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It is mathematically challenging to analytically show that complex dynamical phenomena
observed in simulations and experiments are truly chaotic. The Shil’nikov lemma provides a
useful theoretical tool to prove the existence of chaos in three-dimensional smooth autonomous
systems. It requires, however, the proof of existence of a homoclinic or heteroclinic orbit, which
remains a very difficult technical problem if contigent on data. In this paper, for the Chen system
with linear time-delay feedback, we demonstrate a homoclinic orbit by using a modified undeter-
mined coefficient method and we propose a spiral involute projection method. In such a way, we
identify experimentally the asymmetrical homoclinic orbit in order to apply the Shil’nikov-type
lemma and to show that chaos is indeed generated in the Chen circuit with linear time-delay
feedback. We also identify the presence of a single-scroll attractor in the Chen system with lin-
ear time-delay feedback in our experiments. We confirm that the Chen single-scroll attractor is
hyperchaotic by numerically estimating the finite-time local Lyapunov exponent spectrum. By
means of a linear scaling in the coordinates and the time, such a method can also be applied to
the generalized Lorenz-like systems. The contribution of this work lies in: first, we treat the tra-
jectories corresponding to the real eigenvalue and the image eigenvalues in different ways, which
is compatible with the characteristics of the trajectory geometry; second, we propose a spiral
involute projection method to exhibit the trajectory corresponding to the image eigenvalues;
third, we verify the homoclinic orbit by experimental data.

Keywords : Linear time-delay feedback; Shil’nikov-type lemma; homoclinic orbit; single-scroll
hyperchaotic attractor.
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1. Introduction

Large number of chaotic phenomena have been
observed in physical experiments and in simu-
lations. However, because the amount of data
obtained in experiments are typically limited and
simulation data have finite precision, such observa-
tions may not prove to be sufficient to show the exis-
tence of chaos in the dynamics of the system under
consideration. Thereby, a theoretical proof of the
presence of chaos in an experiment is of great sig-
nificance though difficult. The famous Lorenz sys-
tem had been studied as a typical example of chaos
systems for more than 40 years, but it was shown
to be truly chaotic by using a computer-aided proof
only rather recently [Tucker, 1999].

Shil’nikov proved that if there exists a homo-
clinic or heteroclinic orbit in the dynamics of a sys-
tem and a certain eigen-condition is satisfied, then
the system has a Smale horseshoe [Shil’nikov, 1965].
Therefore, it has chaos in a mathematical sense
[Shil’nikov, 1965; Silva, 1993; Huang & Yang, 2005].
In recent years, research on homoclinic and hete-
roclinic orbits in dynamical systems has attracted
much attention [Ren & Li, 2010; Lv & Tang, 2013;
Chen, 2013; Li et al., 2013; Costa & Tehrani, 2014;
Balasuriya & Padberg-Gehle, 2014; Lima & Teix-
eira, 2013; Zhou et al., 2004; Wang et al., 2007;
El-Dessoky et al., 2012; Zheng & Chen, 2006]. The
study on the homoclinic and heteroclinic orbits
in second-order differential systems has achieved
major progress [Lv & Tang, 2013; Chen, 2013; Li
et al., 2013; Costa & Tehrani, 2014; Balasuriya &
Padberg-Gehle, 2014; Lima & Teixeira, 2013]. Zhou
et al. [2004] determined the homoclinic and hetero-
clinic orbits in the Chen system by using the unde-
termined coefficient method, which was also applied
to the Lorenz-family system [Wang et al., 2007], Lü
system, Zhou’s system [El-Dessoky et al., 2012], a
class of 3D quadratic autonomous chaotic systems
[Zheng & Chen, 2006] and the Chen system with
time-delays [Ren & Li, 2010]. But that effort did not
resolve the problem of asymmetry by time-reversal,
i.e. the problem of mixed time-reversibility [Algaba
et al., 2010, 2012, 2013a, 2013b, 2014]. A new
method suggested in [Bao & Yang, 2011] trans-
formed time into the logarithmic scale so as to avoid
converting an orbit in the infinite time-domain into
a boundary value problem. A noteworthy result
is that an approximate homoclinic orbit can be
obtained by choosing the intermediate parame-
ter [Leonov, 2013a, 2013b; Leonov et al., 2015a].

Xie [2014] discussed the issue of existing hetero-
clinic orbits connecting saddle foci, which, how-
ever, does not guarantee the existence of analytical
solutions. By modifying the boundary condition,
homoclinic or heteroclinic orbits can be determined
by predicting the orbital direction [Dong & Lan,
2014], which is difficult to implement in practical
situations. A blow-up technique was also presented
to obtain an exact homoclinic connection [Algaba
et al., 2015]; however, it is complicated to locate
the homoclinic orbits using this technique. Chen
et al. improved the perturbation method based on
nonlinear time transformation to achieve explicit
homoclinic solutions, but it can only deal with the
power-law nonlinear oscillator [Chen et al., 2017].
By finding the set of pruning domains, Huaraca and
Mendoza identified a finite set of homoclinic orbits,
if there exists a pronged singularity without rota-
tion [Huaraca & Mendoza, 2016]. Particularly, refer-
ences [Chen et al., 2017] and [Huaraca & Mendoza,
2016] gave an invariant formal expression, but failed
to analytically describe the homoclinic motion for a
general system. Lin et al. used Lyapunov–Schmidt
reduction and exponential dichotomies to derive the
general conditions under which the perturbed sys-
tem has transverse homoclinic solutions, but that
did not apply to infinite-dimensional system [Lin
et al., 2015].

In this paper, we first introduce a new method
to experimentally validate the homoclinic orbit of
the system, which is considered in the time forward
and time reversal directions separately. We apply a
modified undetermined coefficient method to obtain
the part of the orbit corresponding to the real eigen-
value of the saddle point, and then propose a spiral
involute projection method to determine the part
of the orbit corresponding to the complex eigen-
value. We identify a single-scroll chaotic attractor in
the nonchaotic Chen system with linear time-delay
feedback from an experiment, and our proposed
method is successfully applied to identify the homo-
clinic orbit from experimental data of the single-
scroll chaotic attractor. By using the Shil’nikov-
type lemma, we show the existence of chaos in the
system. Compared to the existing methods that
confuse the time forward and time reversal direc-
tions, the proposed method is a general method to
show the presence of the Shil’nikov-type homoclinic
orbit. To the authors’ best knowledge, this method
is being used in delay-differential equation for the
first time.
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The organization of this paper is as follows.
In Sec. 2, we present a modified undetermined
coefficient method and the spiral involute projec-
tion method to identify the homoclinic orbit in the
dynamical system. In Sec. 3, we show the experi-
mental results of the single-scroll attractor in the
Chen system with linear time-delay feedback. The
simulations are used as a guide to implement the
proposed techniques for experimental data. Based
on that, by using the Shil’nikov-type lemma, we
show that the experimental Chen system with linear
time-delay feedback is truly chaotic. Conclusions
are given in Sec. 4.

2. The Improved Analytical
Homoclinic Solutions in the
Chaotic System

2.1. Shil ’nikov criterion for
homoclinic orbit

Consider a third-order dynamical system:

dx
dt

= f(x), t ∈ R, x ∈ R3, (1)

where f : R3 → R3, f ∈ Cr, r ≥ 2. If there exists Xe

that satisfies f(Xe) = 0, then Xe is an equilibrium
of system (1). Xe is referred to as a hyperbolic sad-
dle foci if the eigenvalue of Xe satisfies the following
Shil’nikov inequalities:

ω �= 0, γσ < 0, |γ| > |σ| > 0, (2)

where γ is the real eigenvalue, and σ ± jω are a
pair of complex eigenvalues corresponding to the
equilibrium.

In dynamical systems, a heteroclinic orbit is a
trajectory in phase space which connects two dif-
ferent equilibrium points. A homoclinic orbit of the
system (1) is a trajectory that is asymptotic to the
same saddle focus both as t → ∞ and t → −∞, as
shown in Fig. 1.

Another necessary concept is that of Poincaré
map. A plane denoted by Γ ⊂ R2 cuts transversely
across the recurrent behavior close to homoclinic or
heteroclinic orbit. Define a 2D map P : U ∈ Γ → Γ,
where the neighborhood U designates those points
that return to Γ at least once along the orbit of sys-
tem (1). Thus, P defines a 2D discrete dynamical
system xk+1 = P (xk), k = 0, 1, . . . , which charac-
terizes system (1). For the case of homoclinic orbit
(or heteroclinic orbit), this particular Poincaré map

Fig. 1. A homoclinic orbit illustration.

(called the Shil ’nikov map) guarantees that the
system is chaotic in a rigorous mathematical sense.
In the following, we aim to give an analytical
representation, based on experimental data of the
homoclinic orbit in the Chen system with linear
time-delay feedback.

2.2. The part of the homoclinic
orbit corresponding to the
complex eigenvalues

From Fig. 1, the homoclinic orbit consists of two
parts: one part of the homoclinic orbit approaches
(departs from) the equilibrium point monotonically,
which corresponds to the negative (positive) real
eigenvalue; another part of the homoclinic orbit
departs from (approaches) the equilibrium point
in an oscillatory way, corresponding to the com-
plex eigenvalues with positive (negative) real part.
The analytical solutions of the two parts are signif-
icantly different. Notice, however, that the previous
methods do not distinguish between the two parts
[Algaba et al., 2010, 2012, 2013a, 2013b, 2014].

Here, we assume that the projection of the part
of the orbit that corresponds to the complex eigen-
values with respect to a plane I is a spiral involute.
Plane I is represented by X1O1Y1 in the coordi-
nate system O1 with origin at the equilibrium point.
If we know the coordinates of the plane I, we can
convert any trajectory in I into the original coor-
dinate system by utilizing RPY (Roll-Pitch-Yaw)
method about rotation angles. Thus, it is then pos-
sible to derive the part of the homoclinic orbit cor-
responding to the image eigenvalue in the original
coordinates.
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Suppose that the origin of coordinate of the
new origin O1 in the original coordinate system is
P0(x0, y0, z0). The rotation angles of the unit vec-
tor (X1, Y1, Z1) in the new coordinate system O1

with respect to the X-, Y - and Z-axes of the origi-
nal coordinate system O are εx, εy, εz, respectively.
The rotation matrix from the O1 coordinate system
to the O coordinate system is given by

O
O1R(εx, εy, εz) = R(x, εx)R(y, εy)R(z, εz), (3)

where

R(x, εx) =



1 0 0

0 cos(εx) −sin(εx)

0 sin(εx) cos(εx)


, (4)

R(y, εy) =




cos(εy) 0 sin(εy)

0 1 0

−sin(εy) 0 cos(εy)


, (5)

R(z, εz) =



cos(εz) −sin(εz) 0

sin(εz) cos(εz) 0

0 0 1


. (6)

By utilizing RPY method, an arbitrary point fO1 in
the coordinate system O1 transforming into a point
fO in the coordinate system O is

fO = O
O1RfO1 + P0. (7)

Using Eqs. (3)–(7), we obtain the normal vector
H = (A1, A2, A3) of the plane I in the coordinate
system O. Then, the equation of plane I that passes
through the point P0(x0, y0, z0) and with H as a
normal vector is given by

A1x+A2y +A3z +D = 0, (8)

where

D = −A1x0 −A2y0 −A3z0. (9)

The standard spiral involute equation in plane I is
assumed to be

x1(t) = eσtβ cos(ωt),

y1(t) = eσtβ cos
(
ωt+

π

2

)
,

z1(t) = 0,

(10)

where β denotes a constant of the distance between
adjacent spirals in Eq. (10). The projection trans-
formation from the original coordinate system O to
plane I is given as


x1(t) = x(t) −A1Φ(t),

y1(t) = y(t) −A2Φ(t),

z1(t) = z(t) −A3Φ(t),

(11)

where

Φ(t) =
A1x(t) +A2y(t) +A3z(t) +D

A2
1 +A2

2 +A2
3

.

Denote χ = A2
1 +A2

2 +A2
3. Then, we have



x1

y1

z1


 = N †



x(t)

y(t)

z(t)


−




DA1

χ

DA2

χ

DA3

χ



, (12)

where

N =




1 − A2
1

χ
−A1A2

χ
−A1A3

χ

−A1A2

χ
1 − A2

2

χ
−A2A3

χ

−A1A3

χ
−A2A3

χ
1 − A2

3

χ




†

,

where the notation “†” is the inverse matrix for a
nonsingular matrix (or pseudo-inverse matrix for
singular matrix), (x(t), y(t), z(t)) is the part of
the homoclinic orbit corresponding to the complex
eigenvalues of the Chen system with linear time-
delay feedback dependence of x1, y1, z1 on time t.
So, we have



x(t)

y(t)

z(t)


 = N



x1(t)

y1(t)

z1(t)


+N




DA1

χ

DA2

χ

DA3

χ



. (13)

1950114-4



August 21, 2019 11:52 WSPC/S0218-1274 1950114

Existence of Chaos in the Chen System with Linear Time-Delay Feedback

Finally, we get the equations of the part of the homoclinic orbit corresponding to the complex eigenvalues
in the coordinate system O, given as



x(t) = N11

(
x1(t) +

DA1

χ

)
+N12

(
y1(t) +

DA2

χ

)
+N13

(
z1(t) +

DA3

χ

)
,

y(t) = N21

(
x1(t) +

DA1

χ

)
+N22

(
y1(t) +

DA2

χ

)
+N23

(
z1(t) +

DA3

χ

)
,

z(t) = N31

(
x1(t) +

DA1

χ

)
+N32

(
y1(t) +

DA2

χ

)
+N33

(
z1(t) +

DA3

χ

)
.

(14)

2.3. The part of the homoclinic
orbit corresponding to the real
eigenvalue

For the part of the homoclinic orbit correspond-
ing to the real eigenvalue, we use the scaling log-
arithm change series method proposed in [Bao &
Yang, 2011] and a modified undetermined coeffi-
cient method to get the analytical expression of this
part of the homoclinic orbit.

For t > 0, let

t =
1
T

ln(η), (15)

where η is the new time variable, and T is an unde-
termined positive real constant, referred to as scal-
ing factor. Substituting (15) into (1) gives dx

dη =
f(x) 1

Tη , i.e.

Tη
dx
dη

= f(x). (16)

The equation of the part of the homoclinic orbit
corresponding to the real eigenvalue is given by




x(t) = x0 +
∞∑

k=1

akη
k,

y(t) = y0 +
∞∑

k=1

bkη
k,

z(t) = z0 +
∞∑

k=1

ckη
k,

z(t− τ) = z0 +
∞∑

k=1

cke
−T (t−τ)k,

(17)

where (x0, y0, z0) = C+ represents equilibrium,
ak, bk, ck (k = 1, 2, 3, . . . , n) are undetermined coef-
ficients. Substituting (17) into (16), we have




Tη

∞∑
k=1

kakη
k−1 = fi

(
x0 +

∞∑
k=1

akη
k, y0 +

∞∑
k=1

bkη
k, z0 +

∞∑
k=1

ckη
k

)
,

T η

∞∑
k=1

kbkη
k−1 = fi

(
x0 +

∞∑
k=1

akη
k, y0 +

∞∑
k=1

bkη
k, z0 +

∞∑
k=1

ckη
k

)
,

T η

∞∑
k=1

kckη
k−1 = fi

(
x0 +

∞∑
k=1

akη
k, y0 +

∞∑
k=1

bkη
k, z0 +

∞∑
k=1

ckη
k

)
.

(18)

By comparing the coefficients of the term η1 in (18), we have

(TE + J(C+))



a1

b1

c1


 = 0, (19)
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where J(C+) is the Jacobian of the system eval-
uated at the equilibrium C+, and E is an identity
matrix. By choosing parameter T such that (19) has
a nontrivial solution, we have T . Using the undeter-
mined coefficients, we can determine all coefficients
ak, bk, ck (k ≥ 2) and β, which are completely deter-
mined by a1, b1, c1.

After this intersection point (xn, yn, zn) is
determined, according to the continuity of the orbits

∞∑
k=1

ak = xn − x0,

∞∑
k=1

bk = yn − y0,

∞∑
k=1

ck = zn − z0,

we can find a1, b1, c1 and β. And then we can use
the undetermined coefficient method to obtain the
coefficients of Eq. (18), getting then the analytic
solutions of homoclinic orbit.

Now we have to prove the convergence of the
solution. Because

∑∞
k=1 ak is bounded, there exists

an M > 0 such that
∑∞

k=1 ak ≤M . Consequently,
∞∑

k=1

akη
k ≤M

∞∑
k=1

ηk = M
∞∑

k=1

eTkt

is convergent on t ∈ (0,+∞). However, we have
limt→+∞ eTkt = 0, so the series x(t) is convergent
to x0. Similarly, the convergence of the series y(t)
and z(t) can be shown.

Note that, the algorithms for computation of
homoclinic orbit in the chaotic system in this work
is sufficiently different from that in [Leonov, 2013b],
where the authors proved that the existence of
homoclinic orbit can be justified using the Fish-
ing principle, which is based on the construction
of a special two-dimensional manifold so that the
separatrix of the saddle of the system could inter-
sect the manifold. From the Fishing principle, the
homoclinic orbit can be obtained by a numerical
procedure to approximate parameters, yet the ana-
lytical solution of the homoclinic orbit of the system
could not be derived. Different from the method in
[Leonov, 2013b], we first treat the different trajec-
tories corresponding to real eigenvalue and image
eigenvalues differently, which is the important con-
tribution of this work; then, the analytical solution
of the homoclinic orbit of the system is formulated
in this paper; finally, we identify the homoclinic
orbit and demonstrate it by the experimental data
and numerical plot.

3. Homoclinic Orbit of the
Single-Scroll Attractor in the
Chen System with Linear
Time-Delay Feedback

To demonstrate the proposed method in this paper,
we consider the Chen system with linear time-delay
with a single-scroll attractor.

3.1. The single-scroll attractor in
the Chen system with linear
time-delay feedback

In 1999, Chen et al. reported a new chaotic system,
which resembles some familiar features from the
Lorenz attractors, called the Chen system [Chen &
Ueta, 1999]. The Chen system with linear time-
delay feedback is given as [Ren & Li, 2010; Ren
et al., 2006]

ẋ(t) = a(y(t) − x(t)),

ẏ(t) = (c− a)x(t) − x(t)z(t) + cy(t),

ż(t) = x(t)y(t) − bz(t) + k(z(t) − z(t− τ)),

(20)

where a = 35, b = 3, c = 18.35978, k is the time-
delay feedback gain.

The addition of linear time-delay feedback to
the nonchaotic Chen system has been shown to pro-
duce double-scroll attractors [Ren & Li, 2010; Ren
et al., 2006] and multiscroll attractor [Ren et al.,
2017].

In this paper, we show that the Chen system
with linear time-delay feedback also demonstrates
a single-scroll attractor for parameters k = 2.85,
τ = 0.3. The experimental results of the single-scroll
attractor are shown in Fig. 2. The initial conditions
of the attractor are x(0) = 2.27, y(0) = 2.27, z(0) =
1.72, z(t) = 0, when −τ ≤ t ≤ 0. Figure 2(d) shows
that the x-waveform obtained from the experiment
is broadband. Our experimental circuit implemen-
tation of the Chen system with linear time-delay is
given in the Appendix in detail.

The third equation of system (20) is a time-
delay differential equation, which can be converted
into ordinary differential equation by using the
method in [Ren et al., 2017]. Using the method
to calculate finite-time local Lyapunov exponent
spectrum in [Kuznetsov et al., 2018; Leonov &
Kuznetsov, 2007; Leonov et al., 2015b], we obtain
the finite-time local Lyapunov exponent spectrum
of the Chen system with linear time-delay. The two

1950114-6
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Ch1 Ch12.00 V 2.00 V
Ch1 2.00 V2.00 V Ch2

(a) (b)

Ch1Ch1 2.00 V 2.00 V

(c) (d)

Fig. 2. The single-scroll attractor in the experimental Chen system with linear time-delay feedback, (a) trajectory in the
x–y plane, (b) trajectory in the y–z plane, (c) trajectory in the x–z plane and (d) time-domain waveform of x and its power
spectrum.

largest nonzero exponents are 0.8055 and 0.12. In
order to further show that the attractor generated
by the Chen circuit with direct time-delay feedback
is indeed chaotic, we apply the proposed method to
identify the homoclinic orbit of the system and then
use the Shil’nikov-type lemma to show the existence
of chaos.

3.2. The existence of chaos in the
Chen system with linear
time-delay feedback

The Shil’nikov theorem has been updated for high-
dimensional systems according to the literature
[Glendinning & Tresser, 1985], which is referred to
as Shil’nikov-type lemma. For DDE systems (20),

there exist an infinity of eigenvalues, as shown in
Fig. 3. Complex eigenvalues are denoted as λi,j =
−σi,j ± iωi,j, (i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , n)
(where σi,j > 0 and ωi,j �= 0) and real number eigen-
values are denoted as γdi (di = n+1, n+2, . . .), the
Shil’nikov-type lemma is given as follows.

Shil’nikov-Type Lemma (Homoclinic Orbits
[Glendinning & Tresser, 1985]). Suppose that O+

is a saddle focus whose eigenvalues satisfy condi-
tions (i)–(iii):

(i) λi,j = −σi,j ± iωi,j, (σi,j > 0), γdi > 0
(di = n + 1), γdi ≤ 0 (di = n + 2, . . .), and
γdi > σi,j, 2σi,j + γdi < 0;

1950114-7
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Fig. 3. Characteristic roots for the equilibrium O+.

(ii) λi,j = σi,j ± iωi,j, (σi,j > 0), γdi ≤ 0 (di =
n + 1, n + 2, . . .), and γdi < −σi,j, 2σi,j +
γid < 0;

(iii) λi,j = ±σi,j ± iωi,j (σi,j > 0), no γdi exists,
and all σi,j are not equal to each other,

and there exists a homoclinic orbit that connects O+

to itself, then the Shil ’nikov map, defined in a neigh-
borhood of the homoclinic orbit that connects O+,
has a countable number of Smale horseshoes in its
dynamics and the system exhibits chaos.

The lemma provides a way to show the exis-
tence of chaos in an experimental attractor as that
demonstrated (by Fig. 2) in the Chen system with
linear time-delay.

The lemma can be applied for the single-scroll
attractor of Chen system with linear time-delay
feedback because of the following:

(1) C+ is a hyperbolic saddle focus:

System (20) has three equilibria:

O0 : (0, 0, 0); O+ : (x0, y0, z0);

O− : (−x0,−y0, z0),

where x0 = y0 =
√
b(2c − a), z0 = 2c− a.

The characteristic equation at O+ is

λ3 + (a+ b− c− k)λ2 + [bc+ ck − ak]λ

+ 4abc− 2a2b+ [λ2 + (a− c)λ]ke−λτ

= 0. (21)

For the typical parameters set: a = 35, b = 3,
c = 18.35978, k = 2.85, τ = 0.3, the real eigen-
values are given by γ1 = −4.3578, γ2 = −16.60,
and two of the complex eigenvalues are given by
σ1,2 ± iω1,2 = 0.6517 ± i5.7533, therefore, O+ is a
hyperbolic saddle focus. The second condition of the
Shil’nikov-type lemma criterion is satisfied.

(2) There exists a homoclinic orbit passing O+:

For system (20) with typical parameters, accord-
ing to the method in Sec. 2, let P0 = (2.271277,
2.271277, 1.71956), εx = π/4.35, εy = π/4.35, εz =
π/1.998. We obtain the part of the homoclinic orbit
corresponding to the complex eigenvalues.

In general, the domains V + and V − exist in the
stable invariant manifold W s

loc and in the unstable
invariant manifold Wu

loc, respectively. If the stable
and unstable manifolds intersect, then this intersec-
tion must be nontransverse; their intersection must
lie on both manifolds. Definition of the intersection
set M+{(x, y, z) : (x, y, z) ∈ V + ∩ V −} within the
invariant set of both stable and unstable manifolds
of the dynamical system [Shil’nikov et al., 1998],
if it exists, will drift into the equilibrium. In this
paper, M+ was obtained through experiments, as
shown in Fig. 4. We define ξ(xn, yn, zn) ∈ M+ as
the intersection point.

The intersection point is given as ξ = (0.3491,
0.4002,−1.5145), then we have T = −17.5288, β =
2.295, A1 = 0.661, A2 = −0.496, A3 = 0.563, D =
−1.343, a1 = −1.968, b1 = −1.7814, c1 = −2.3857.

Ch1 Ch12.00 V 2.00 V

The local invariant

set M+

********

Fig. 4. The single-scroll attractor in the experimental Chen
system with linear time-delay feedback trajectory in the y–z
plane, the experimental result from the observed data.
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Fig. 5. Trajectories of x, y, z of the homoclinic orbit of the
Chen system with linear time-delay feedback.

According to these parameters, the analytic solu-
tions of homoclinic orbit are obtained. The time-
domain waveform and phase plot of the homoclinic
orbit are given in Figs. 5 and 6, respectively.

To this end, the homoclinic orbit approaching
O+ in both time forward and backward directions
are obtained from the experiment. The eigenvalues
of O+ satisfy condition (ii) in the Shil’nikov-type
lemma. In conclusion, we experimentally validate
the presence of a homoclinic orbit in the Chen
system with linear time-delay feedback. Further-
more, according to the Shil’nikov criterion, the
Chen system with linear time-delay feedback does
have Smale horseshoes and, hence, chaos.

Since O− and O+ have similar properties, there
also exists a homoclinic orbit across O−. Therefore,
it also has chaos at O−, which is symmetrical to the
attractor given in Fig. 2.
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Fig. 6. Visualization of 3D homoclinic orbit of the Chen
system with linear time-delay feedback using experimental
data.

3.3. Method extension to the
generalized Lorenz-like system
with linear time-delay

The generalized Lorenz-like system with time-delay
is given by


ẋ = σ(y − x),

ẏ = rx− dy − xz,

ż = xy − bz + k[z − z(t− τ)],

(22)

where σ, r, d, b, and k are parameters.
The aforementioned Chen system with linear

time-delay as given by Eq. (20) is one case of
this generalized Lorenz-like system. To see this
point, using the following transformation [Leonov &
Kuznetsov, 2015]

x→ −hX, y → −hY, z → −hZ, ψ = −ht,
(23)

when h = c, the Chen system with linear time-delay
in Eq. (20) becomes



dX

dψ
= −a

c
(Y −X),

dY

dψ
=
(a
c
− 1
)
X − Y −XZ,

dZ

dψ
=
b

c
Z +XY − k

c
[Z − Z(t− τ)].

(24)

Considering the Lorenz system with linear
time-delay



dX

dt
= σ(Y −X),

dY

dt
= ρX − XZ − Y,

dZ

dt
= XY − βZ +K(Z(t) − Z(t− τ)),

(25)

we know that the two systems are homothetic copies
[Algaba et al., 2013c] by replacing parameters in
Eq. (25) with

σ = −a
c
, ρ =

a

c
− 1, β = −b

c
, K = −k

c
.

(26)

Therefore, for c �= 0, the Chen system with lin-
ear time-delay in (24) is equivalent to the Lorenz

1950114-9
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system with linear time-delay in the particular case
where the parameter is ρ+ σ = −1.

The method to identify the homoclinic orbit in
this section can be used in the generalized Lorenz-
like system with linear time-delay, including the Lu
system, the Chen system and the Lorenz system,
all with time-delay. All these systems can be trans-
formed to the same algebraic form by a transfor-
mation with the inversion of time, and such trans-
formation preserves the homoclinic orbit [Leonov &
Kuznetsov, 2015].

4. Conclusions

In this paper, we first propose an analysis for the
existence of a homoclinic orbit by using the spiral
hypothesis and improved undetermined coefficients
method, whose method is a general method to find
the homoclinic orbit; it can be easily extended to
the Lorenz-like systems. Then, we generate experi-
mentally a single-scroll hyperchaotic attractor from
the Chen circuit with linear time-delay feedback,
identifying the homoclinic orbit from data. Finally,
we use the Shil’nikov-type lemma to show that
the experimental single-scroll attractor is indeed
chaotic.
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Appendix A

In order to get the single-scroll attractor experi-
mentally, we build a circuit to implement the time-
delay. The existing methods for circuit implemen-
tation of time-delay include the delay-line method,
which can generate very high and ultra-high fre-
quency hyperchaotic oscillations [Mykolaitis, 2003],
a T-type LCL network [Namajunas et al., 1995],
a digital sampling and replying with memory shift
method [Wang et al., 2001; Ren & Li, 2010], the all-
pass filter method [Hu, 2009], and chains of n Bessel
filters [Buscarino et al., 2011]. In this paper, we use
cascaded time-lag units to realize time-delay. Com-
pared with the other methods, our proposed method
is simpler in circuit implementation. The circuit of
time-lag unit used is shown in Fig. 7.

The transfer function of the time-lag unit is:

G(s) =
K

Ts+ 1
=

RL2

RL1(1 +RL2CLs)
, (A.1)
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Fig. 7. The time-lag unit.

where T =RL2CL is the time constant andK = RL2
RL1

is gain.1 Amplitude-frequency and phase-frequency
characteristics of the unit are

|G(jω)| =
K√

1 + (Tω)2
,

∠G(jω) = −arctan(Tω). (A.2)

By using n time-lag units cascade, we obtain

|G′(jω)| =


 K√

1 + (Tω)2




n

,

∠G′(jω) = −n arctan(Tω), (A.3)

where T = τ
n . If n is large enough, then T is

small enough, therefore we have |G′(jω)| ≈ Kn,
∠G′(jω) ≈ −τω.

When the time constant is small enough, the
time-lag units can be approximated as a pure delay.
The cascaded time-lag units can thus realize the
time-delay τ approximately. As n is increased, a
more accurate approximation is achieved, but a
larger number of units is needed. In our experiment,
we use 15 time-lag units to approximate the time-
delay 0.3 after. Because the amplitude-frequency
characteristics of the time-lag unit is not 1, we can
add a proportional element in the cascade circuit
to compensate the amplitude-frequency character-
istics, so as to make the amplitude of the cascaded
units to be 1.

The schematic diagram of 15 cascaded time-
lag units realizations of the time-delay is shown in
Fig. 8, where an operational amplifier on the right
corresponds to the amplitude compensation unit
which guarantees the gain of the signal to be equal
to 1. In Fig. 8, there are 13 cascaded identical time-
lag units between the first one and the fifteenth one,
that are represented by the notation “. . . ”.

The schematic diagram of the Chen system is
shown in Fig. 9, where R1 = R2 = R3 = R4 =
R6 = R7 = R13 = R14 = R16 = R17 = R19 =
R21 = R22 = R23 = R24 = 10kΩ, R5 = 2.86MΩ,
R8 = 16500Ω, R9 = 3kΩ, R10 = 18215Ω, R11 =
60000Ω, R12 = 1000Ω, R15 = 3.33MΩ, R18 =
1765Ω, R20 = 10MΩ, R25 = 1kΩ, R27 = R28 =
R29 = R30 = 10kΩ, C1 = C2 = C3 = 10000 pF,
R26 = 285Ω, R26 determines the delay feedback
gain k of system (20).

According to the circuit schematic diagram, the
circuit equation is given in Eq. (A.4) (the circuit

Fig. 8. The schematic diagram of the time-delay implementation circuit.

1The phase inverter is ignored at the output of the operational amplifier.

1950114-12



August 21, 2019 11:52 WSPC/S0218-1274 1950114

Existence of Chaos in the Chen System with Linear Time-Delay Feedback

1R

2R

3R

4R

5R
6R

7R

9R

10R

8R

12R

11R

13R

14R

15R

16R

17R
18R

19R

20R

21R

22R

23R

24R

25R

26R

27R

28R

29R

30R

1C

2C

3C

Fig. 9. The schematic diagram of the Chen system.

design refers to [Zhong & Tang, 2002; Ren & Li, 2010]),




ẋ =
−R3(R1 +R4)

R1R5C1(R2 +R3)
x+

R4

R1R5C1
y

ẏ = R14R11(R9 +R12)
−R7R8x+R6R10y

R6R9R13R15C2(R8R11 +R10R11 +R8R10)
− R14R12

R9R13R15C2
xz

ż = − R30(R27 +R29)
R20R27C3(R30 +R28)

(
R18(R16 +R19)
R16(R17 +R18)

z − R19

R16
xy

)

+
R29

R27R20C3

(
−R24R26(R21 +R23)
R21R25(R22 +R24)

zd +
R23R26

R21R25
z

)
(A.4)
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where zd represents z(t− τ). The circuit parameters are

R3(R1 +R4)
R1R5C1(R2 +R3)

=
R4

R1R5C1
= a

R14R11(R9 +R12)
−R7R8

R6R9R13R15C2(R8R11 +R10R11 +R8R10)
= c− a

R14R11(R9 +R12)
R6R10

R6R9R13R15C2(R8R11 +R10R11 +R8R10)
= c

R30(R27 +R29)
R20R27C3(R30 +R28)

R18(R16 +R19)
R16(R17 +R18)

= b

R29

R20R27C3

R23R26

R21R25
=

R29

R27R20C3

R24R26(R21 +R23)
R21R25(R22 +R24)

= k.

(A.5)

By adding linear time-delay feedback to the
nonchaotic Chen circuit, with feedback parameters
k = 2.85, τ = 0.3, we get experimentally a single-
scroll attractor as shown in Fig. 2 in the main
text. The results indicate that the linear time-delay
feedback can produce a single-scroll attractor from

the nonchaotic Chen system. The above time-delay
experimental implementation method using cascade
time-lag units is simpler and easier to integrate than
the other methods [Ren et al., 2017].
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