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Abstract
The watershed hydrological model is regarded as a powerful tool for simulating streamflow, but it is subject to many uncer-
tainties. TOPMODEL (TOPography-based hydrological MODEL) is used as hydrological modeling in this paper; general
likelihood uncertainty estimation (GLUE) and multi-criteria GLUE (M-GLUE) methods are applied to evaluate the uncertain
effect of model parameters on streamflow simulation, and three climate models are used to investigate the uncertain effect of
meteorological input data. A new parameter calibration method (cuckoo search algorithm) is proposed in this study. Taking
Beiluo River basin as a study case, analysis of the simulation results reveals that the cuckoo search algorithm is applicable and
effective in optimizing the model parameters. The Morris and GLUE methods are employed to analyze the sensitivity of the
parameters, and the two methods consistently demonstrated that there are three sensitive parameters in TOPMODEL.
Additionally, the results of M-GLUE method are superior to the GLUE method, and both methods can effectively analyze the
uncertainty of parameters. The precipitation and potential evaporation predicted by the three climate models exhibit an increasing
trend, and the simulated average annual streamflow of the climate systemmodel of the Beijing Climate Center (BCC-CSM1.1) is
optimal and followed by Centre National de Recherches Météorologiques Earth system model (CNRM-CM5) and Canadian
Earth System Molde (CanESM2). However, results obtained by all the three methods are greater than the baseline period value,
indicating that the diverse input data of the hydrological model lead to uncertainty in the streamflow simulation.

1 Introduction

Hydrological model is a simplified description of the rainfall-
runoff process in a watershed. Combining the mathematical
equations with the parameters which representing the runoff
yield and concentration characteristics of a watershed, hydro-
logical models are widely used in hydrological forecasting
(Bingeman et al. 2006; Sun et al. 2014a, b; Li et al. 2014;
Suliman et al. 2016). To apply the hydrological models to the
actual forecasting, determination of parameters is the key step.
Numerous researches on hydrological simulation have been
performed over the past few decades. In modern flood forecast-
ing, hydrological response to climate change and human activ-
ities, eco-hydrological process simulation, and water resources

planning and management are widely used. After decades of
development, distributed hydrological model has become an
important tool for the hydrological simulation. Furthermore,
the development of hydrological models took a big step for-
ward after the integration of GIS/RS technology (Gong et al.
2011; Samadi et al. 2013; Dommenget 2016). Due to the simple
structure and physical mechanism, TOPMODEL has been
widely implemented for terrain analysis and streamflowmodel-
ing in regional or global climate models (Schmidt and Persson
2003). However, uncertainties in the simulation and forecasting
appeared when using hydrological models (Choi and Beven
2007; Her and Chaubey 2015). Based on the prior distribution
of parameters, the GLUEmethod for evaluating the uncertainty
of the hydrological model is used, and the posterior probability
distribution of the parameters is deduced by subjectively judg-
ing the threshold of the likelihood function of the parameter.
The GLUE method does not seek the Bbest^ set of the param-
eters, but simulates multiple parameter sets to adapt to the un-
certainty of model parameters’ evaluation; Therefore, the un-
certainty range of hydrological simulation with given confi-
dence level is determined. Moreover, the simulated characteris-
tics are described by means of simulated intervals, such as
coverage rate (CR), interval width (IW), and interval symmetry
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(Beven and Freer 2001; Sun et al. 2014a, b; Her and Chaubey
2015). However, due to the objective function, the uncertainty
interval of the hydrological process simulation is large. Any
single objective function is valid for certain states (such as a
high water level) of the hydrological process, but not for other
states of the hydrological process (such as a low water level).
Hence, various observation data must be used to measure the
hydrological process characteristics from different perspectives
when selecting parameters of the hydrological model. To ad-
dress these perspectives, the M-GLUE is more advantageous,
as it uses multi-target hydrological model parameters. M-
GLUE evaluates the uncertainty of the hydrological model pa-
rameters by using likelihood functions which avoid the failure
of considering complex hydrological processes inherent in a
single objective function.

Parameter calibration is the primary concern in the hydro-
logical model application. At present, the commonly current
methods to determine parameters are artificial adjustment.
However, the manual adjustment of parameters (Zappa and
Kan 2007) is subjective and time-consuming, particularly
when multiple objective functions are used (Seibert 2000).
As a consequence, a series of automatic calibration methods
has been developed, which can avoid human subjectivity and
select the optimal parameters from a lot of immediate param-
eter sets. Simultaneously, large quantity of random parameter
sets are tested to find the optimal ones, and then the optimal
parameters are manually refined (Konz and Seibert 2010;
Hauser et al. 2012). Consequently, the best parameters are
obtained by simulating evolution (Seibert 2000). Moreover,
a cuckoo search (CS) algorithm is applied to calibrate the
parameters of the hydrological model which is rarely used in
other studies (Ming et al. 2018a, 2018b). In addition, the com-
bination of the CS algorithm with the hydrological model can
find the optimal parameters quickly and accurately while
avoiding subjectivity.

The Beiluo river basin (BLR) is the longest tributary of the
Weihe River basin (WRB) and is the second-level tributary of
the Yellow River basin (YRB). Natural streamflow is the basis
for maintaining the balance of a watershed ecosystem and for
the sustainable development of society and the economy.
Overall, the annual and seasonal precipitation tend to de-
crease, while temperature shows an increasing trend. The
streamflow presents a significant decreasing trend in the
WRB over the past few decades (Chang et al. 2015). The
streamflow variability in the BLR basin has attracted the at-
tention and interest of local government and academic re-
search. It is important to analyze the impact of climate change
on streamflow in the BLR by using hydrological modeling.
However, there are still challenges for the local water man-
agers to understand hydrological changes of the BLR.

The combination of the climate model and the hydrological
model has a good performance on predicting the future
streamflow (Jung and Chang 2011; Solaiman et al. 2011;
Okkan and Fistikoglu 2014). This study investigates model
simulations based on three GCMs taking part in CMIP5 and
combines the climate models with TOPMODEL to analyze
the future streamflow changes. Besides, the CS algorithm is
used to calibrate the model parameters, and the GLUE andM-
GLUE methods are applied to analyze the TOPMODEL pa-
rameters uncertainty.

2 Study area and data

The BLR basin, an area of 26,900 km2 with a length of
680 km, is located in China in the temperate zone at the tran-
sition from semi-humid to semi-arid (Fig. 1). Themean annual
precipitation is range from 510 to 540 mm. The climatic char-
acteristics are mild, cool, and dry in winter and hot in summer,
and the annual mean temperature is 7.5 °C. The average

a b

c
Fig. 1 Location of the study area.
a The Yellow river of China. b
The Weihe river basin. c the BLR
basin. Green dots mean weather
stations and green triangle means
hydrological station
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annual natural streamflow is 8.2 × 108 m3. Zhuangtou flow
gauging station is the outlet station of the BLR.

In this study, the meteorological data (1960–2010), includ-
ing precipitation, relative humidity, temperature, and wind
speed, of seven stations were collected from the China
Meteorology Administration. The Digital Elevation Mode
(DEM) is provided by the Geospatial Data Cloud of China.
Daily streamflow data are collected from the Zhuangtou hy-
drological station from the Shaanxi Hydrometric and Water
Resource Bureau. The Penman-Monteith method is used to
estimate the potential evaporation.

3 Methodology

3.1 Hydrological modeling

In this paper, TOPMODEL, a semi-distributed hydrological
model proposed by Beven and Kirky in 1979 based on a
topographic index, is used as the hydrological model to sim-
ulate the streamflow. TOPMODEL is based on the theory of
variable flow area, and its main idea focuses on the basis of
research on topographic index. When the water content in the
aerated zone reaches a saturated water content, the water in the
soil becomes free water and flows completely under the action
of gravity. Due to the vertical drainage and lateral water move-
ment in the basin, the groundwater level in some basin areas
rises to the surface of the ground to become a saturated sur-
face, and the streamflow only occurs on this saturated surface
(i.e., the saturated source area). In the whole precipitation
process, the source area is constantly changing, and its loca-
tion is affected by two factors: watershed topography and soil
hydraulic characteristics. The TOPMODELmodel determines
the size and location of the source area by soil moisture con-
tent. The soil water shortage (D) is the difference between the
soil water content and the saturated water content, and the area
of Di ≤ 0 is the saturated source area, and saturated surface
streamflow will be generated in these areas. The formula for
calculating D is as follows:

α
∂ j
∂x

−
∂D
∂t

¼ i− jð Þ ð1Þ

where α is the coefficient, j is the flow of the source area, D is
the soil water shortage, x is the curve water flow path along the
steepest slope, t is the time, and i is the rainfall intensity.

The three basic assumptions of the model are that the hy-
draulic gradient of saturated groundwater approximates the lo-
cal topographic slope of the surface, and the soil conductivity is
the exponential decreasing function of the water shortage, and
the production flow j is spatially equal. According to the above
assumptions, the following formula can be obtained:

D−Di

szm
¼ ln

α
tanβ

−λ
� �

ð2Þ

λ ¼ 1

A
� ∑

i
Ailn

α
tanβ

ð3Þ

where, D is the average water shortage, Di is the water short-
age of the ith grid, szm is the rate coefficient when the soil
infiltration rate is exponentially decayed, α is the single wide
area upstream of the grid, tanβ is the surface topography slope,
A is the basin area, and ln α

tanβ is called the terrain index.
TOPMODEL has been widely used because of its relative-

ly simple structure and few parameters (Romanowicz and
Beven 1998). Many studies have found that TOPMODEL
provides a better simulation effect after parameter calibration.
TOPMODEL has seven parameters, and the ranges of the
TOPMODEL parameters are listed in Table 1 (Van et al.
2013). In recently years, TOPMODEL has been widely ap-
plied in humid and semi-humid watersheds, as well as in semi-
arid zone basins such as the YRB in China (Lin et al. 2010;
Xiong and Guo 2004; Chang et al. 2016). The works demon-
strate that this model has a wide range of applications.

3.2 CS, GLUE, and M-GLUE methods

All of the hydrological model parameters must be optimized.
In this paper, a CS algorithm is adopted to optimize the
TOPMODEL parameters. The CS algorithm is better than

Table 1 Ranges of parameters used by TOPMODEL

Parameter Unit Physical meaning Minimum
value

Maximum
value

Sampling
strategy

SRmax m Root zone available water storage capacity 0 0.5 Uniform

SR0 m Initial stream discharge represented 0.001 0.1 Uniform

M m Maximum moisture deficit 0.01 1 Uniform

T0 m2 h−1 Transmissivity of the soil profile at full
saturation

0 102 Uniform

Td h Time parameter 0.01 24 Uniform

Rv mh−1 Channel flow routing velocity inside catchment 0 2000 Uniform

CHv mh−1 Channel and overland flow routing velocity 0 10,000 Uniform
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the traditional manual parameter adjustment and can quickly
and intelligently calibrate the model parameters. The CS cal-
ibration method has the advantages of fast convergence, high
convergence accuracy, and less parameters and so on. The
significant high efficiency of CS is due to two key mecha-
nisms called Lévy flight random walk and preference random
walk and the global and local search of the both balanced
algorithm. The CS calibration method has been widely ap-
plied in various fields, becoming a new highlight heuristic
algorithm following the GA and PSO (Yang and Deb 2014).
CS algorithms belong to a heuristic group of intelligent search
algorithms that combine cuckoo’s nest parasitism with the
Lévy flight model. The cuckoos use random walk to search
for an optimal bird’s nest in which to hatch their eggs.
Randomwalk is an efficient optimization model described by:

xi tþ1ð Þ ¼ xi tð Þ þ α⊕L λð Þ ð4Þ
α ¼ 0:01� xh−xlð Þ ð5Þ
L λð Þ∼μ ¼ t−λ ð6Þ

xi tþ1ð Þ ¼ xi tð Þ þ γ � H Pa−εð Þ⊕ x j tð Þ−xk tð Þ
h i

ð7Þ

where xi
(t) denotes the position of the ith bird’s nest in the tth

generation, α is the step size, the product ⊕ is entry-wise
multiplication, L(λ) denotes the search step size and obeys
Levy distribution, xh, and xl are the upper and lower bound-
aries of the search space, respectively, H(Pa − ε) denotes a
Heaviside function, Pa is the probability that the nest’s owner
finds the intruding cuckoo, and the default value is 0.25, and γ
ε are subjected uniform distributions (Ming et al. 2018a,
2018b; Yang and Deb 2010).

The GLUE method proposed by Beven and Binley (1992)
is used to analyze the parameter uncertainty of the hydrolog-
ical model. For more detailed information on the GLUEmeth-
od, please refer to Blasone et al. (2008). The GLUE method
commonly uses a single objective function.

The M-GLUE method, a multi-criteria likelihood uncer-
tainty estimation, has been proposed as an alternative to
GLUE since the use of a single objective function fails to take
all the features of the intricate hydrological process into con-
sideration. In addition to the Nash–Sutcliffe efficiency coeffi-
cient (NSE) objective function used in the GLUE method, M-
GLUE uses the water balance error (WBE) and the total water

error (TWE). The CR and IW are used to appraise the M-
GLUE method (Lin et al. 2010) according to the following
formulas:

NSE ¼ 1‐
∑
N

i¼1
Qo;i−Qs;i

� �2

∑
N

i¼1
Qo;i−Qo

� �2
ð8Þ

WBE ¼
100� ∑

N

i¼1
Qs;i− ∑

N

i¼1
Qo;i

� 	

∑
N

i¼1
Qo;i




















ð9Þ
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∑
N
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J Qo;i
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N

� 100; J Qo;i
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0; other


 �

ð11Þ

IW ¼
∑
N

i¼1
QU ;i−QL;i

� �
N

ð12Þ

where Qo, i, Qs, i, Qo, QL, i, and QU, i denote the observed
streamflow, simulated streamflow, the monthly average
streamflow, and the lower and upper streamflow, respectively.
N is the total number of data.

3.3 Morris method

The Morris method (Morris 1991) is a qualitative method of
global sensitivity analysis, which is usually applied to recog-
nize sensitive parameters. The fundamental principle of the
Morris method is the evaluation of the output change corre-
sponding to a small change in a single factor. Sensitivity can
be partitioned into the four levels described in Table 2. The
sensitivity evaluation index fromMorris method is as follows:

S ¼ ∑
n−1

i¼0

Y iþ1−Y ið Þ=Y 0

Piþ1−Pið Þ=Pi

� �
= n−1ð Þ ð13Þ

where S denotes the sensitivity evaluation index; Yi + 1 and Yi
are the simulation values at times i + 1 and i, respectively; Y0 is
the initial simulation value; Pi + 1and Pi denote the change rate
of the simulation value with respect to the optimal value, and n
is the number of the simulation run times.

Table 2 Sensitivity level classification

Level Index Sensitivity

I 0.00 ≤ |S| < 0.05 Insensitivity

II 0.05 ≤ |S| < 0.20 Average sensitivity

III 0.20 ≤ |S| < 1.00 Moderately high sensitivity

IV |S| ≥ 1 High sensitivity
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3.4 Modeling climate variables and the SDSMmethod

CMIP5 is the global-coupled ocean-atmosphere circulation
model (Taylor et al. 2012; Siew et al. 2014; Qu et al. 2014).
CMIP5 provides meaningful and useful datasets for evalua-
tion and discussion of global and regional climate changes
(Torres and Marengo 2014). In this paper, the RCP4.5 and
RCP8.5 scenario datasets of three climate models (BCC-
CSM1.1, CanESM2, and CNRM-CM5) are used to analyze
the uncertainty of the input data. Because the grid resolution is
different for the three climate models, CMIP5’s grid resolution
is adjusted to the resolution of the National Centers for
Environment Prediction data via the Inverse Distance
Weighted method. The Statistical Down Scaling Model
(SDSM) uses a robust statistical downscaling technique to
assess the impacts of climate change. For a detailed descrip-
tion of the SDSM, please refer to Huang et al. (2012). In this
paper, outputs from the three climate models (BCC-CSM1.1,
CanESM2, and CNRM-CM5) are input to SDSM to simulate
monthly precipitation and potential evaporation from 1960 to
2050. Then, the generated data are input to TOPMODEL to
simulate future streamflow under different climate scenarios.

4 Results and discussion

4.1 Parameters’ calibration based on the CS algorithm

The DEM data are handled by ArcGIS software. As shown
in Fig. 2, the BLR basin is divided into five different sub-
basins because of the large area, and the topography index
and area ratio distribution of each sub-basin are calculated.
The Mann-Kendall (M-K) test is used to analyze the
breakpoint of the streamflow. As shown in Fig. 3, the
breakpoint of the streamflow series appears in 1995.
Therefore, based on the breakpoint result, 1960–1977 and
1978–1994 are selected as the calibration period and the
validation period of hydrological model simulation, respec-
tively. The input data of the model are the monthly precip-
itation and potential evapotranspiration, and the parameters
of the model are determined by the CS algorithm. The pa-
rameters of each sub-basin are shown in Table 3. The CS
algorithm, given 10 nests and run 300 times, is applicable
and can quickly and effectively optimize the parameters.
For the calibration and validation periods, the observed
streamflow and the simulated streamflow by using CS

Fig. 3 The streamflow breakpoint
test by using theM-Kmethod. UF
is the order statistic of the
streamflow sequence, and UB is
the reverse statistic of the se-
quence. a = 0.05 is the level of
significance, that is, the thresh-
olds of the UF and UB are ± 1.96.
The intersection of UB and UF is
the breakpoint
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algorithm optimized parameters are shown in Fig. 4. In this
paper, the NSE and WBE are adopted as objective func-
tions, and the NSE (WBE) values are 0.77 (5.34%) and
0.62 (6.23%) in calibration and validation periods,
respectively.

4.2 Uncertainty analysis of the model parameters

4.2.1 Sensitivity analysis of the model parameters

The Morris method is used to analyze the parameters sensitiv-
ity, and the results are shown in Table 4. There are three sen-
sitive parameters, namely, Rv, SRmax and CHv. The GLUE
method is applied to test the parameters’ sensitivity again,
and Fig. 5 shows that Rv, SRmax and CHv are sensitive in the
range of parameter variation. The scatter diagrams of the other
three parameters, however, show that the variation of these
parameters is not obvious. This result is consistent with the
Morris parameter screening method analysis. Therefore, Rv,
SRmax, and CHv are sensitive parameters that have significant
influence on the simulation results, so this paper presents fur-
ther analysis of the influence of these three parameters on the
simulation results.

4.2.2 Uncertainty analysis of the model parameters based
on GLUE and M-GLUE

This section presents the uncertainty analysis of the three pa-
rameters. First, 10,000 sets of parameters are obtained at ran-
dom by the GLUE method, and the threshold value of the
likelihood function is set to 0.7. Then, all the parameters
above this threshold value (effective parameter group) are se-
lected and sorted according to their likelihood values. Finally,
setting the confidence level to 90% (α = 0.5), the uncertainty
interval of the streamflow simulation value is calculated. The
minimum and maximum values (Table 5) are consistent with
the ranges of the parameters, indicating that the parameter
space is searched effectively. Figure 6 shows the marginal
posterior probability distributions of the sensitive parameters
in the BLR basin using the GLUE method. At each time step,
the vertical coordinates correspond to the probability that the
parameter value falls between the current scale value and the
previous scale value. No parameters are uniformly distributed,
and they exhibit large uncertainties.

Although the marginal posterior distributions of sensitivity
parameters are obtained through the GLUE method, since the

Table 3 Parameters of TOPMODEL optimized by the CS algorithm

Sub-basin T0 M Td s Rv CHv SR0

1 2.200 0.012 0.080 0.009 995 6000 0.001

2 0.098 1.380 0.900 0.010 1000 15 0.001

3 0.001 2.400 0.097 0.006 24 10 0.001

4 0.008 2.540 2.500 0.017 500 4100 0.001

5 0.003 2.270 0.076 0.018 200 17 0.001

Fig. 4 Comparison for the observed monthly streamflow and the simulated monthly streamflow. The period to the left of the green line is the calibration
period (1960–1977), and the right is the validation period (1978–1994) of TOPMODEL

Table 4 Sensitivity of the TOPMODEL parameters

No. Parameters Sensitivity Level

1 M 0.128 II

2 T0 − 0.017 I

3 SRmax − 0.551 III

4 SR0 0 I

5 Td 0.185 II

6 Rv − 0.598 III

7 CHv − 0.522 III

H. Zhang et al.



model exhibits very strong Bequifinality,^ in the actual process
of hydrological forecasting, the results are truly meaningful. It
is not any single parameter that makes the model significant
but the combination of the model parameters. In this paper, the
convergence of the 420 sets of effective parameters generated
by the GLUEmethod is selected to simulate streamflow and to
generate the statistics concerning the 90% confidence interval
(α = 0.5) of the streamflow forecast. It can be seen (Fig. 7) that
majority of the observed streamflow falls within the 90% con-
fidence interval. The CR and IW of the GLUE method are
77.31% and 0.79 × 108 m3 in the calibration period, respec-
tively, and in the validation period, they are 50.98% and
0.18 × 108 m3 (Table 6).

To avoid the single-factor evaluation index of the GLUE
method, the M-GLUEmethod is applied to analyze the uncer-
tainty of the model parameters. It can be seen (Fig. 7) that the
CR and IW of the GLUE method are 80.56% and 0.75 ×
108 m3, respectively, during the calibration period, and in the
validation period, they are 74.51% and 0.34 × 108 m3 (Table
6). The similarity between the 90% confidence interval obtain-
ed by M-GLUE method and measured streamflow is greater
than that of the GLUE method, which indicates that the un-
certainty of the M-GLUE method simulation is reduced in
comparison to GLUE. For theM-GLUEmethod, three criteria
(NSE, WBE, and TWE) are used to construct the evaluation

index, rather than a single criterion, which improves the over-
all accuracy and reduces the simulation error. Then, the con-
vergence of the 177 sets of effective parameters are generated
by the M-GLUE method (the GLUE method is 420 sets).
When selecting the same effective number of simulations,
although the average NSE of GLUE (0.71) is slightly lower
than that of M-GLUE (0.73), the 90% confidence interval of
M-GLUE is obviously superior to that of the GLUE method.
In the calibration period, the CR of the M-GLUE method is
obviously better than that of the GLUE method. The differ-
ence is approximately 10%, which indicates that the uncer-
tainty interval of the M-GLUE method is less than that of
GLUE. It can also be seen from the IW values that the IW of
the M-GLUE method is smaller than that of the GLUE meth-
od. These two criteria show that increasing the likelihood
function can reduce the uncertainty of the model output. In
the validation period, although the IWof the M-GLUE meth-
od is wider than that of the GLUE method, the M-GLUE CR
is obviously higher than that of the GLUE method. A larger
IW value result may due to comprehensively balancing the
different likelihood function and slightly widening the range
of the likelihood function, but the CR improvement is far
greater than the adverse effects on IW. Accordingly, the M-
GLUE method outperforms the GLUE method. Therefore, it
is feasible to adopt M-GLUE method in this paper to analyze
the uncertainty of the parameters of TOPMODEL model in
the BLR basin.

4.3 Uncertainty analysis of model inputs

In the presence of climate change, many climate variables will
change. The changes in the meteorological data of the BLR
basin derived from the RCP4.5 and RCP8.5 scenarios of three

Fig. 5 Scatter plots for model parameters of TOPMODEL. The blue dots mean the values by random operating of each parameter for 10,000 times, and
the NSEs are the corresponding likelihood function values

Table 5 The posterior distribution of parameters

Parameters Mean Standard deviation Minimum Maximum

SRmax 0.01 0.006 0.001 0.03

CHv 6022 2301 1662 9954

Rv 1552 289 944 1999
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models and the streamflow simulated thereafter are presented
in the figures below. The series mean values for baseline pe-
riod (2000–2010) and future periods under different climate

scenarios are calculated. The M-K method is used to examine
the breakpoint of the streamflow, and the existed breakpoint
shows the non-stationary of the streamflow. Therefore, the

a

b

Fig. 7 The upper and lower limits
(90% confidence interval) of
streamflow calculated by the
GLUE and M-GLUE methods. a
The result of calibration period
(1960–1977). b The result of val-
idation period (1978–1994)
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streamflow before the breakpoint cannot be selected to simu-
late the future streamflow. The breakpoint of streamflow is
1995, so, the 2000~2006 was selected as the calibration period
and the 2007~2010 as the validation period, which are shown
in Fig. 8. The results show that the simulated NSE and WBE
are 0.899 and 0.17 in calibration period, respectively, and in
validation period are 0.765 and 0.22. Therefore, the validated
parameter group can be applied in the future streamflow sim-
ulation of BLR.

Figure 9 shows the relative changes in precipitation and
potential evaporation for the 2020s (2016–2030), 2030s
(2031–2040), and the 2040s (2041–2050) in comparison with
the baseline period of the three models. Although the precip-
itation is predicted to decrease 4.02 mm by the CanESM2
model in the 2020s under RCP8.5, it is predicted to increase
by the remaining models, and the increase range is from 13.78
to 93.69 mm. The monthly precipitation fluctuates in all sce-
narios (Fig. 9). The maximum monthly precipitation appears
in August in the BCC-CSM1.1 and CNRM-CM5 models

(except during the 2020s in the CNRM-CM5 model), while
it appears in July in the CanESM2 model. The minimum pre-
cipitation values appear in winter (December to February).
The precipitation in August in the BCC-CSM1.1 model is
significantly higher than that in the baseline period, and the
predicted annual average precipitation in future time periods is
also higher than those for the other two models. The three
models predict annual average potential evaporation to in-
crease in all future scenarios and the increase range is from
18.21 to 109.90 mm. The highest increases in potential evap-
oration are predicted under RCP8.5. The monthly potential
evaporation from August to February of next year is higher
than that for the baseline period. The maximum monthly po-
tential evaporation appears in June under two scenarios of the
three models; the exception appears in July under the RCP8.5
scenario of the BCC-CSM1.1 model. In the winter, the mini-
mum monthly potential evaporation appears in January or
December.

To analyze the impact of climate change on streamflow in
the future, the streamflow under each climate change scenar-
ios is compared with baseline period values. The simulated
annual streamflows in the future and baseline periods are
shown in Fig. 10a–c). The annual simulated streamflows un-
der two scenarios of the three climate models are greater than
that of the baseline period (8.2 × 108 m3), and the annual sim-
ulated streamflow shows a decreasing trend over time
(Fig. 10). Using the BCC-CSM1.1 model, the maximum
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Fig. 8 Comparison for the
monthly observed streamflow and
themonthly simulated streamflow
from TOPMODEL. a The result
of calibration period (2000–
2006). b The result of validation
period (2007–2010)

Table 6 Comparison of two methods of discriminant criteria

Classification Calibration period Validation period

CR (%) IW (108 m3) CR (%) IW (108 m3)

S-GLUE 77.31 0.79 50.98 0.18

M-GLUE 80.56 0.75 74.51 0.34

Calibration and uncertainty analysis of a hydrological model based on cuckoo search and the M-GLUE method



annual streamflow appears in 2022 under two scenarios
(13.1 × 108 m3 and 12.3 × 108 m3), but their minimum
streamflows occur in different years (Table 7). The mean an-
nual simulated streamflow of the RCP8.5 scenario (9.63 ×

108 m3) is greater than that of the RCP4.5 scenario (10.42 ×
108 m3). For the CanESM2 model, the maximum annual
streamflows of the RCP4.5 and RCP8.5 scenarios appear in
2046 (10.09 × 108 m3) and 2042 (9.86 × 108 m3), respectively,
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Fig. 9 The monthly precipitation
(P) and monthly potential evapo-
ration (E) during the baseline pe-
riod (2000–2010) and three future
periods (2020s, 2030s, and
2040s). a, b The results under
scenarios RCP4.5 and RCP8.5
from BCC-CSM1.1 model. c, d
The results under scenarios
RCP4.5 and RCP8.5 from
CanESM2 model. e, f The results
under scenarios RCP4.5 and
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and the minimum ones appear in 2034 (7.55 × 108 m3) and
2042 (7.29 × 108 m3). The mean annual simulated
streamflows of the RCP4.5 and RCP8.5 scenarios differ very
little, 8.84 × 108 m3 and 8.72 × 108 m3, respectively. For the
CNRM-CM5model, the maximum annual streamflows of the
RCP4.5 and RCP8.5 scenarios appear in 2028 (12.89 ×
108 m3) and 2030 (11.26 × 108 m3), respectively, and the min-
imum ones appear in 2035 (8.08 × 108 m3) and 2045 (8.06 ×
108 m3). The mean annual simulated streamflows of the
RCP4.5 and RCP8.5 scenarios also differ very little and are
9.44 × 108 m3 and 9.46 × 108 m3, respectively.

In summary, the maximum annual streamflow occurrence
time differs in the three models and the simulated streamflows
under the different climate models are diverse. For the average
annual streamflow, the simulation streamflow of the BCC-
CSM1.1 model is the greatest, followed by that of the
CNRM-CM5 model, and CanESM2 has the least simulated
streamflow, but they were all greater than the baseline period
value, which indicates that diverse data input to the hydrolog-
ical model will lead to uncertainty in the streamflow simula-
tion. This phenomenon may result from the differences inher-
ent in the three models. The models have been developed by
three different research and development centers, and the dif-
ferences in concepts, mechanisms, and component models
(pavement and sea surface) result in different meteorological
factors, causing diversity in the simulated precipitation and
potential evaporation results and lead to uncertainty in the
input data of the hydrological model.

5 Conclusions

The hydrological model fills an important role in simulating
streamflow, and the model’s uncertainty, regarded as a knotty
problem, has been puzzling researchers. A new calibration
method for the hydrological model is proposed, and an anal-
ysis of the uncertainty in the model’s parameters and input
data is undertaken in this paper.

(1) The CS algorithm is applicable and effective in optimiz-
ing the model parameters. The Morris and GLUE
methods are employed to analyze the sensitivity of the
parameters, and the two methods consistently demon-
strated that there are three sensitive parameters in
TOPMODEL, namely, Rv, SRmax, andCHv.

(2) The GLUE and M-GLUE methods can effectively ana-
lyze the uncertainty of parameters, and the 90% confi-
dence interval of streamflow could be forecast. The
values of CR and IW in the calibration period
are77.31% and 0.79 × 108 m3 with the GLUE method,
respectively, and that are 80.56% and 0.75 × 108 m3 with
the M-GLUE method, respectively. Additionally, the re-
sults of M-GLUE method are superior to the results of
GLUE method.

(3) Precipitation and potential evaporation are predicted by
the three GCMs, and the results indicate that these char-
acteristics show an increasing trend. Then, the future
streamflow of the models are simulated to analyze the
effect of uncertainty in model input data on simulated
streamflow. The maximum annual streamflow occur-
rence times are different for the three models, and the
simulated streamflow under the different climate models
is diverse. In the case of average annual streamflow, the
simulation streamflow of the BCC-CSM1.1 model is op-
timal and followed by CNRM-CM5 and CanESM2
model. However, results obtained by all the three
methods are higher than the baseline period value, indi-
cating that diverse hydrological model input data cause
uncertainty in the streamflow simulation.

These results have important practical significance and sci-
entific value for the calibration of the hydrological parameters,
the evaluation of the uncertainty of the model, and for the
exploration of new ideas for future comprehensive manage-
ment of river basin water resources. The reasonable selection
of the model calibration method can reduce the resource man-
agement workload, and an effective uncertainty analysis
method can reduce the uncertainty of simulation results.

Table 7 Streamflow statistics of the baseline and three climate models

Models Maximum
annual streamflow
occurrence time

Minimum
annual streamflow
occurrence time

Mean annual
streamflow/108 m3

The increment of
streamflow /108 m3

Baseline – – 8.20 –

BCC-CSM1.1 RCP4.5 2022 2025 9.63 1.43

RCP8.5 2022 2023 10.42 2.22

CanESM2 RCP4.5 2016 2034 8.84 0.64

RCP8.5 2021 2042 8.72 0.52

CNRM-CM5 RCP4.5 2028 2035 9.44 1.24

RCP8.5 2030 2045 9.46 1.26

Calibration and uncertainty analysis of a hydrological model based on cuckoo search and the M-GLUE method
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