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Abstract

Matching cost aggregation is one of the most important steps in dense stereo correspon-
dence, and non-local cost aggregation methods based on tree structures have been widely
studied recently. In this paper, we analyze the shortcomings of both the local window-
based aggregation methods and the non-local tree-based aggregation methods, and
propose a novel oriented linear tree structure for each pixel to perform the non-local
cost aggregation strategy. Firstly, each pixel in the image has an oriented linear tree
rooted on it and each oriented linear tree consists of multiple 1D paths from different
directions. Compared to other spanning trees, our oriented linear trees don’t need to be
additionally constructed beforeh and since they are naturally embedded in the original
image. Moreover, each root pixel not only gets supports from adjacent pixels within its
local support window, but also receives supports from the other pixels along all 1D
paths. Secondly, for each pixel lying on the same 1D path, we can at the same time
calculate their aggregated cost along their path by traversing the path back and forth
twice. Finally, the final aggregated cost for each root pixel can be calculated by summing
the aggregated costs from all 1D paths. Performance evaluation on the Middlebury and
KITTI datasets shows that the proposed method outperforms the current state-of-the-art
aggregation methods.
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1 Introduction

Dense two-frame stereo matching has been one of the fundamental and most extensively
studied problems in computer vision, and it is employed in a variety of vision applications such
as 3D scene reconstruction [7, 41], image-based rendering [21, 57] and autonomous driving
[10, 14], since it represents an inexpensive way for recovering 3D information of a real world
scene. The inputs of stereo matching are a pair of images from the same scene which are
captured by a stereo camera system. For stereo matching, it is assumed that the input image
pair is rectified [48] as well as one of the input two images is the reference image and the other
is the target image. The task of stereo matching is to find the corresponding pixel in the target
image for each pixel of the reference image. Because the input image pair is rectified and their
epipolar lines are horizontal, the search of pixel correspondences between the image pair can
be performed along horizontal lines as illustrated in Fig. 1. The disparity is the difference
between horizontal coordinates of a pair of corresponding pixels. The resultant output of stereo
matching is a dense disparity map by finding all the correspondences between the input image
pair. The disparity map can be used to estimate the depth information according to the
triangulation principle [12]. As such, the disparity map can not only be applied to reconstruct
3D structures in the scene, but it can also be used as an important clue or feature of visual
tracking [24-29] to improve the tracking performance. Due to the ambiguous nature of the
matching problem and existing noise, occlusion, or distortion in the images, stereo matching is
very challenging and the recovery of an accurate disparity map still remains an open problem.

According to the analysis and taxonomy scheme proposed in [39], stereo matching
algorithms can be categorized into global and local methods. Stereo matching algorithms
generally perform the following four steps:

cost computation / cost volume estimation;
cost aggregation;

disparity computation / optimization;
disparity refinement.

bl

horizontal

(a) Reference (left) image (b) Target (right) image (c) Disparity map

Fig. 1 Stereo matching of Middlebury [40] Teddy image pair. Here the left image is the reference image and the
right image is the target image. For the corner pixel p in the left image whose coordinates are (x,y), its
corresponding pixel in the right image must be on the horizontal epipolar line with vertical coordinate y. Thus
we have to search for the corresponding pixel of pixel p along the horizontal line shown by the dotted line in the
right image. Supposing that the corner pixel p’ in the right image with coordinates (x, y) is the true corresponding
pixel of pixel p, the disparity d of pixel p is the difference between the horizontal coordinate of pixels p and p/i.e.,
d=x—x. The disparity map in (c) can be generated by finding all the correspondences between the image pair
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In cost computation, a 3D cost volume as the initial disparity space image is generated by
computing matching costs for each pixel at all possible disparity levels. In cost aggregation,
the matching costs are aggregated over each pixel’s support region. Then, the initial disparity
map can be generated by computing the disparity of each pixel with global or local optimi-
zation methods. As such, stereo matching algorithms can be classified as either global methods
or local methods. Lastly, the final disparity map can be obtained by refining the initial disparity
map with various post-processing methods. Similar to the multi-task learning categorization
problem, global stereo matching methods [2, 15, 22, 23, 35, 42, 46, 47, 49, 52] simultaneously
assign an optimal disparity level for each pixel by minimizing an energy function [22] defined
on the Markov random field model. Global stereo matching methods incorporate spatial
smoothness between neighboring pixels as a regularization term into the energy function. In
contrast, for some multi-task learning problems in time domain, such as complex activity
recognition [30-32] and career path prediction [33], the temporal relatedness among different
tasks is imposed into an appropriate multi-task learning model. Generally speaking, the energy
function of global stereo matching methods can be minimized through a discrete global
optimization algorithm, e.g., graph cut [2, 23], belief propagation [42, 52] or dynamic
programming [15, 46]. Despite the reliable matching results are obtained, global algorithms
are often time-consuming. In contrast, after performing cost aggregations within support
regions, local algorithms [1, 4, 6, 9, 17, 18, 20, 34, 38, 43, 45, 53, 55] perform a local
“winner-take-all” (WTA) optimization [39], that is, for each pixel simply choose the disparity
associated with the minimum aggregated cost value as its final disparity. Local algorithms are
usually computationally cheaper than global algorithms. Among these steps, the quality of cost
aggregation has significant impact on the accuracy and the efficiency of stereo algorithms as
described in [19, 39, 44]. It is a key ingredient for state-of-the art local algorithms [4, 17, 18,
34, 38, 43, 53, 55] and a primary building block for some top-performing global algorithms
[35, 49, 52]. Therefore, in this paper, we mainly concentrate on cost aggregation.

The cost aggregation of a pixel is traditionally performed by summing or averaging the
costs of the pixel itself and all its neighboring pixels within a local window. Actually, window-
based cost aggregation can be viewed as image filtering over the cost volume [18, 56]. While
simple box filter is adopted for cost aggregation, it tends to blur the depth boundaries and
produces well known “edge fatten” effect. Hence, to obtain accurate results at depth bound-
aries, variable or multiple windows-based algorithms [6, 20, 45] were proposed to find an
optimal support window for each pixel adaptively. In fact, rectangular and constrained-shaped
window models may be inappropriate for pixels near arbitrarily shaped depth discontinuities.
Additionally, doing cost aggregation over multiple windows for each pixel is computationally
expensive. To resolve this problem, segmentation-based methods [1, 9] use segmented regions
with arbitrary sizes and shapes as support windows, which is implicitly assumed that the
disparity varies smoothly in each segmented region. However, these methods require precise
color segmentation [5] that is very difficult when dealing with highly textured images.

The adaptive support weight (ASW) methods [4, 17, 18, 34, 38, 43, 53] try to assign
appropriate support weights to the pixels in a support window based on the proximity and
color distances to the center pixel. These methods can be treated as segmenting the reference
image in a “soft” way. Yoon and Kweon [53] firstly introduced the bilateral filter to compute
the support weights of pixels and its cost aggregation process can be understood as filtering the
cost volume with bilateral filter [34]. Despite bilateral filter can effectively preserver depth
boundaries, this method is computationally expensive. Since then, various edge-aware filtering
techniques have been explored for cost aggregation, such as segmentation-based adaptive
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support [43], dual-cross-bilateral filter [38] and geodesic weight support [17]. Rhemann et al.
[18] successfully applied the guided image filter [13] with running time independent of the
kernel size to cost aggregation. This method can outperform most local methods on
Middlebury benchmark [40] in terms of both speed and accuracy. However, the selected
support regions of the ASW-based algorithms are still limited in a pre-defined window of fixed
size. Due to this reason, as the same as the traditional window-based cost aggregation
algorithms, this kind of algorithms is vulnerable to low or repetitive texture.

Recently, Yang first proposed a non-local cost aggregation algorithm [50, 51] by construct-
ing a minimum spanning tree (MST) over the reference image. Then a pixel can get supports
from all the other pixels of the image along their shortest paths on the tree structure. Different
from previous local methods that rely on local support regions, the non-local method performs
cost aggregation for each pixel over the whole image. By enforcing tight connections for the
pixels inside the same segment, Mei et al. proposed a segment-tree structure (ST) instead of
MST to perform the non-local cost aggregation [36]. Considering that the tree structure for
MST or ST is not unique since there are a lot of edges which have the same weight, a cross-
trees structure consisting of a horizontal tree and a vertical tree is employed in [3]. Then the
non-local cost aggregation is done twice by traversing the two crossed trees successively.
However, due to the cross-shaped structure like in [4, 55], the connectivity between two
adjacent pixels in diagonal directions cannot be maintained.

In this paper, a novel non-local algorithm based on oriented linear tree structure is
proposed for cost aggregation. In the reference image, each pixel as a root node
corresponds to an individual oriented linear tree. Each oriented tree includes multiple
1D paths from different directions and these 1D paths intersect at the root node.
Compared to other spanning trees such as MST and its variants, our oriented linear trees
don’t need to be additionally constructed since the reference image naturally contains
these linear trees. Any root pixel not only receives supports from all adjacent pixels
within its local support window, but also gets the supports from all the other pixels in the
whole image. It means that the proposed method integrates the advantages of local
window-based aggregation and non-local aggregation. Furthermore, the final aggregated
cost for each pixel can be obtained by summing the aggregated costs from all its paths.
Obviously, a brute force implementation would be really time-consuming. However, for
each pixel lying on the same 1D path, we can in one breath calculate their aggregated
cost along their path by using two-passes traversals. This results in the low computa-
tional complexity of the proposed algorithm which is linear to the number of pixels and
disparity levels.

The remainder of this paper is organized as follows. In Section 2, we summarize the related
work. The cost aggregation problem is formulated in Section 3. In Section 4, we describe the
novel oriented linear trees structure and detail how to perform the cost aggregation on it.
Experiments results and analyses are presented in Section 5. Finally, we draw the conclusions
and discuss the future work in Section 6.

2 Related work
Here we mainly focus on the non-local tree-based cost aggregation algorithms by
comparing different tree construction techniques. Detailed comparisons and discussions

of various local cost aggregation methods can be found in recent surveys [19, 44].
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(a) Four-connected grid graph (b) MST in [47] (c) ST in [48]

O
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(d) The horizontal tree in [49] (e) The vertical tree in [49]  (f) Cost aggregation of pixel p in [49]

Fig. 2 Different tree structures of previous non-local methods. a Four-connected grid of the image. b The
minimum spanning tree (MST) in [50]. Each pixel gets supports from all other pixels of the image along unique
paths on the MST. ¢ The segment Tree (ST) in [36]. Each segment enveloped by dotted curve contains a sub
MST. Each pixel receives supports from all other pixels of the image along unique paths on the ST. d The
horizontal tree in [3]. e The vertical tree in [3]. f For pixel p, its sequential cost aggregation on the two crossed
trees. Firstly, the initial cost volume is aggregated on the whole horizontal tree and intermediate results are
produced. Next, the final aggregated cost of pixel p can be obtained by aggregating the intermediate results on the
p’s column of the vertical tree

In fact, all the non-local cost aggregation methods essentially still adopt the adaptive
support weight strategy, but they extend the support window to the entire image. In previous
tree-based methods, the reference image is treated as a four-connected, undirected planar graph
as shown in Fig. 2a. The nodes are all image pixels and the edges are all the edges between
neighboring pixels. The edge weight between two neighboring pixels is their color difference.
In [50], a minimum spanning tree (MST) as shown in Fig. 2b is derived from this graph. The
intuition is that an edge with small weight is less likely to cross the depth boundaries since its
two endpoints have high color similarity. Edges with large weights thus will be removed
during spanning tree construction. By traversing all nodes of the tree during the cost aggre-
gation process, each pixel can receive different supports from all the other pixels in the image.
Here, if an edge is selected, its two endpoints are connected directly and they can get support
from each other. Additionally, two nodes which are not connected directly by an edge can also
get support from each other through a shortest path on the tree. From the above analysis, it can
be seen that MST structure is not unique since there are a lot of edges with equal weights. The
tree is also sensitive to highly textured region and local noise. Moreover, since the image graph
is the four-connected, for any node, only less than four connected edges are often selected and
the diagonal connected edges with 8-connectivity cannot be selected. An observation is that
MST neglects the spatial information between adjacent pixels.
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By incorporating the segmentation information into MST, segment-tree (ST) structure
[36] is constructed as shown in Fig. 2c¢. In this method, the image graph is firstly divided
into a set of coherent segment, then for each segment a sub-tree is constructed, and all
the sub-trees are connected to build the ST structure. Though its accuracy is improved,
obviously, ST structure is easily influenced by the accuracy of image segmentation and
constructing a sub-MST in each segment may still suffer from the problems of the MST
structure. Recently, a novel cross-trees structure consisting of a horizontal-tree and a
vertical-tree is proposed [3]. Fig. 2d, e show the structures of the two crossed trees. As
illustrated in Fig. 2f, firstly the cost aggregation is performed on the horizontal tree, and
the matching cost of each pixel is updated with the aggregated cost. Then, the cost
aggregation is carried out on the vertical lines to estimate the final aggregated cost. In
this method, there is an explicit smoothness assumption by truncating the color differ-
ence between two neighboring pixels. Considering that performing the non-local cost
aggregation on the cross-trees directly will blur the depth boundaries, some prior
information such as edge prior is used to prevent the false smoothing at the depth
boundaries.

As can be seen from the above discussion, the above proposed tree structures emphasize the
color similarity only and then the siblings of most nodes are removed in the process of building
a special tree structure, so that the original Markov random field embedded in the reference
image may be broken. No doubt, the proper supports from the adjacent pixels within local
region (e.g., eight-connected region) are very important for any pixel to reduce the matching
ambiguity. In this paper, a novel oriented linear tree structure consisting of multiple 1D paths is
presented. In this structure, different weights between nodes on the same path are given based
on their geodesic distance. In addition, any pixel not only gets correct support from all adjacent
pixels in a local window, but the other pixels outside the local window also support it along
various linear paths.

3 Cost aggregation formulation

In this section, the cost aggregation is formulated by filtering the cost volume. Under this
formulation, different choices of weight functions lead to different cost aggregation methods.

Firstly, let 7 and I be respectively the left image and right image of a rectified stereo image
pair [48] and D denote the set of allowed disparity levels. Here the left image 7 is chosen as the
reference image. The matching cost computation step is formulated as a function f:
RWHIXM o RWXHXM_ pWXHXIP| \yhere W, H are the width and height of input images,
M represents color channels of input images (i.e. M= 3 for RGB color images or M=1 for
gray images) and |D| is the number of disparity levels in D. Thus, for the given stereo image
pair I, [eRW*H*M by applying cost computation function:

c:f(l,l’) (1)

We can get the 3D cost volume CeR"*#*IP| | which represents matching costs for each pixel

in the reference image at all possible disparity levels. For a single pixel p with coordinates (x,
), its cost at disparity level deD can be denoted as a scalar, C(p, d).Various methods can be
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used to compute the cost volume as described in [16]. For example, the AD-Gradient (i.e.
absolute difference of color and gradient) cost function defined in [18] can be formulated as:

C(p,d) = (1-a)-min (% |]1(p)—1’(pd)||],n>

| (2)
N cx-min(| VI (p)-V.I (p,)l, n)

Here I(p) denotes the color vector of pixel p. V, is the grayscale gradient in x direction.
pq in the image I’ is the corresponding pixel of p with a disparity d, i.e., py=(x—d, y). To
make the similarity measurement between p and p, be linear with color difference, the
average absolute difference of /(p) and I(p,) is used. « balances the color and gradient
terms. 7y, 7, are the truncation values to reduce the influence of occluded pixels. C(p, d)
actually expresses how well the pixel p in the reference image / matches the pixel p, in
the target image /.

Now the |D] slices of the cost volume C are filtered respectively. To be more precise,
for the d™ xy-slice, the output of the filtering at pixel p at disparity d is a weighted
average of all pixels in a support window w, of p in the dh xy-slice, which can be
formulated as:

Clp.d) = Tgew,K(p.9)C(g,d) (3)

where K(*) is a weighting function (also known as kernel function [37]) and the support
window w, is closely related to the weighting function. K(p,q) measures the support
weight between pixels p and ¢g. Then all the weights can be calculated by performing the
weighting function K(-) on the whole reference image.

Once all the slices of the cost volume are filtered, the final aggregated cost volume C* is

obtained and the disparity at pixel p denoted by d,, is simply chosen with the WTA strategy as:
d, = arg mingep cA (p,d) (4)

Then the final disparity map D can be obtained by mapping each pixel to the optimal disparity

level following the above steps.

4 Cost aggregation on oriented linear trees

In this section, a novel oriented linear tree structure is firstly proposed. A linear time cost

aggregation with two-passes traversals technique on single 1D path is presented afterwards.

The computational complexity is discussed finally.

4.1 The oriented linear tree structure

In our method, the reference image 7 is represented as a connected (not 4-connected) and
undirected graph G = (V,E) where each node in V corresponds to a pixel in /, and each edge in
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E connects a pair of neighboring pixels. For an edge e connecting pixels « and v, its weight is
decided as follows:

e = wlu) = 3 GO ©

Here I(u) and I(v) represent the color vector of pixels « and v respectively, as well as M denotes
color channels of the reference image. When comparing two neighboring pixels in the same
image to decide whether they can support each other, as the same as other ASW methods, it is
assumed that the neighboring pixels which have similar color are likely to have similar
disparity. In order to ensure that the similarity between two neighboring pixels is linear with
color difference like in Eq. (2), the average absolute difference of their color vectors is used as
their edge weight. Experiments also verify that using L1 norm of the vector as the similarity
measurement in Eq. (5) performs better than using other norms such as L2 norm.

For the local filtering-based methods, a pixel gets supports only from the other pixels
inside its local window. For handling the poor texture regions, a window should thereby
be large enough to capture sufficient intensity variation. Unfortunately, some filters such
as bilateral filter have high computational complexity when the kernel size is large (e.g.
35 x35). It is impossible for different data sets to find an optimal window that shows
good performance both in the result quality and in computational speed. Thus, the non-
local methods [3, 36, 50] try to use tree filtering [51] to effectively and efficiently
perform the cost aggregation, where each pixel receives supports from all the other pixels
of the same image through unique paths on a tree. However, during the process of
constructing some special tree structure, some useful connectivity constraints between
adjacent pixels may be lost and the original Markov random field embedded in the
reference image may be destroyed. This results in relatively poor performance in
ambiguity discrimination in highly textured regions. Hence, for each pixel, on the one
hand, the inherent connectivity between it and adjacent pixels should be held like the
local filtering-based methods; on the other hand, for handling the low texture regions,
more other pixels in the whole reference image should be also used to support it.

Fig. 3 An oriented linear tree

rooted on pixel p with L=8 1D

paths. The pixel p receives the

other image pixels’ contributions

along eights 1D paths from

different directions. The oriented

linear tree naturally contains a

local window centered on pixel p |
for reducing the ambiguity in pj_O_O_
highly textured regions and depth

boundaries. The other pixels far

away from p on all the 1D paths

can be used for handling low

textured areas
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According to the above observations, a new idea that each pixel receives all the other
pixels’ supports along 1D paths from all directions is proposed. In Fig. 3, paths from various
directions intersect at the central pixel p, which can be treated as a tree rooted on node p. We
refer to this tree as the Oriented Linear Tree. Here eight symmetric directions in the tree are
showed. We can see that pixel p not only gets the supports from adjacent pixels within a local
support window (e.g. 5 X 5 pixels) that is naturally formed, but the other pixels outside the
local window in the reference image also contribute to pixel p along various 1D paths. Let
pixels g and p be two nodes on a 1D path and an orderly sequence of nodes (¢ =¢1, ¢», ",
¢, =p) be gone through successively when ¢ reaches p along this path. The geodesic distance
S(p, q) between p and ¢ can be directly defined as the sum of the edge weights along their path
as follows:

S(p.q) =S(g,p) = Yiw(qi:9i11) (6)

Note that the spatial proximity is employed since the distance is accumulated along the 1D
path. The support weight K(p, ¢) between p and ¢ is defined as follows:

K(p.q) = K(¢,p) = cxp <f M) )

g

where o is a user-defined parameter used to adjust the distance between two nodes. The pixel
with shorter distance from p is assigned a larger weight.

It follows that every pixels in the reference image has an oriented linear tree similar to the
pixel p. The number of 1D paths must be at least four, that is, the horizontal, vertical and two
diagonal paths must be included in the oriented linear tree. Actually, the oriented linear tree
with the above four 1D paths can bring desirable results. More 1D paths used will produce
more accurate results but also increase the runtime complexity. In this paper, for trading off
accuracy against speed, we use eight 1D paths. In addition to the above four paths, the other
four additional paths respectively correspond to the directional angles actan (:i:] / 2)
and actan(x2).

4.2 Cost aggregation on an oriented linear tree

Since all the paths in the tree are separated from each other, of course we separately aggregate
the matching costs along different paths. Let the oriented linear tree rooted on pixel p contain
L(e.g. L=238) 1D paths and P, denote the 1D path from the direction . Let C?(p, d) denote the
aggregated cost along the path P, for pixel p and disparity d. According to Eq. (3), Cf(p7 d)
can be defined as follows:

C;\ (]77 d) = quP,K(pvq)C(qad) (8)

Accordingly, the final aggregated cost CA(p, d) for the root p and disparity d can be calculated
by summing the aggregated costs C* (p, d) of all 1D paths. Note that the matching cost C(p, d)
of the root p at disparity d is added L times in the sum, so the repeat addition of C(p, d) should
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be subtracted from the sum. Hence, the final aggregated cost CA(p, d) of the root p at disparity
d is given as follows:

Clp,d) = X, C} (p,d)~(L-1)C(p, d) ©)

Lastly, the final disparity result can be obtained from Eq. (4). As far as image filtering is
concerned, the weights K(p, ¢) should be normalized. It is noteworthy that all the weights
K(p, @) in the reference image remain unchanged for different disparity levels and then
all the disparity levels share a normalization constant ), K(p, g). Therefore, the nor-
malization step is usually not required in the cost aggregation since the disparity with
minimum aggregated cost for each pixel is simply chosen using the WTA strategy as
expressed in Eq. (4).

4.3 Cost aggregation on 1D path

Obviously, if we directly compute the aggregated cost for each root node of so many
trees according to Egs. (8) & (9), this can easily become computationally intractable.
Benefiting from the linearity of each 1D path in the oriented trees as well as the geodesic
distance used between two nodes, by using two-passes traversals on each path P, from
one end to the other end, we can calculate the aggregated cost C*(p,d) at disparity d for
each node p lying on the path P, at the same time. This leads to the linear computational
complexity of our aggregation algorithm.

Here we show that how the values of C%(p,d) at disparity d for each node p on the
path P, are determined with two-passes traversals. Since the cost aggregation problem
for all nodes on P; is studied under the same disparity level, here the disparity d can be
treated as a constant for ease of description. In Fig. 4, let s and ¢ be the two endpoints of
1D path P, and they must lie on the image borders. In addition, for any node p on the
path P, that isn’t the endpoint, let p-1 and p + 1 on the path P, be the two neighboring
nodes of node p. Let F*(p,d) denote an intermediate aggregated cost value of p

OLOu DO DL OLO,

(a) Pass 1: traversal from s to ¢.

D@D (DD (DD

(b) Pass 2: traversal from ¢ to s.

O (e (el (DD

(c) CA(p,d) of the node p is calculated from the above two passes.

Fig.4 The two-passes traversals on the path P, from one end to the other end. a Inpass 1, F (-, d) of each node
on P, is computed by traversing P, from s to . b In pass 2, B*(-,d) of each node on P, is computed by
traversing P, from ¢ to s. ¢ The aggregated cost Cf(p, d) for each node p lying on the path P; is derived by
combining the results from the above two passes
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supported by all nodes from s to p. According to Egs. (7) & (8), the recursive formula of
F4(p,d) can be deduced as follows:

r(p ) qu[spK(p q) ( d
C(p )+qusp I]K(p q) (qa
(p,d) + % Hwﬁ@plﬁ@lw
(p )+ (p ) qels.p— 1]K(P lvq)
— Cp.d) +K(p.p- ) FAp-1,d)

)
d

I
aaQ

)
Clg,d) (10)
Clg,d)

where [s, p] represents an orderly sequence of nodes on P; from s to p. Therefore, in the
first pass as shown in Fig. 4a, the cost aggregation is performed by traversing P, from s
to ¢ and the value 7% (p, d) of each node on the path P; can be calculated in turn since the
value F2(s,d) for the starting node s is known, i.e. F4(s,d) = C(s,d).

In the second pass, as can be seen from Fig. 4b, the path P, is traced from node 7 to node s
where the traversal direction is just opposite to the first pass. Here let B (p, d) denote another
intermediate aggregated cost value of p supported by all nodes from # to p. Then B? (p, d) can
be written recursively in a similar way to F%(p, d) as,

Bf(p, d) = qu[tﬁp]K(p: q)C(qa d)

= C(p,d) +K(p,p+ 1)BXp +1,d) (1)

Hence, in the second pass, from the starting node # with B2 (¢,d) = C(t,d), the value B (p, d)
of each node on the path P, can be recursively calculated until the end s is reached.
It follows that we can rewrite C4(p,d) from Egs. (8), (10) & (11) as follows:

Cf(p,d) = quer(p,q)C(q,d)
= qu[sﬁp]K(pv (])C(t], d) + qu[t,p]K(p7 q)C(q, d)_C(p7 d) (12)
= F‘;‘(p,d) +Bf(p,d)—C(p,d)

Figure 4c illustrates the above calculation process. Note that the above two passes traversals
can be implemented separately and independently. After accomplishing the two-passes tra-
versals on the path P;, from Eq. (12) we can obtain the aggregated cost Cf (p,d) at disparity d
for each node p lying on the path P; at the same time.

Once the aggregated cost C%(p, d) along each 1D path P; for the root p is calculated by
using the two-passes traversals, the final aggregated cost CA(p, d) of pixel p at disparity d is
easily obtained according to Eq. (9).

4.4 Computational complexity
For each pixel p and each disparity level deD, computing C#(p,d) by traversing single
1D path P; back and forth needs to visit the pixel p twice. Because the total number of

disparity levels is |D| and an oriented tree only contains eight 1D paths in this paper, the
overall computational complexity of our oriented-linear-trees based cost aggregation
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algorithm is O(|D|WH), where W, H are the width and height of the reference image. In
addition, since the proposed oriented linear trees don’t need to be additionally construct-
ed and only include a few separable and linear 1D paths, the non-local cost aggregation
based on oriented linear trees is very suitable for parallel calculations.

5 Experimental results

In this section, we use Middlebury [40] and KITTI [8] datasets in order to validate the
effectiveness of the proposed method denoted as OLT. To evaluate the performance of
our method, we compare it with four state-of-the-art cost aggregation methods: aggre-
gation with guided image filter (denoted as GF) [18], aggregation with minimum
spanning tree (denoted as MST) [50, 51], aggregation with segment tree (denoted as
ST) [36], aggregation with cross-trees and edge prior (denoted as Cross-E) [3]. For ST,
we directly use the C++ code provided by the authors,' and all the parameter setting are
identical to those used in their implementations. For GF, we implemented our own C++
code by referring to the author-provided Matlab program® in order to process high-
resolution images from KITTI dataset efficiently. In the same way, we implement our
algorithm and re-implement MST and Cross-E by using C++ language. For MST and
Cross-E, their parameters follow the settings of the corresponding papers.

5.1 Experimental settings

We mainly focus on two benchmarks: the Middlebury benchmark [40] from the indoor scene,
and the KITTI benchmark [8] from the outdoor scene. The Middlebury benchmark is a de
facto standard for comparing existing stereo matching algorithms. To date, more than 150
methods have been evaluated on the Middlebury benchmark, using four standard pairs of
stereo images, (i.e., Tsukuba, Venus, Teddy, and Cones). In order to more comprehensively
evaluate the performance of the proposed method, our experiments are conducted not only on
the four standard pairs, but also on the other 23 pairs of images (i.e., Middlebury 2005 (6
image pairs) and Middlebury 2006 (17 image pairs) data sets). The Middlebury benchmark
provides corresponding ground truth disparity maps of these 27 stereo image pairs. Note that
these Middlebury image pairs from various complex indoor scenes are challenging due to low
texture, repetitive texture and complex object structures. In addition, we also carry out the
experiments on the KITTI benchmark to further verify the adaptability and robustness of our
method. The KITTI dataset contains 195 test image pairs and 194 training image pairs for
evaluating stereo matching algorithms. These image pairs from various real complex road
scenes are taken by a pair of high-resolution cameras equipping on an autonomous driving
platform. All the KITTI images are captured under the real-world illumination condition, and
then most image pairs contain large textureless regions, e.g., sky, walls and cars, and
illumination change, e.g., shades and light reflection. Hence, the KITTI benchmark is more
challenging than the Middlebury benchmark. During our experiment on the KITTI benchmark,
we use the whole 194 training image pairs with ground truth disparity maps available to
evaluate our method.

! http://xing-mei.net/resource/page/segment-tree. html
2 https://www.ims.tuwien.ac.at/publications/tuw-202088
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As described in the Section 1, cost aggregation as a key step of stereo matching can only be
implemented after the matching cost calculation is completed. Therefore, we need to choose an
appropriate matching cost calculation method to construct the initial cost volume for cost
aggregation. The above four cost aggregation methods (i.e., GF [18], MST [50, 51], ST [36]
and Cross-E [3]) quantitatively evaluated their performance on the above 27 Middlebury
image pairs and used the AD-Gradient cost function in Eq. (2) proposed in [18] to calculate the
initial cost volume. As the same with them, for the Middlebury dataset we also adopt this cost
function to compute the initial cost volume and set the parameters of the AD-Gradient cost
function to be the same values as these four methods for fair comparison, i.e., {a, 7, 7} =

{0.1,7/255,2/255}. For the KITTI dataset, considering that most image pairs have large
illumination variation, we adopt the AD-Census cost function proposed in [35] to compute the
initial cost volume for all the five cost aggregation methods since Census Transform [54] is
proven to be robust against illumination changes. Then the related parameters of the AD-
Census cost function follow the settings in [35]. In fact, the proposed cost aggregation method
only has a single parameter, namely, the parameter o of our weighting function in Eq. (7). The
parameter o is set to 0.06 and remains constant for all data sets. We also investigate the
performance of the proposed cost aggregation method with respect to the parameter o in the
following experiment part.

5.2 Evaluation on Middlebury dataset

We first evaluate the proposed method on 27 stereo image pairs from the Middlebury
benchmark [40]. Firstly, the initial cost volume is calculated by applying the AD-Gradient
cost function defined in [18] and then it is used as a common input to all the five cost
aggregation methods. Next, we respectively perform each cost aggregation algorithm on the
initial cost volume and then establish the corresponding initial disparity map with the WTA
strategy. In order to compare different cost aggregation methods more reasonably, here no
post-processing technique for refining the initial disparity maps is employed. Note that all the
ground truths of disparity maps for these 27 image pairs are provided by the benchmark. Once
the initial disparity map is estimated, the disparity error of a pixel is the absolute difference
between the estimated disparity and the ground truth, and the disparity error of a region is the
mean error of all pixels in it. In the same way as other state-of-the-art methods [3, 1819, 36, 39,
44, 50, 51], the aggregation accuracy is evaluated by the error rate and the disparity error in
non-occluded areas, where the error rate is the percentage of bad pixels having disparity error
larger than 1 pixel.

The quantitative evaluation results are presented in Table 1, where the best result among the
five algorithms is marked in bold for each stereo instance. For visual comparison, the disparity
maps established by using the five algorithms are shown in Fig. 5. Firstly, as can be seen in
Table 1, both the average error rate and the average disparity error of the proposed method are
lowest among all the five methods. Moreover, our average rankings in both the error rate and
the disparity error are also highest, and our method outperforms the other four methods on
most stereo instances. We can find that the number of the best results for the proposed method,
no matter whether in the error rate or in the disparity error, is more than the sum of the other
four methods. The average error rate and average disparity error of the proposed method
respectively decrease by 1.38% and 0.26 px comparing with GF. Although GF has been
proven to be the top performer among all local methods, it still establishes locally optimized
results within user-specified local support region. It also shows that MST and ST are less

@ Springer



Multimedia Tools and Applications (2019) 78:15779-15800

15792

wI0)0q A} UT UIAIS oIk Juel dFeIoAL o) PUB JOLIS dFRIOAR L

'l 96'C LEE 0€'e 00°¢ i 1+ 8L'€ 96°'¢ I¥'¢ yuer Sy
xd ¢80 xd 9670 xd 1071 xd 1670 xd 1171 %E6'y %6L'S %91°L WBTTL BIEY Iouo 3Ay
¢xd 50 ¢xd ¢60 ¢xd ¢60 $xd 60 Lxd 2370 ConThe £ 9%08°¢ Y opsse S %E9¢ ' %68°C saU0D
vxd 160 £xd 680 $xd 260 txd 180 !'xd 780 Y 9%69°L CopISL CBLYL Y 9%0¢€L S %SE'S AppaL,
Fxd 6770 txd 0g0 txd 0g0 sxd g0 txd 0g0 L9950 ¢ %850 £ %%9°0 ¥ 95590 S %Y6°0 SIUAA
£xd 0770 sxd €70 ¢xd 6170 txd 170 £xd 0z°0 £990°C " ovTT C9568'1 L 9%L9°T S %YTT eqmyns)
¢xd 8¢0 £xd 190 sxd g1 Ixd ¢g°0 ¥ xd 180 ' %690 C9SL0 S 9%90°¢ £9580°1 Y opTTl TPOOM
Fxd 090 txd 870 vxd 160 $xd 001 £xd 060 VoL ¢ 9%08'¢ Y 9580°¢ %986 £o70Y 1POoA
!'xd 9470 !xd 940 £xd 2470 v xd 8470 ¥ xd 8470 %701 CotTl o191 £ 9%98'1 £ 9%er'T [
! xd 9g°0 ¢xd 160 v xd 650 £xd g6°0 ¥ xd 650 VoLt CoTs1 Y %yeT SBLET 81T [0y
' xd 680 txd 160 vxd 601 sxdzry £xd 001 LoIry Copses Y oheL’L S %LY'8 £ 9%96°S Toapuray
£xd 80 vxd 60 !'xd $8°0 txd ¢80 $xd 90’1 £ 958 Yo% 618 Y o%1°8 968’8 SNIQROIN
txd 671 v xd 61 Exdzey Ixd 1771 ¢ xd 681 ' %8611 £965°¢1 Y ore8°¢l S %8¢TI S BLOST Arpuney
txd 6¢g £xd 96°C vxdyLg xd gg°1 sxd oLy Y907 TI C9%0L Y1 Y 95$9'1T £ oESST S 98€°TT Zopeysdurer]
Ixd 9¢°1 £xd 651 vxd 791 exd 61 sxdgre YoLT8 £9%9¢°01 Co1E01 Y 91611 S %98°€1 [opeysdure |
Ixd gox exd L01 v xd 601 sxdzry exd L01 L opseTr CoIeyl Y o516v1 S %89°LT CopSTET sjodiomor |
Ixd 1970 vxd 190 ¢xd 990 vxd 1970 ¢xd 9970 L o6Le C9%0S' Y LTS £ %009 £ %99t s[lod
'xd ¢p0 exd p0 vxd 1y0 vxd 1y0 £xd 970 Y 9%¥L0 C9%9L°0 SBLTT YTl £991°1 PO
Fxd ¢p0 txd p70 £xd 60 £xd 60 ¢ xd 970 L 9%¢€6'0 ComTl'l C LS Y oheL’T S%ILT vie)
Ixd g0 £xd 4670 $xd €970 v xd 290 txd €670 ' %0€1 Co9L'T S %9¢'E Y opsee £%LST TWorD
''xd 6¢0 'xd 6¢0 £xd 1570 £xd 1470 Exd 1470 L1100 CoS1°0 £%1Y0 Y %Er 0 $ %990 1o[D
' xd 890 vxd 6,0 $xd /80 Exd 110 txd g0 L9119 £ 8.8 SBETTI Y 951701 ¢ %619 ZBurmog
'xd p0g vxdzLe Exd g Ixd $0°g ¢ xd g6°¢ B 7%43 4! £ %0r'S1 S %88'81 Y oS 181 SISl [Surmog
!'xd go°1 Exdzry Exdzry sxdory I'xd go°1 C9%L0'8 L op8LL S %16 Y 9%¥0'6 £o57T'8 sxoog
Pxd ze'r Sxd pp| vxd zp| Exd 1p°] txd ge'y ' 9%68F Y 9%0T°S £%LO'S SBIL'S Cuv6y ¢Aqeq
exd Lo Exd yL0 $xd £60 v xd 680 ! xd 690 ¢ %981 £ %059 S %OTST ¥ 9%69°C1 Y osy Thqeg
£xd ¢80 vxd ¢6'0 ¢xd 780 sxd ¢o'1 TxdgLo Cpe0t ¥ 985t €IS S B6T'S Vo0l 1Aqeq
Ixd zzr txd ¢p'| vxd 091 $xd 791 exd [p] ' 9%16'9 CoSL8 Y 952501 $ %€8°01 £ 9506 uy
IxdgLo ¢ xd 080 Ixd Lo Exd 90 ¥ xd 6.0 ' %16'T C9T9°€ £ %B0v'H R\ ey S BS6Y 201y
110 g-ss01D) 1S IS D 110 H-ss01D) 1S IS D
10119 Ayredsiq qje1 JoLg ereq

PIOq UI UMOYS dIE S)[NSAI JSoq A} dIoYM
9duosqns ym pakerdsip yuer o) pue AoeInode uone3aIsse 1509 Ay Jo SwLR) Ul 1osejep AIgIIPPIA Y} U0 SWPLIOF[e UonedaIdde 1500 Al dy) Jo uonen[eAd aanenuend) | ajqej

pringer

N



Multimedia Tools and Applications (2019) 78:15779-15800 15793

% i B l
e “ - i D L8
I
£
| :

(a) The reference image  (b) GF (c) MST (d) ST (e) Cross-E (f) OLT

Fig. 5 The initial disparity maps without post-processing on Middlebury dataset. The 1st row: Ar#; the 2nd row:
Baby 2; the 3rd row: Reindeer; the 4th row: Wood!. The bad pixels in the disparity maps are marked red. a The
reference images. b Disparity maps computed with GF. ¢ Disparity maps computed with MST. d Disparity maps
computed with ST. e Disparity maps computed with Cross-E. f Disparity maps computed with the proposed
method (i.e., OLT). See the regions of f within the yellow boxes, where the proposed method has fewer bad
pixels than the other methods

accurate than GF in the evaluation. It is because that MST and ST remove some 8-connected
siblings of most pixels, which results in the low discrimination for matching ambiguity
especially in highly-textured regions as shown in Fig. 5. Besides, our algorithm achieves
better performance than Cross-E. Our average error rate and average disparity error are
respectively 0.86% and 0.11 px lower than Cross-E. Note that the latter needs edge prior
and its results are also easily influenced by the accuracy of the extracted edges. The visual
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Fig. 6 Performance of the proposed cost aggregation method with respect to the parameter o
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(a) The reference image (b) 0 = 0.01, 4.59% (c) o = 0.06, 2.06% (d)yo =0.2,4.23%

Fig. 7 The initial disparity maps of tsukuba image pair under three different o values. The bad pixels in the
disparity maps are marked red. The bold numbers under the disparity maps are the error rate. The reference image
is in (a). In (b), the disparity map under o =0.01 has a large number of noise and bad pixels especially in low
texture regions shown in the yellow boxes. For the disparity map when o = 0.2 in (d), the bad pixels mainly occur
at the boundaries of foreground objects and the thin lamp poles are partly erased as shown in the yellow boxes. In
contrast, the disparity map under o =0.06 in (c) contains fewer bad pixels

comparison in Fig. 5 shows that the proposed method not only produces less bad pixels in
highly textured regions, but also performs better in large planar surfaces with low texture.

The single parameter used in our cost aggregation method is the parameter o of the
weighting function in Eq. (7) which is used to adjust the support weight between two pixels.
It is necessary to study the performance of the proposed cost aggregation method with respect
to parameter o. Firstly we still use the AD-Gradient cost function to compute the initial cost
volume, and keep all the parameter settings of this cost function constant. Then we vary the
parameter o from 0.01 to 0.2. The error rate of all the 27 Middlebury image pairs in non-
occluded areas is evaluated in this test. Figure 6 shows the test results with different o. It can be
seen from Fig. 6 that the variance of the error rate is very low when o ranges from 0.02 to 0.18,
and the error rate is minimum when ¢ = 0.06. The result demonstrates that our cost aggregation
method is insensitive to the change of the parameter o. It is worth noting that our weighting
function in Eq. (7) actually adopts the Gauss kernel. Thus, the support weight between any two
pixels is positively and non-linearly related to the smoothing parameter o. If the value of the
parameter o is too small (e.g. o < 0.02), the support weights which a pixel gets from the other
pixels are also relatively small. This will degrade the performance of cost aggregation. In
particular, as illustrated in Fig. 7b, the matching ambiguities in low texture or repeat texture
regions can not be effectively reduced because a pixel within these regions only receives very
little supports from the other pixels from those regions with texture variation. On the other
hand, if the value of the parameter o is too large (e.g. o> 0.18), the support weights which a
pixel gets from the other pixels become larger. This may bring numerous disparity errors at the
boundaries of objects if the color difference between the background and the foreground is not
large enough as shown in Fig. 7d.

For complexity comparison, Table 2 reports the average running time of the five algorithms
on the four standard Middlebury data sets consisting of Tsukuba (384 x 288 pixels, 16
disparity levels), Venus (434 x 383 pixels, 20 disparity levels), Teddy (450 x 375 pixels, 60
disparity levels) and Cones (450 x 375 pixels, 60 disparity levels). We test the C++ programs

Table 2 The complexity comparison among the five algorithms

GF MST ST Cross-E OLT

Avg. running time (s) 14.46 4.73 5.47 492 4.85

For each algorithm, this table reports the average running time on the four standard Middlebury data sets
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Table 3 Quantitative evaluation of the five cost aggregation algorithms on the KITTI training dataset

Methods Avg. disparity > 2 pixels > 3 pixels > 4 pixels > 5 pixels
Error

Avg- Avg- Out- Out-All  Out- Out-All  Out- Out-All  Out- Out-All

Noc All Noc Noc Noc Noc
GF 320px  425px 1554% 17.15% 1087% 12.55% 8.89%  10.60% 7.81%  9.52%
MST 347px  415px 3121% 3228% 2327% 2441% 18.54% 19.69% 15.36% 16.50%
ST 338px 4.10px 2924% 3037% 21.60% 22.79% 17.13% 18.34% 14.16% 15.36%

Cross-E 236 px 328 px 1398% 1546% 9.67% 11.17% 7.69%  9.18% 6.51%  7.99%
OLT 225px 322px 11.82% 1357% 898% 10.77% 7.15% 8.76% 627% 7.64%

Performance is measured in terms of the average disparity error, as well as the error rate with different thresholds.
The best results among the five algorithms are shown in bold

Out-Noc the error rate in non-occluded areas, Out-All the error rate in total, Avg-Noc the average disparity error in
non-occluded areas, Avg-All the average disparity error in total.

of the five algorithms on a PC platform with a 3.20GHz Intel Core (i5-6500) CPU and 8GB
Memory. Our method has the similar efficiency with MST and Cross-E and it is faster than GF
and ST. Although the complexity of GF is independent of the kernel size, if color guide image
is used, it still requires about 18 box filtering to finish the guided filtering process. ST needs to
build a specific tree structure like MST and Cross-E; additionally, it has to implement image
segmentation, which makes ST slow. By contrast, the proposed method does not need to
additionally create any tree structure or carry out image segmentation beforehand.

(a) Frame: #000000_10 (b) Frame: #000008 10

Fig. 8 The initial disparity maps without post-processing on the KITTI training dataset. The 1st row: two
reference images (frames: #000000_10, #000008_10) and the ground truths of their disparity maps which are
displayed in false color. The 2nd row: the disparity results of GF. The 3rd row: the disparity results of MST. The
4th row: the disparity results of ST. The 5th row: the disparity results of Cross-E. The 6th row: the disparity
results of the proposed method. For each method, the estimated disparity maps are displayed in false color, and
the corresponding error maps in non-occluded areas from <1 pixel error in black to > 5 pixels error in white are
shown here. In the error maps, the bad pixels with disparity error more than default threshold 3 pixels are
marked red
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5.3 Evaluation on KITTI dataset

Previous cost aggregation algorithms only evaluate their methods on the Middlebury
benchmark. However, in our experiment, we also evaluate the proposed method on the
KITTI benchmark [8] to further prove the feasibility of our method. During our exper-
iment, we use the whole 194 training image pairs with the ground truths of disparity
maps available. Due to the illumination variation on the KITTI dataset, we adopt the AD-
Census cost function proposed in [35] to compute the matching cost because Census
Transform [54] is robust against illumination changes as described in [11, 16, 35]. In the
same way with the Middlebury benchmark, the obtained initial cost volume is used as a
common input to all the five cost aggregation methods. According to the evaluation
metric provided by the KITTI Benchmark [8], here the performance in aggregation
accuracy is measured in terms of the average disparity error, as well as the error rate
with different thresholds. Compared to the Middlebury Benchmark, for each stereo pair
in the KITTI Benchmark, there are two different regions needed to be evaluated, that is,
the whole reference image region denoted as “All” and the non-occluded region denoted
as “Noc”. Accordingly, each region has a ground truth of disparity map available.
Table 3 reports the quantitative evaluation of the five cost aggregation algorithms on the
KITTI dataset. Here the disparity results are also computed only with the WTA strategy and no
post-processing is performed. Figure 8 illustrates the visual comparisons, where the false color
disparity maps are displayed by using the KITTI development kit [8]. From Table 3, we can
see that our proposed algorithm performs better than the other methods in terms of both
average disparity error and average error rate. As can be seen in Fig. 8, there are a lot of poor
textured regions and noise such as walls and roads in the images because they are captured in
the real-world illumination condition. The local window-based cost aggregation methods such
as GF cannot effectively handle these regions. The non-local cost aggregation methods such as
MST and ST are expected to perform well in the low textured regions. Unfortunately their
performance is worse than GF in these regions especially in roads as shown in Fig. 8b. The
main reason may be that these methods are vulnerable to the noise since they omit the inherent
spatial proximity constraints between local adjacent pixels. Besides, the implicit assumption
for Cross-E method that the color edges are consistent with the depth boundaries may degrade
the cost aggregation in highly textured or noise regions. It can be found in Fig. 8 that the
disparity maps generated by our method are more smoothing and contain less bad pixels.

6 Conclusions

This paper describes a novel non-local cost aggregation based on oriented linear trees.
This proposed cost aggregation method can effectively overcome the disadvantages of
the traditional window-based aggregation methods and non-local tree-based aggregation
methods presented recently. The quantitative evaluation on, no matter whether
Middlebury benchmark of the indoor scene or KITTI benchmark of the outdoor scene,
demonstrates that the proposed method not only outperforms state-of-the-art local cost
aggregation methods, but also offers better performance than the other non-local aggre-
gation methods. The experimental results also show that the proposed aggregation
method not only produces accurate results, but also keeps linear computational complex-
ity. In the future work, the proposed aggregation method will be accelerated with CUDA
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implementations on GPU systems to achieve real-time performance. In addition, it is
noteworthy that the result of the matching cost calculation has a direct impact on the
accuracy of cost aggregation and the final output of the stereo matching. Therefore,
outstanding and robust matching cost calculation methods adapted to various conditions
will be considered and then integrated in our cost aggregation framework in order to
further improve the performance of stereo matching.
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