaries are too abso-
lute. In recent years, the combination of artificial neural network (ANN)
and DGA has achieved good diagnostic results. In artificial neural net-
works, BP neural network (BPNN) is the most commonly used method,
but it has some defects such as over-fitting, weak generalization ability
and so on. To enhance the classification performance, a fault diagnosis
model of power transformer based on BP neural network and ECSV
(ECSV-BP) is constructed. In this scheme, the developed ECSV algo-
rithm is used to optimize the initial weights and thresholds of BPNN.

In this optimization model, the concentration percentages of dis-
solved gases hydrogen (H,), methane (CH,), ethane (C,Hs), ethylene
(CyH4) and acetylene (C,H,) in transformer oil are used as input ei-
genvectors. Moreover, five main faults are considered, which are the
medium and low thermal fault (7}), high thermal fault (1), low energy
discharge (D,), high energy discharge (D,) and partial discharge (PD)
(Yang et al., 2019). In this work, 91 sets of dissolved gas data from
different literatures are employed, 66 of which are used as training
samples of the developed ECSV-BP model, and the remaining data are
used for testing samples. Obviously, data samples from different sources
can verify the generalization and applicability of ECSV-BP model. For
ease of calculation, three-layer topological neural network is used to
identify the power transformer faults. According to the principle of
minimum error, the number of neurons in the hidden layer is set to 12.
Furthermore, the population size is set as 30, and the maximum number
of iterations is set to 150. To further verify the superiority of ECSV-BP
model, BPNN combined with CS (CS-BP) and BPNN combined with PSO
(PSO-BP) models are constructed and compared. The classification re-
sults of these three models are reported in Fig. 3. It should be added that
“1” in ordinates corresponds to T}, “2” represents T,, “3” corresponds to
D, “4” denotes D,, and “5” corresponds to PD fault.

From Fig. 3, it is obvious that ECSV-BP produces the highest diag-
nostic accuracy. In more detail, ECSV-BP provides incorrect classifica-
tion results for three of these test samples, and the classification accu-
racy is 88%. The diagnostic accuracy of both CS-BP and PSO-BP is 80%.
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Moreover, for samples Nos. 11, 17, and 22, the correct classification
results cannot be obtained by using these three models, which may be
due to the fact that these samples are ill-conditioned data or the number
of related types of training data is very small. In summary, it can be
concluded that the developed ECSV-BP model has good generalization
ability and robustness, and can still achieve better fault diagnosis effect
under the condition of insufficient training samples.

Fig. 4 provides the fitness curves of different models. As seen, PSO-
BP has the fastest convergence speed and its fitness value remains un-
changed after about 60 generations. At the beginning of the iteration,
the fitness curve of ECSV-BP is steeper than other models. After 72
iterations, the fitness curve descends sharply, which indicates that
ECSV-BP jumps out of the local optimal region and continues to search
for the optimal solution. Furthermore, CS-BP exhibits the slowest con-
vergence rate and the lowest search accuracy. Overall, the proposed
ECSV algorithm can better solve the parameter optimization problem of
BP neural network.

5. Summary of results

For different CS algorithms, they may have different properties and
are suitable for solving different types of optimization problems. Thus,
it is promising to combine the merits of multiple CS algorithms to de-
velop a new CS variant. In this work, ECSV is integrated by CCS, NNCS
and PLCS. Also, the introduction of an external archive can help to
maintain the population diversity and further enhance the overall
performance. Extensive experiments are conducted on 42 test problems
with different variables to investigate the effectiveness of ECSV algo-
rithm. Since these problems are complex shifted and rotated functions,
finding their optimal solutions is a very challenging task. In terms of the
comparison results, it can be observed that the proposed ECSV algo-
rithm is a very competitive method. More specifically, compared with
other CS variants, ECSV performs best and ranks first. Meanwhile, ECSV
is efficient and effective in comparison with other popular evolutionary
algorithms. Besides, the developed ECSV-BP model provides the highest
classification accuracy in diagnosing power transformer faults, which
also demonstrates that ECSV algorithm is equally applicable to solving
real-world problems.

In addition to the advantages mentioned above, the developed ECSV
algorithm has some limitations. ECSV algorithm is composed of three
different CS variants, so the different selection of the constituent al-
gorithm has a great impact on the comprehensive performance of ECSV.
Moreover, since different optimization problems may have different
characteristics, it is not guaranteed that ECSV can find promising so-
lutions for all these problems. Therefore, some work should be done to
further strengthen the convergence performance.

6. Conclusions

In this paper, we present a new CS algorithm called ECSV to achieve
the ensemble of three CS variants, namely CCS, NNCS and PLCS. In
ECSV, these constituent algorithms are assigned certain probabilities of
being selected on the basis of their previous experiences in generating
improved solutions. It should be added that the probability matching
operation is triggered periodically. To further enhance the exploration
performance, an external archive is introduced into ECSV to store these
discarded solutions. Extensive experiments are conducted on two test
suites with 30 and 50 decision variables, which are taken from CEC
2005 and CEC 2013. From the comparison results, it can be seen that
ECSV is superior to the seven CS variants proposed in recent literature.
Furthermore, ECSV is compared with other popular evolutionary al-
gorithms, such as CLPSO, DNLPSO, LFPSO, BBDE, jDE, SaDE and
EPSDE. In terms of the Friedman test results, ECSV produces the lowest
ranking values for the two test suites. To sum up, ECSV is very efficient
and effective in handling these different types of optimization pro-
blems. In the future work, we will investigate the influence of other
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adaptive selection schemes on the performance of the algorithm and
explore a more effective balance strategy between exploration and ex-
ploitation. In addition, considering that the current work focuses on the
ensemble of three CS algorithms, it may be more interesting to integrate
more search strategies to further enhance the universality and robust-
ness of the algorithm.
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