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A B S T R A C T

Due to the important role of temperature in the global climate system and energy cycles, it is important to
investigate the spatial-temporal change patterns, causes and implications of annual maximum (Tmax) and
minimum (Tmin) temperatures. In this study, the Cloud model were adopted to fully and accurately analyze the
changing patterns of annual Tmax and Tmin from 1958 to 2008 by quantifying their mean, uniformity, and
stability in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Additionally, the cross
wavelet analysis was applied to explore the correlations among annual Tmax and Tmin and the yearly sunspots
number, Arctic Oscillation, Pacific Decadal Oscillation, and soil moisture with an aim to determine possible
causes of annual Tmax and Tmin variations. Furthermore, temperature-related impacts on vegetation cover and
precipitation extremes were also examined. Results indicated that: (1) the WRB is characterized by increasing
trends in annual Tmax and Tmin, with a more evident increasing trend in annual Tmin, which has a higher
dispersion degree and is less uniform and stable than annual Tmax; (2) the asymmetric variations of Tmax and
Tmin can be generally explained by the stronger effects of solar activity (primarily), large-scale atmospheric
circulation patterns, and soil moisture on annual Tmin than on annual Tmax; and (3) increasing annual Tmax
and Tmin have exerted strong influences on local precipitation extremes, in terms of their duration, intensity,
and frequency in the WRB. This study presents new analyses of Tmax and Tmin in the WRB, and the findings may
help guide regional agricultural production and water resources management.

1. Introduction

According to the latest Intergovernmental Panel on Climate Change
(IPCC) report, the global average temperature increased by approxi-
mately 0.72 °C during the period of 1951–2012, due to the combined
effects of climate change and human-induced greenhouse gas emissions
(IPCC, 2013). The rising temperature trends have been accompanied by
the increasing maximum temperature (Tmax) and minimum tempera-
ture (Tmin) across the globe (Kruger and Sekele, 2013; Fonseca et al.,
2015). Since temperature plays a crucial role in the global climate
system and energy cycles, more frequent occurrences of Tmax and Tmin
are likely to significantly impact hydrology, agriculture, ecosystems,
and many aspects of human life, such as mortality, morbidity, health,
and comfort (Trenberth, 2011; Wang et al., 2013; Huang et al., 2014a;
Leng et al., 2015; Ngo and Horton, 2015; Liu et al., 2017). Furthermore,
there is growing evidence that Tmax and Tmin may become more ex-
treme and occur even more frequently in the future (Orlowsky and

Seneviratne, 2012; Wang et al., 2013; Fonseca et al., 2015). Therefore,
investigations of Tmax and Tmin have been strongly utilized to improve
our understanding of climate change, the scientific prevention and
mitigation of disasters, and water resources management.

To date, numerous studies focused on Tmax and Tmin have been
performed globally and regionally. For example, on the global scale,
Donat and Alexander (2012) concluded, based on daily global ob-
servations, that changes in daily Tmax and Tmin were the result of a
combination of changes in their mean, variance and skewness. At the
regional scale, an increasing trend in Tmax was mainly observed in the
Gobi Desert of Mongolia, while a significantly increasing trend in Tmin
has been confirmed across the entirety of Mongolia (Dashkhuu et al.,
2014). In Australia, changes in Tmax and Tmin were identified, when
statistically significant trends in Tmax showed marked regional and
seasonal variations, but the increase in Tmin typically exceeded the
increase in Tmax (Jakob and Walland, 2016). In Pakistan, Tmin showed
clearly positive trends in the pre-monsoon season and on the annual
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scale, while Tmax increased faster than Tmin in all seasons and on the
annual scale in the northern areas of the country. Similar changes in
Tmin and Tmax were also observed in China with pronounced magni-
tude and regional differences (Zhou and Ren, 2011; Yu and Li, 2015;
Jiang et al., 2016; Zhang et al., 2017).

These previous studies provide key insights towards understanding
the changing characteristics of Tmax and Tmin at various temporal and
regional scales. However, most of the investigations thus far have been
focused on variations of mean, variance, and trends in temperature
extremes, which only reveal certain aspects of Tmax and Tmin char-
acteristics. To more fully represent the uncertainties in modelling these
phenomena, Li et al. (1998, 2009) developed a cognitive model called
“the Cloud model”, based on the fuzzy set theory and probability
measures. It has been proven to be robust in estimating the uniformity
and stability of qualitative concepts and quantitative data (Huang et al.,
2015a; Zhu et al., 2016). Thus, the Cloud model is now widely used in
data mining, image processing, uncertainty reasoning, etc. (Li et al.,
1998; Yang and Chen, 2007; Wang and Deng, 2007). However, it has
rarely been used in the investigation of spatial-temporal changes in
annual Tmax and Tmin. Since there are many uncertainties in annual
Tmax and Tmin, it is important to adopt the Cloud model to fully and
accurately analyze the spatial-temporal change patterns in annual Tmax
and Tmin. This offers a new approach and quantitative measure for
assessing the stability and uniformity of annual Tmax and Tmin series.

Many factors affect temperature variations, such as solar activity
(Kristoufek, 2016), large-scale atmospheric circulation patterns (Nyeko-
Ogiramoi et al., 2013; Zhong et al., 2017), and topography (Jiang et al.,
2016). Recently, the role of soil moisture (SM) in the occurrence of
temperature extremes in transitional climate regions has been high-
lighted by several regional studies. For example, it was found that there
was a negative relationship between SM and the summer monthly Tmax
in Europe (Brabson et al., 2005; Hirschi et al., 2011; Whan et al., 2015).
With an increasing number of extreme temperature events, it is
worthwhile to identify the driving mechanisms behind changes in

annual Tmax and Tmin to improve prediction accuracy. Thus, the re-
sponses of annual Tmax and Tmin to solar activity, large-scale atmo-
spheric circulation patterns, and SM were fully explored in this study. In
contrast to previous studies, a new method called the cross wavelet
analysis was adopted to reveal linkages in both time and frequency
domains, rather than simply calculating their correlation coefficients.

The impacts of annual Tmax and Tmin on agriculture are also key
concerns because temperature plays an important role in vegetation
growth and development. The potential for annual Tmax and Tmin
changes most likely influence vegetation productivity (Hatfield and
Prueger, 2015). Therefore, it is necessary to explore the response of
vegetation to the changing annual Tmax and Tmin which would help to
develop adaptation strategies under varying environments. Moreover,
increasing temperature tends to speed up the hydrological cycles,
which, in turn, would lead to changes in precipitation. Theoretical
models show that extreme precipitation intensity could exponentially
increase with rising temperatures (Allan and Soden, 2008; Westra et al.,
2013; Herath et al., 2017) at a rate determined by the Clausiu-
s–Clapeyron relationship (Herath et al., 2017) in the absence of SM
limitation (Wang et al., 2017). However, little has been done was done
to investigate the impacts of annual Tmax and Tmin on the frequency or
duration of extreme precipitation events, which is why we included it in
this study.

Situated in the edge of the monsoon zone, the Wei River Basin
(WRB) belonging to the largest tributary of the Yellow River Basin is a
climate-varied sensitive district (Zhu et al., 2016). The Guanzhong
Plain, located in the middle and south of the WRB, is a major agri-
cultural production base in western China. Local governments try to
designate the plain as a national core economic development area,
which will play an important role in stimulating the economic devel-
opment of the surrounding areas (Huang et al., 2015a,b,c; Zhu et al.,
2016). Given the significance of food security and sustainable devel-
opment, a comprehensive understanding of the changes in annual Tmax
and Tmin is of important significance in the WRB. Additionally, as a

Fig. 1. Location of the WRB and relevant
hydro-meteorological stations.
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typical arid and semi-arid region in China, the investigation of annual
Tmax and Tmin in the WRB could provide a meaningful reference for
climate change studies in other semi-arid and arid basins. Therefore,
the WRB was selected as the study area for this research.

The main objectives of this study are: (1) to examine the changing
patterns of annual Tmax and Tmin; (2) to fully explore the possible
causes of annual Tmax and Tmin variations from the perspective of
solar activity, large-scale atmospheric circulation patterns, and SM; and
(3) to investigate the related implications of the changing annual Tmax
and Tmin on vegetation and extreme precipitation using the cross wa-
velet analysis.

2. Study area and data

2.1. Study area

The WRB (Fig. 1) is located between 103.5° E–110.5° E and 33.5°
N–37.5° N, and it is a major river in west-central China's Gansu and
Shaanxi provinces. It originates along the north side of Niaoshu
Mountain and flows from west to east through the Gansu, Ningxia and
Shaanxi provinces, with a length of 818 km and drained areas of
13.5×104 km2. The Jing River Basin (JRB) is the largest tributary of
the WRB with drainage areas of 4.5× 104 km2. The Loess Plateau sits in
the north of the WRB, and the Qinling Mountains sit in the south. Si-
tuated in a typical monsoon climate zone, the region is characterized by
pronounced seasonality with rich precipitation and high temperatures
in summer, and scarce precipitation and low temperatures in winter
(Huang et al., 2014a,b; Huang et al., 2015a; Zhu et al., 2016). The main
rainy season begins in June and ends in September, accounting for
approximately 60% of the annual precipitation (nearly 600mm; Zhu
et al., 2016; Liu et al., 2017). The average annual temperature in the
WRB ranges from 7.8 °C to 13.5 °C. The average summer temperature
varies from 23 °C to 26 °C, and average winter temperatures range from
−1 °C to −3 °C (Huang et al., 2014a,b).

2.2. Data

Daily precipitation data and the Tmax and Tmin from 21 National
Meteorological Observatory stations were obtained from the National
Climate Center of the China Meteorological Administration, covering
the period from January 1st, 1958 to December 31st, 2008. The annual
Tmax and Tmin dataset was obtained based on the annual maximum
and minimum sampling method. The weather stations used in the study
provided reasonable spatial coverage and include a variety of topo-
graphic features and climatic regions in the WRB (Fig. 1 and Table 1).
Note that among the 21 weather station, the stations Lintao, Yanan,
Minxian, Foping, Zhenan and Shangzhou, which are outside but nearest
to the edges of the WRB, were also chosen to reflect the change char-
acteristics of annual Tmax and Tmin around the marginal area of the
basin. The Thiessen polygon method assigns weight at each gauge
station in proportion to the catchment area that is closest to that gauge.
Thus, it was used to compute the annual temperature data of the WRB
and two sub-basins, in which the impact of the blocking of mountains
could be neglected (Bayraktar et al., 2005). Additionally, most previous
studies (Zuo et al., 2014; Huang et al., 2014a,b,c; Jiang et al., 2015; Zhu
et al., 2016) on hydro-meteorological variations of the WRB are also
based on the data at the 21 stations.

There are also three hydrological stations in the river, which are the
control sites of the Upstream, the JRB, and the WRB. Thus, the river was
divided into two sub-regions including the Upstream and the JRB (for
the related stations included in each sub-region, see Table 2) to fully
reflect the regional features of the annual Tmax and Tmin variability in
the WRB.

To explore the possible causes of the changing annual Tmax and
Tmin in the basin from the perspective of solar activity, large-scale
atmospheric circulation patterns and SM, the correlations among

annual Tmax, Tmin and the total sunspots number (SSN), Arctic
Oscillation (AO), Pacific Decadal Oscillation indices (PDOI), and SM
were investigated. Yearly SSN is used as a proxy of solar activity and
can be downloaded freely from http://sidc.oma.be/silso/datafiles.
Monthly PDOI is defined as the leading principal component of the
North Pacific monthly sea surface temperature variability, which is
closely related to the variability of annual Tmax and Tmin (Jakob and
Walland, 2016; Zhong et al., 2017). It can be downloaded from http://
research.jisao.washington.edu/pdo/. The AO is an important mode of
climatic change in the Northern Hemisphere and is closely related to
climate variations in middle- and high-latitude regions (e.g. Toreti
et al., 2010); monthly AO can be downloaded from https://www.ncdc.
noaa.gov/teleconnections/ao/. Moreover, the Normalized Differential
Vegetation Index (NDVI) data (1982–2008) derived from the Land
Processes Distributed Active Archive Center of the National Aeronautics
and Space Administration (https://lpdaac.usgs.gov/) was used to ex-
plore the vegetation coverage's response to the changing patterns of
annual Tmax and Tmin. In addition, the gridded yearly SM data cov-
ering 1958–2008, simulated by the Variable Infiltration Capacity model
are obtained, and the gridded SM within the catchment area controlled
by each hydrological station is averaged for use (Huang et al., 2017).

3. Methodology

3.1. Modified Mann-Kendall trend test method

The original Mann-Kendall (MK) trend test is a non-parametric
method for the assessment of monotonic trends in time series (Mann,
1945; Kendall, 1955; Hamed and Rao, 1998). It has been widely used
and recommended by the World Meteorological Organization. How-
ever, the results of a MK test would be affected by the autocorrelation in
hydro-meteorological time series. Hence, the modified Mann-Kendall
(MMK) trend test (Mann, 1945; Kendall, 1955; Hamed and Rao, 1998)
was employed to estimate the trends of annual Tmax, Tmin and NDVI
series in the WRB. The MMK trend test has been proven to be robust in
capturing the trends in the hydro-meteorological time series. Details
about MMK can be found in Huang et al. (2014c). The significant trend
obtained by the MMK test was assessed at the 95% confidence level.

3.2. The Cloud model

The Cloud model proposed by Li et al. (1998) is an uncertainty
technology that could provide an effective tool to quantitatively esti-
mate qualitative analysis (Li et al., 2009; Huang et al., 2015a; Zhu et al.,
2016). Several Cloud models are defined with a normal distribution,
and they are most widely used in data mining, image processing, un-
certainty reasoning, etc. (Li et al., 1998; Yang and Chen, 2007; Wang
and Deng, 2007). The normal Cloud model consists of three primary
numerical characteristics: Expectation (Ex), Entropy (En), and Hyper-
Entropy (He), in order to characterize an uncertain concept (Fig. 2).

In Fig. 2, the x-axis denotes the range of a given hydrological or
meteorological factor, reflecting the randomness of a natural phenom-
enon (in this study, annual Tmax or Tmin series), while the y-axis re-
presents the degree of certainty of the given factor. Basically, the degree
of certainty is the membership degree in fuzzy set theory that reflects
the fuzziness of a natural phenomenon. As Fig. 2 shows, Ex, in the
center, is the mean of annual Tmax or Tmin series. En, denoted by the
length of the horizontal arrow, is used to describe the dispersion of
annual Tmax or Tmin series, which is the uncertainty of annual Tmax or
Tmin series. This parameter reflects the fuzziness and uniformity of
annual Tmax or Tmin series. A smaller En means a more uniform of
annual Tmax or Tmin series. With regard to the He, it is the entropy of
the En. He is used to describe the randomness and stability of annual
Tmax or Tmin series which is denoted by the thickness of the cloud with
the given annual Tmax or Tmin value. Similarly, a smaller He indicates
a more stable annual Tmax or Tmin series. More details about the
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algorithm can be found in Li et al. (1998, 2009) and Huang et al.
(2015a). In this present study, the Thiessen polygon method was used
to compute the annual Tmax and Tmin data of the WRB and two sub-
basins from the 15 stations (see Table 2) and the other 6 related sta-
tions. Finally, the annual Tmax and Tmin data in 1958–2008 in the
WRB and two sub-basins were used as input for the Cloud model to

Table 1
The information of weather stations in the WRB.

No. Weather station Latitude (N) Longitude (E) Altitude (m) Tmax (°C) Tmin (°C)

1 Baoji 34.35 107.13 612 41.60 −9.44
2 Changwu 35.20 107.80 1206 37.60 −18.34
3 Foping 33.52 107.98 827 38.70 −9.15
4 Guyuan 36.00 106.27 1753 34.60 −22.70
5 Huajialing 35.38 105.00 2450 28.40 −20.28
6 Huanxian 36.58 107.30 1255 38.60 −20.15
7 Huashan 34.48 110.08 2064 29.00 −19.38
8 Lintao 35.35 103.85 1893 36.10 −20.25
9 Luochuan 35.82 109.50 1159 37.50 −18.07
10 Minxian 34.43 104.02 2315 33.30 −20.25
11 Pingliang 35.55 106.67 1346 36.00 −16.79
12 Shangzhou 33.87 109.97 742 40.70 −10.10
13 Tianshui 34.58 105.75 1141 38.20 −12.43
14 Tongchuan 35.08 109.07 978 37.70 −14.42
15 Wugong 34.25 108.22 447 42.00 −10.69
16 Wuqi 36.92 108.17 1331 38.30 −22.14
17 Xian 34.30 108.93 397 41.80 −9.95
18 Xifengzhen 35.73 107.63 1421 36.40 −16.84
19 Xiji 35.97 105.72 1916 33.40 −23.23
20 Yanan 36.60 109.50 958 39.30 −18.94
21 Zhenan 33.43 109.15 693 40.20 −8.65

Note: Tmax (Tmin) in this table is the maximum (minimum) value of annual Tmax (Tmin) series (1958–2008).

Table 2
The related stations included in the Upstream and the JRB.

The sub-region Stations

The Upstream Baoji
Guyuan
Huajialing
Lintao
Minxian
Tianshui
Xiji

The JRB Changwu
Guyuan
Huanxian
Pingliang
Wugong
Wuqi
Xian
Xifengzhen

Fig. 2. The three numerical characteristics of the Cloud model. X denotes the input data for the Cloud model; Ex, En, and He represent the three numerical characteristics of the Cloud
model.

Table 3
The numerical characteristics of temperature extremes cloud of the Upstream, the JRB
and the WRB.

Catchment Tmax Tmin

Ex En He Ex En He

Upstream 29.71 1.23 0.46 −20.05 1.79 0.58
The JRB 32.98 1.19 0.37 −18.32 2.12 0.63
The WRB 32.45 0.96 0.37 −15.23 1.74 0.48
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obtain the three numerical characteristics: Expectation (Ex), Entropy
(En), and Hyper-Entropy (He) of annual Tmax and Tmin series, which
were shown in Table 3.

3.3. The cross wavelet analysis

The cross wavelet analysis is a new technique that combines a wa-
velet transform with cross spectrum analysis. Therefore, it is appro-
priate to assess the change characteristics and coupled oscillations of
two time series in both the time and frequency domains (Hudgins et al.,
1993; Torrence and Compo, 1998; Huang et al., 2015a,b,c). For two
given time series xn and yn, their cross wavelet transform can be defined
as WXY=WXWY∗, where * is their complex conjugation. The cross
wavelet power is expressed as |WXY|. The complex argument arg (Wxy)
can be regarded as the local relative phase of these two time series in
the time-frequency field. The theoretical distribution of the cross wa-
velet power between xn and yn with their background power spectra PkX

and PkY (Torrence and Compo, 1998) can be defined as follows:
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where Zv(p) is the confidence level associated with the probability p for
a probability distribution function defined by the square root of the two
χ2 distributions (Grinsted et al., 2004). The relevant codes can be
downloaded from http://noc.ac.uk/using-science/crosswavelet-
wavelet-coherence.

4. Results

4.1. Change patterns of annual Tmax and Tmin in the WRB

4.1.1. Temporal change patterns of annual Tmax and Tmin
The MMK trend test was used to detect the trends of annual Tmax

and Tmin series in the WRB, and the results are shown in Fig. 3. Gen-
erally, the WRB is dominated by widespread increases in annual Tmax
and Tmin with more than 85% of stations exhibiting positive MMK
statistics or significant increasing trends at the 95% confidence level
(Fig. 3). Significant increasing trends (8 out of 21 stations) in annual
Tmax are mainly found in the Upstream, the JRB and the Guanzhong
Plain. By contrast, the negative MMK statistics of annual Tmax recorded
at three stations are geographically concentrated in the northern and
eastern portions of basin (Fig. 3A). For annual Tmin, significant in-
creasing trends at the 95% confidence level are recorded at 10 stations,
mainly situated in the Upstream and the Guanzhong Plain, while three

stations exhibit negative MMK statistics, with one station in the middle
of the WRB indicating significant decreasing trends at the 95% con-
fidence level (Fig. 3B). In addition, the MMK tests for the annual Tmax
and Tmin series in the Upstream, the JRB, and the WRB were also
conducted. It was found that the two sub-basins and the WRB are
characterized by increasing annual Tmax and Tmin. The MMK statistics
of the annual Tmax in the two sub-basins and the WRB are 1.27, 2.40,
and 0.89, respectively, and those of annual Tmin are 2.13, 0.65, and
3.01, respectively. Overall, the increasing trend of annual Tmin is larger
than that of annual Tmax. In general, these observations are consistent
with the findings of previous publications (Zhou and Ren, 2011;
Dashkhuu et al., 2014; Yu and Li, 2015; Jiang et al., 2016; Zhang et al.,
2017).

According to the Cloud model procedures, the normal cloud com-
putation was carried out based on the annual Tmax and Tmin time
series in the two sub-basins and the WRB, and their corresponding
numerical characteristics and clouds were presented in Table 3 and
Fig. 4. Since Ex denotes the averages of annual Tmax and Tmin series, it
can be observed in Table 3 and Fig. 4 that the maximum averages of
annual Tmax and Tmin are found in the JRB and the WRB, respectively,
while the minimum averages of annual Tmax and Tmin are all found in
the Upstream. Note that En is defined to measure the dispersion degree
and non-uniformity of the annual Tmax and Tmin time series relative to
their averages. The larger the En value, the higher the dispersion degree
and non-uniformity. Since the En values of annual Tmin are larger than
those of annual Tmax (Table 3 and Fig. 4), it can be concluded that
annual Tmin has a higher dispersion degree and is less uniform than
annual Tmax both in the two sub-basins and the WRB. In order to
corroborate this finding, the standard deviations of the annual Tmax
and Tmin series in the Upstream, the JRB, and the WRB were calcu-
lated, which can also reflect the uniformity of annual Tmax and Tmin
series. The standard deviation of the annual Tmax in the two sub-basins
and the WRB are 1.31, 1.24, and 1.03, respectively, and those of the
annual Tmin are 1.89, 2.22, and 1.80, respectively. The larger standard
deviations indicate that annual Tmin is less uniform. It should be
mentioned that He denotes the dispersion degree of En and is used to
quantify the stability of the non-uniformity of the annual Tmax and
Tmin. A larger He implies more instability. Like En, the He values of the
annual Tmin are higher than those of annual Tmax, which demonstrates
that annual Tmin is more unstable than annual Tmax in the entirety of
WRB.

In general, annual Tmin series has a higher dispersion degree and is
more non-uniform and unstable than annual Tmax series in the WRB.
As the main grain-yielding area, a changeable annual Tmin is found to

Fig. 3. MMK trend tests of Tmax and Tmin across the WRB. The blue upward triangles denote positive MMK statistics, while the purple downward triangles indicate the negative MMK
statistics. The red upward/downward triangles indicate the statistically significant increasing/decreasing trend at the 95% confidence level. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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have a negative impact on food production (Hatfield and Prueger,
2015). Therefore, scientific prevention and/or adaptive strategies
should be adopted by the local government.

4.1.2. Spatial change patterns of annual Tmax and Tmin
Fig. 5 shows the spatial distribution of the three numerical char-

acteristics of the annual Tmax and Tmin clouds in the WRB. Generally,
there is a strikingly irregular spatial distribution to these three nu-
merical characteristics. The average (Ex) annual Tmax in the WRB
ranges from 25 °C to 39.23 °C and that of annual Tmin varies from
−23.23 to −9.17 °C with the lowest Ex found in the Upstream and the
highest Ex found in the Guanzhong Plain (Fig. 5A and B). This may be
owing to the Liupan Mountain in the Upstream, which blocks the east-
west monsoon channel (Zhu et al., 2016). Besides, the capital city of
Xi'an and other cities of the Shaanxi province are situated in the plain,
so the higher Ex is may be attributed to urban heat island effects
(Limsakul and Singhruck, 2016; Liu et al., 2017). Fig. 5C and D show
the variation range of En for annual Tmin is larger than that of annual
Tmax across the basin, which is consistent with the findings of Section
4.1.1. The En values are generally larger in the JRB and the Guanzhong
Plain and lower in the northeastern portion of the WRB (Fig. 5C and D),
implying that the annual Tmax and Tmin in the JRB and the plain are
more uneven than other areas. This may be because the JRB is located
in the Loess Plateau; and the Guanzhong Plain is near to the Qinling
Mountains which mark the edge of the monsoon region. These areas are
sensitive to climate change and/or the abnormalities of the monsoon
(Huang et al., 2014b; Zhu et al., 2016). Thus, the annual Tmax and
Tmin in these areas exhibit clear variations. Similarly, the He values of
the annual Tmax and Tmin in the WRB have striking differences. Fig. 5E
shows that the higher He values of annual Tmax are mainly found in the
Loess Plateau (in the upper reaches of the JRB), suggesting that the
stability of annual Tmax in this district is less than that of other regions
of the basin. By contrast, higher He values of annual Tmin are mostly
focused in the downstream area of the JRB and the Guanzhong Plain,
implying annual Tmin is less stable in these areas. This may be due to
their locations and intensifying human activities in the region (Zhou
and Ren, 2011; Huang et al., 2014b). Overall, the spatial change pat-
terns of annual Tmax and Tmin, based on the three numerical char-
acteristics of the normal Cloud model, indicate that annual Tmax and
Tmin in the JRB, which belongs to the Loess Plateau, have higher dis-
persion degrees and are less uniform and stable compared with other
regions of the WRB.

4.2. Causes of annual Tmax and Tmin variations in the WRB

Apart from anthropogenic factor, some other factors may also in-
fluence the variations of annual Tmax and Tmin. In order to explore the
potential causes of changing annual Tmax and Tmin from the

perspective of solar activity, large-scale atmospheric circulation pat-
terns, and SM, the correlations among annual Tmax and Tmin time
series in the WRB and SSN, AO, PDOI and SM series based on the cross
wavelet analysis were investigated (Figs. 6–8).

4.2.1. Teleconnection among annual Tmax, Tmin, and SSN
Fig. 6 displays the cross wavelet transforms of SSN and annual Tmax

and Tmin in the Upstream, the JRB, and the WRB. Obviously, SSN
exerts a strong influence on the variations of annual Tmax and Tmin
across the WRB. Specifically, Fig. 6A shows that SSN has a statistically
significant negative correlation with the annual Tmax series in the
Upstream, with a 9–12 year signal in 1970–1990 at the 95% confidence
level. SSN also shows a statistically significant negative correlation with
annual Tmax series in the Upstream with a 8–14 year signal in
1992–2008. Fig. 6B illustrates that SSN and annual Tmin have a sta-
tistically significant negative correlation in the Upstream with a signal
of 7–14 year from 1975 to 2007.

For the JRB, Fig. 6C shows SSN has a statistically significant nega-
tive correlation with annual Tmax variations in the JRB with a
9–12 years signal from 1976 to 2006 at the 95% confidence level.
Fig. 6D indicates SSN has statistically significant negative correlations
with annual Tmin in the JRB with a 9–10 years signal in 1963–1970, a
9–12 year signal in 1986–2006 and a 7–9 year signal in 1986–1998 at
the 95% confidence level. Besides, SSN also has a statistically positive
correlation with annual Tmin in the JRB with a 7–9 year signal in
1976–1984 at the 95% confidence level (Fig. 6D).

For the WRB, there is a statistically significant negative correlation
between SSN and annual Tmax, with a signal of 8–12 years from 1975
to 2007 (Fig. 6E). In addition, SSN exhibits statistically significant ne-
gative correlations with annual Tmin in the WRB with a 9–10 year
signal from 1963 to 1983 and a 7–14 year signal from 1987 to 2006,
and it exhibits a positive correlation with a 7–9 year signal from 1980 to
1982 at the 95% confidence level. In general, these significant corre-
lations among SSN, annual Tmax, and annual Tmin in the Upstream,
the JRB, and the WRB suggest that solar activity has a remarkable
impact on the variations of the annual Tmax and Tmin series.

4.2.2. Teleconnection among AO, PDOI, annual Tmax, and annual Tmin
The cross wavelet transforms between AO, PDOI, annual Tmax, and

annual Tmin in the WRB are displayed in Fig. 7. Fig. 7A demonstrates
that the AO has a statistically significant negative correlation with
annual Tmax in the WRB, with a 1–5 year signal from 1964 to 1970 at
the 95% confidence level. Additionally, AO exhibits a statistically sig-
nificant negative correlation with annual Tmin at the 95% confidence
level with a 7–9 year signal from 1983 to 1994 (Fig. 7B). As shown in
Fig. 7C, there are statistically significant negative correlations between
annual Tmax and PDOI, with a 2–4 year signal in 1993–2000 and a
5 year signal around 1988. Fig. 7D illustrates that the PDOI has

Fig. 4. The Tmax and Tmin clouds of the Upstream, the JRB and the WRB. The number of cloud drops is 10,000.
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statistically significant negative correlations with annual Tmin varia-
tions in the WRB with a 3–4 year signal in 1983–1988 and a 5–6 year
signal in 1996–2000 at the 95% confidence level. In addition, the PDOI
shows statistically significant positive correlations with annual Tmin in
the WRB with a 1–3 year signal from 1990 to 1996, and a 8–9 year
signal from 1990 to 1998 at the 95% confidence level. Similar corre-
lations among AO, PDOI, annual Tmax, and annual Tmin in the Up-
stream and the JRB have also been observed (for brevity, results are not
shown). These significant correlations among annual Tmax, annual
Tmin, AO, and PDOI series demonstrate that large-scale atmospheric
circulation patterns play important roles in the variations of annual
Tmax and Tmin in the WRB.

4.2.3. Connections among SM, annual Tmax, and annual Tmin
Fig. 8 exhibits the cross wavelet transforms between SM, annual

Tmax, and annual Tmin in the WRB. Fig. 8A shows that there is a
statistically significant negative correlation between the SM and annual
Tmax variations at the 95% confidence level, with a 2–5 year signal
from 1963 to 1970 and a 6 year signal from 1963 to 1968. Fig. 8B in-
dicates that SM also has statistically significant negative correlations
with annual Tmin variations in the WRB at the 95% confidence level,
with a 7–8 year signal from 1978 to 1990 and a 4–5 year signal from
1984 to 1986. Similar relations among SM, annual Tmax, and annual
Tmin in the two sub-basins have also been found (for brevity, results are
not shown). These findings suggest that changes of annual Tmax and
Tmin in the WRB are also significantly linked to SM.

Fig. 5. Spatial distribution of the three numerical characteristics of Tmax and Tmin in the WRB. On the left are the Ex (A), En (C), and He (E) of Tmax, while the right are the Ex (B), En
(D), and He (F) of Tmin.
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Fig. 6. The cross wavelet transforms between the SSN and Tmax and Tmin series in the Upstream (A and B), the JRB (C and D) and the WRB (E and F). On the top is those of the Tmax
series, while on the bottom is those of the Tmin series. The 95% significance confidence level against red noise is exhibited as a thick contour, and the relative phase relationship is
denoted as arrows (with anti-phase pointing left, in-phase pointing right). The color bar on the right denotes wavelet energy. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. The cross wavelet transforms among the AO (A and B), PDO (C and D) and Tmax and Tmin series in the WRB. On the left is that of the Tmax series, while on the right is that of the
Tmin series.
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4.3. Implications of changing annual Tmax and Tmin in the WRB

4.3.1. Effects of changing annual Tmax and Tmin on NDVI
Temperature plays an important role in the growth and develop-

ment of vegetation and would also affect the pollination of plants
(Hatfield and Prueger, 2015). Since the Guanzhong Plain in the middle
and south of the WRB is a highly important agricultural production
base, it is necessary to investigate the effects of changing annual Tmax
and Tmin on NDVI, which would provide scientific insight for local
agricultural production.

Similar to annual Tmax and Tmin in the WRB, there is a significant
increasing trend in vegetation coverage at the 95% confidence level
with MMK statistic of 3.59. Fig. 9 shows the cross wavelet transforms
between the NDVI and annual Tmax and Tmin series spanning
1982–2008 in the WRB. It is illustrated that annual Tmax has statisti-
cally significant positive correlations with the NDVI series, with a signal
of 3–5 years in 1988–1993 and a 1–2 year signal in 1996–1999
(Fig. 9A). Fig. 9B indicates there is a statistically significant positive
correlation between the annual Tmin and NDVI series with a signal of
8–9 years from 1988 to 1996. These significant correlations imply that
increasing annual Tmax and Tmin values have exerted remarkable in-
fluence on the rapidly increasing vegetation coverage, which suggests
that the local government should consider their potential consequences
(e.g. major vegetation shifts, Bokhorst et al., 2012).

4.3.2. Effects of changing annual Tmax and Tmin on precipitation extremes
Liu et al. (2017) claimed that the stationarity of precipitation ex-

tremes in the Upstream of the WRB is invalid, based in part on notable
changes in the late 1960s. Therefore, we decided to explore the detailed
linkages between increasing annual Tmax and Tmin and precipitation
extremes in the Upstream, which would help us to better understand
precipitation extreme variations for improved weather predictions and
water resources management.

The annual maximum 1-day precipitation (RX1day), the frequency
of extremely wet day precipitation (R95D), and consecutive wet days
(CWD) were selected as the intensity, frequency, and duration indices
of precipitation extremes, respectively (Limsakul and Singhruck, 2016;
Liu et al., 2017). Fig. 10 shows the cross wavelet transforms between
annual Tmax and Tmin and precipitation extremes in the Upstream.
Fig. 10A demonstrates that the annual Tmax has a statistically sig-
nificant positive correlation with the RX1day variations at the 95%
confidence level, with a 2–4 year signal from 1967 to 1972. There is a
statistically significant negative correlation between annual Tmin and
RX1day series, with a signal of 15–17 year from 1979 to 1994
(Fig. 10B). For the frequency index, annual Tmax shows a statistically
significant negative correlation with the R95D with a 2–4 year signal in
1965–1971 (Fig. 10C). By comparison, annual Tmin has a statistically
significant negative correlation with R95D with a 1-year signal in
1991–1992 (Fig. 10D). For the duration index, annual Tmax exhibits a
statistically significant negative correlation with the CWD with a

Fig. 8. The cross wavelet transforms between SM and Tmax and Tmin series in the WRB: (A) Tmax and (B) Tmin.

Fig. 9. The cross wavelet transforms between NDVI and Tmax and Tmin series spanning 1982–2008 in the WRB: (A) Tmax and (B) Tmin.
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2–3 year signal in 1989–1993 and a 15–17 year signal in 1996–2008
(Fig. 10E). There is also a statistically significant positive correlation
between the annual Tmin in the Upstream and the CWD with a 1–3 year
signal from 1989 to 1995, and there is a statistically significant negative
correlation in 1987–2006, with a signal of 15–16 year (Fig. 10F). A
comparison of Fig. 10 shows that CWD and RX1day are most strongly
influenced by the changing annual Tmax and Tmin.

5. Discussion

The relationships between SSN and annual Tmax and Tmin are the
strongest (Figs. 6–8), which indicates that the variations of the annual
Tmax and Tmin in the WRB are more strongly influenced by solar ac-
tivity than other factors mentioned above. Since solar radiation is the
source of energy (Valev, 2006) it could modulate large-scale atmo-
spheric circulation patterns variations through geomagnetic activity
(Valev, 2006; Qian, 2017).

Although the relationships between SSN and annual Tmax and Tmin
are strongest, there remain differences in the time and frequency do-
mains in different regions, which may explain the different spatial
change patterns in the annual Tmax and Tmin in the Upstream, the JRB,
and the WRB (see Section 4.1.2).

The relationships among annual Tmin, SSN, AO, PDOI, and SM are
generally stronger than those among the same factors and annual Tmax,
indicating that annual Tmin is more sensitive to those factors' influ-
ences. Further, it could also explain the larger increases, higher dis-
persion degree, greater non-uniformity, and larger instability in the
annual Tmin than annual Tmax in the WRB (see Section 4.1.1).

When there are time overlaps in different indices showing correla-
tions with annual Tmax and Tmin in the WRB, they usually have dif-
ferent frequencies. For instance, both SSN and PDO have statistically
significant correlations with the annual Tmax series in the WRB in
1993–2000, but with different frequency signals.

These findings demonstrate that the variations of the annual Tmax

and Tmin in the WRB are closely linked to the combined influences of
solar activity, large-scale atmospheric circulation patterns, and SM
However, whether the interactions among these indices are reinforcing
or offsetting each other requires further investigation in future studies.

The correlations among annual Tmax, Tmin, the RX1day, R95D, and
CWD imply that increasing annual Tmax and Tmin values are closely
related to precipitation extremes in terms of the duration, intensity and
frequency in the WRB. In addition, the change point of the R95D in
1969 (Liu et al., 2017) corresponds to the period in which annual Tmax
is statistically negatively correlated with the R95D in 1965–1971,
which suggests that the increasing annual Tmax might be one of the
potential causes of the nonstationary extreme precipitation series in the
Upstream of the WRB.

6. Conclusions

The investigation of annual Tmax and Tmin is important to better
understand the regional response of temperatures to changing en-
vironments. In this study, a comprehensive investigation of the spatial-
temporal change patterns, potential causes and relevant implications of
temperature extremes in the WRB was performed based on the Cloud
model and cross wavelet analysis.

Generally, the WRB is characterized by increasing annual Tmax and
Tmin values, although the increasing trend in annual Tmin is larger
than that of annual Tmax. In addition, annual Tmin has a higher dis-
persion degree and is less uniform and stable than annual Tmax. The
asymmetric variations of annual Tmax and Tmin can be explained by
the stronger influences of solar activity, large-scale atmospheric circu-
lation patterns, and SM on annual Tmin than on annual Tmax.

Topography plays an important role in affecting the spatial varia-
tions of the three numerical characteristics of the annual Tmax and
Tmin clouds in the WRB. Specifically, the lowest Ex was found in the
Upstream and the highest Ex was found in the Guanzhong Plain owing
to the Liupan Mountain in the Upstream and the urban heat island

Fig. 10. The cross wavelet transforms between Tmax and Tmin and precipitation extremes intensity (A and B), frequency (C and D) and duration (E and F) in the Upstream of the WRB.
On the top is those of the Tmax series, while on the bottom is those of the Tmin series.
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effect in the plain. The En and He values were larger in the JRB (the
Loess Plateau), implying that annual Tmax and Tmin in this region are
more uneven and instable than other regions in the WRB. These find-
ings can also be attributed to the differences in the relationships be-
tween solar activity and annual Tmax and Tmin in the time and fre-
quency domains in different regions.

Additionally, the correlations between the changing annual Tmax
and Tmin and NDVI suggest that the increasing annual Tmax and Tmin
have exerted remarkable implications on the rapidly increasing vege-
tation coverage in the WRB. Their similar relationships with pre-
cipitation extremes also suggest that variations in annual Tmax and
Tmin will impact the duration, intensity, and frequency of precipitation
extremes in the WRB. Also, the increasing annual Tmax might also be
one of a potential cause of the nonstationary extreme precipitation
series in the Upstream of the WRB.

In conclusion, the Cloud model provides a new approach and
quantitative measure for estimating the uniformity and stability of
temperature extremes. Besides, our findings suggest that solar activity,
large-scale atmospheric circulation patterns, and SM have the potential
to improve the prediction of annual Tmax and Tmin in the study region.
Moreover, the findings of this study may facilitate more informed de-
cision-makings in terms of both the scientific mitigation of disasters and
efficient water resources management.
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