
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.Doi Number

Blockchain-based fair payment protocol
for deduplication cloud storage system

SHANGPING WANG1, YUYING WANG2, and YALING ZHANG3
1School of Science, Xi’an University of Technology, Xi’an, Shaanxi, China(e-mail: spwang@mail.xaut.edu.cn)
2School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China(e-mail: yuyingwang1110@gmail.com)
3School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China(e-mail: ylzhang@xaut.edu.cn)

Corresponding author: Yuying Wang (e-mail: yuyingwang1110@gmail.com).

This work is supported by the National Natural Science Foundation of China under Grants No. 61572019.

ABSTRACT Today more and more enterprises and individuals are outsourcing their data to cloud storage

system. Data deduplication is one of the important technologies to reduce the storage cost of cloud storage

system. In a cloud storage system with deduplication technology, the client can outsource the data files to

the cloud storage server and pay for them. Fair payment is one of key issues in the cloud deduplication

storage system. At present, a variety of secure deduplication encryption schemes have been designed to

protect the privacy of client data. However, most existing fair payment solutions use traditional electronic

cash systems to generate payment tokens, which requires a trusted authority to prevent double-spending.

Trusted authorities will become bottlenecks in the payment system. Faced with this problem, in this paper,

we propose a new decentralized fair payment protocol for cloud deduplication storage system by utilizing

ethereum blockchain technology. The new protocol takes advantage of the decentralization of blockchain

technology, allowing direct transactions without the participation of trusted third parties. In the new

protocol, if a malicious situation occurs, the system can guarantee fair payment by pre-storing penalty

money in the smart contract. Safety analysis and experimental analysis show that our new protocol is

feasible.

INDEX TERMS cloud storage, deduplication, fairness, blockchain, ethereum, smart contract

I. INTRODUCTION

In recent years, due to the rapid development of cloud

computing and big data technology, more and more

enterprises and individuals choose to outsource data to cloud

service providers. Many cloud storage systems use

deduplication to reduce costs by taking advantage of the

redundancy of storing data and avoiding storing the same

data multiple times in real life. However, in order to provide

secure deduplication, clients must trust the server not only to

store their documents, but also to encrypt them. Usually,

traditional encryption techniques make deduplication

impossible. Suppose Alice and Bob both have a file M, and

they encrypt the file under the key KA and KB respectively.

Finally, the ciphertext FA and FB are stored on the remote

cloud storage server S. In this case, it is difficult for S to

detect that the two ciphertexts are the same. In addition, even

if it could be detected, it would be difficult for S to store FA

and FB in a short copy, thus allowing Alice and Bob to

decrypt the plaintext M. The convergent encryption proposed

by Douceur J R et al. [1] and its variants deal with data

security and privacy issues for secure deduplication.

However, most of the existing fair payment schemes in cloud

outsourcing storage adopt traditional payment mechanisms

and rely on trusted third parties, such as Banks. For example,

Google's cloud platform offers a range of computing and

storage services, but bank accounts are required to register.

However, traditional payment schemes have disadvantages.

First, the bank is trusted by all users and servers and handles

all processes in a fair way. Second, the payment mechanism

needs to adapt to multiple Banks used by different

participants and need to be updated at any time, which will

become the bottleneck of the payment system. Finally, users'

privacy and bank accounts may be violated. Therefore, the

fair payment in the cloud service environment has been

studied extensively.

In this paper, based on the cloud storage encryption

scheme, we improve the cloud storage encryption scheme by

introducing ethereum blockchain technology, and make fair

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

2

payment by using ethereum smart contract technology. At

the same time, we achieve the role of supervision, track the

behavior of data, and realize the decentralized fair payment.

Because all access records are recorded in the blockchain

network, and the blockchain is transparent. Our protocol uses

deduplication technology to reduce the cost of cloud storage

and to reduce server-side load.

Our contributions:

The contributions of this paper are as follows:

(1) A fair payment protocol based on Ethereum blockchain

for cloud storage system is proposed. Decentralized payment

is realized through the blockchain technology, and the

fairness of payment is guaranteed by the smart contract with

pre-existing penalty. There is no trusted third party in our

system. The payment process is decentralized by transferring

tokens in the blockchain network through ethereum smart

contract technology.

(2) On the one hand, deduplication technology is adopted

to provide effective and secure methods to reduce storage,

communication and computing overhead of cloud storage

servers and clients; on the other hand, according to "whether

files uploaded by the client are duplicated with existing files

on the cloud storage server" in deduplication technology, the

protocol provides two different payables, namely, "file

duplication", payable is 1b ; "file unduplicated", payable is

2b ,where 21 bb  .

(3) The combination of the payment scheme proposed in

this paper and deduplication technology weakens the client-

side deduplication attack to some extent. Usually if an

attacker who knows the file tag Tag can convince the storage

service that it owns the file, so the server allows the attacker

to download the entire file. However, our payment protocol

requires that the server does not perform file storage

operations until the client pays. That is, even if the attacker

has a file tag, he still needs to make a payment, and then the

server returns file link pointer L. Therefore, this will limit the

attack behavior of deduplication attack to a certain extent.

(4) Under the Ubuntu linux system, smart contracts were

created and deployed through the Ethereum official test

network Rinkeby, and the corresponding performance and

cost were analyzed.

The rest of the paper is organized as follows. In the

section II, related work is presented. The section III

introduces some preliminaries. The section IV shows the

system model of our scheme. The specific construction of

our scheme is described in detail in section V. And the

performance and security analysis are discussed in section

VI. Finally, the conclusions and future research directions

are given.

II. RELATED WORK

In order to achieve secure deduplication, some scholars

propose the following schemes. In 2002, Douceur J R et al.

[1] proposed the convergence of encryption, so that duplicate

files are merged into one file space, even though these files

are encrypted by different users' keys. That is, convergent

encryption provides the first clever solution for secure

deduplication. In 2013, Li J et al. [2] proposed the DeKey

scheme to solve the problem of effective and reliable

management of large convergence keys in convergent

encryption. In this scenario, users do not need to manage any

keys themselves, but instead securely distribute aggregate

key sharing across multiple servers. In the same year, Bellare

M et al. [3] formalized a new cryptographic primitive called

message-locked Encryption (MLE), in which the key that

performs encryption and decryption itself comes from the

message. MLE provides a way to implement secure

deduplication. Abadi M et al. [5] strengthened the security

concept proposed by Bellare M et al. by considering the

plaintext distribution that might depend on the common

parameters of the scheme. Abadi M et al. designed a

completely random scheme, which supports an equality

testing algorithm defined on ciphertext. A deterministic

ciphertext component is constructed to support more efficient

equality testing. In both schemes, the overhead of ciphertext

length is additional and independent of message length.

In 2013, Keelveedhi S et al. [6] addressed the vulnerability

of message-locked Encryption (MLE) to brute force attacks,

which can restore files to a known set, by proposing a

framework that provides secure deduplication storage to

resist brute force attacks, and implemented in a system called

DupLESS. In DupLESS, the client encrypts under message-

based keys that are obtained from the key server via an

unrelated PRF protocol. It enables clients to store encrypted

data with existing services, allowing services to deduplicate

data on their behalf, while maintaining strong confidentiality

guarantees. DupLESS demonstrates that encryption for

duplicates can achieve performance and space savings

similar to those achieved by using a plaintext data storage

service. These secure deduplication solutions provide

effective and secure ways to reduce storage, communication,

and computing overhead for cloud storage servers and clients.

After deduplication encryption technology has been

effectively solved, the issue of fair payment between clients

and cloud storage servers has also attracted wide attention.

Carbunar B et al. [7] first considered the payment problem in

outsourcing computing in 2010. Based on this, they proposed

a fair payment scheme based on the segmentation selection

protocol and secret sharing protocol. However, this solution

is very inefficient for practical applications. Later, the author

proposed an improved new payment scheme [8], but the

efficiency of this scheme was not improved. It can also be

regarded as a specific example of conditional electronic

payment [9-10]. In 2012, Chen et al. [11] first considered the

third trust issue, that is, worker W would not send the

calculation results to outsourcing company O. They adopted

the same model, introducing lazy and partial dishonest

employees. Then, they proposed a new fair payment scheme,

which only uses the traditional e-cash scheme to generate

payment tokens. Their solution is more effective than the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

3

previous one. In 2014, Chen et al. [12] further proposed a

conditional electronic payment system based on restricted

partial blind signature scheme.

Since the first introduction of blockchain by the Nakamoto

team [13] in 2008, the application of blockchain-based

technology has penetrated into various industries, especially

those business fields where there are transaction

intermediaries, which means that many service businesses

will be decentralized. The decentralized distributed structure

of blockchain can save a lot of intermediary costs in reality.

Because blockchain technology can be used as a tool for

large-scale collaboration between people without mutual

trust, it can be used in many traditional centralized fields to

handle transactions that were originally handled by

intermediaries.

In 2014, Andrychowicz M et al. [14] showed how to use

the bitcoin system to obtain fairness in any two-party

security computing protocol. The significance is as follows:

if one party terminates the protocol after receiving the output,

the other party will receive economic compensation (bitcoin).

One possible application of such an agreement is fair

contract signing: each party is forced to complete the

agreement or pay a fine to the other. In 2016, Andrychowicz

M et al. [15] used the bitcoin system to provide an attractive

way to construct a "timed commitments" in which the

committer has to reveal their secrets within a certain time

frame or to pay a fine. This, in turn, can be used to achieve

fairness in some multi-party protocols. Secondly, they

introduce the concept of the multi-party protocols that work

"directly on Bitcoin". In 2017, Ateniese G et al. [16]

introduced auditable storage based on reversible Bloom filter

expansion, and demonstrated how to combine it with zero-

knowledge proof based on bitcoin. However, the

combination involves a trusted third party, called a bitcoin

arbitrator. In the same year, Campanelli M et al. [17] defined

the concept of zero-knowledge contingent service payment

and realized the service payment based on blockchain. Two

advanced protocols are constructed and implemented based

on the retrievable service proof. However, the proposed

protocol is only conceptual, lacking design details, and its

efficiency needs to be improved due to the use of an

indistinguishable protocol [23] as a building block.

Based on game theory and Ethereum smart contract, Dong

C et al. [18] proposed a protocol to verify the correctness of

computation in cloud computing. However, assuming that

users are honest; the two clouds cannot collude. On the other

hand, in order to improve the transaction throughput and

latency in blockchain, the current work mainly focuses on

offline payment channels, which can be combined with the

payment channel network to achieve multiple payments

without accessing the blockchain. In 2018, Zhang Y et al. [19]

introduced TKSE, a trusted keyword search scheme based on

encrypted data, without any third party. In TKSE, an

encrypted data index based on digital signatures allows users

to search for outsourced encrypted data and check that the

search results returned by the cloud meet the pre-specified

search requirements. In particular, it is the first time that

server-side verifiability has been implemented to protect

honest cloud servers from malicious data owners in the data

storage phase. In addition, using the blockchain technique

and the hash function, even if the user or the cloud itself is

malicious, the payment fairness of the search fee can be

realized without introducing a third party. In the same year,

Zhao Yanqi et al. [29] used blockchain trading technology to

realize the decentralized fair payment of the "publish-

subscribe" system.

In summary, the use of blockchain technology's

decentralized, non-tamperable features into the payment

solution can solve the malicious problems of both sides.

However, blockchain technology has just emerged, and the

fair payment based on blockchain for cloud storage has not

yet begun. It is of great value and significance to study the

decentralized fair payment based on blockchain under cloud

services.

III. PRELIMINARIES

A. Secure deduplication

Cloud computing provides a low-cost, scalable, location-

independent infrastructure for data management and storage.

The rapid adoption of cloud services has led to an increase in

the amount of data stored on remote servers, requiring

technologies that save disk space and network bandwidth.

Deduplication [3-4, 22] is an important technology to

reduce the storage cost of cloud storage and management

system, that is, the server only stores one copy of each file,

regardless of how many clients request to store the file.

Many storage systems use deduplication to reduce costs.

Take advantage of the redundancy of stored data to avoid

storing the same data multiple times in real life. For example,

in a cloud storage system, suppose n clients share the same

copy of file F. If some actual storage costs are omitted, then

deduplication will change the storage cost of the file from

|)|n (FO  to |)|n (FO  , ||  is the bit length of the file.

In a typical cloud storage system with deduplication, the

client first sends only a hash of the file to the server, which

checks to see if the hash value already exists in its database.

If the hash is not in the database, the server requests the

entire file. Otherwise, since the file already exists on the

server (possibly uploaded by someone else), it tells the client

not to send the file itself, saving bandwidth and storage (this

is called client-side deduplication). Either way, the server

marks the client as the owner of the file, and since then, there

is no difference between the client and the original party that

uploaded the file. Therefore, the client can request recovery

of the file regardless of whether the client is required to

upload the file. Either way, if the client needs this duplicate

data, it will be charged. Although the server does not require

the client to upload this duplicate file, the client still needs

the server to return the file storage location. That is, the client

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

4

completes a stored procedure, but the server has the same file

and does not need to upload it.

It has been reported that business applications can achieve

deduplication rates from 1:10 to 1:500, resulting in savings

of more than 90% of disk and bandwidth. Deduplication can

be applied at the file level or at the block level, and file level

deduplication is used in this paper.

During deduplication, the client tries to identify

deduplication opportunities that already exist on the client to

save bandwidth in uploading existing copies of files to the

server. However, in order to provide secure deduplication,

clients must trust the server not only to store their documents,

but also to encrypt them. Usually, the traditional encryption

technology makes deduplication impossible. Suppose Alice

and Bob both have a file M, and they encrypt the file under

the key KA and KB respectively. Finally, the ciphertext FA

and FB are stored on the remote cloud storage server S. In

this case, it is difficult for S to detect that the two ciphertexts

are the same. In addition, even if it could be detected, it

would be difficult for S to store FA and FB in a short copy,

thus allowing Alice and Bob to decrypt the plaintext M.

Convergent encryption [1] provides the first clever solution

to secure deduplication and its variants, designed to address

data security and privacy issues. At present, a variety of

secure deduplication encryption schemes have been designed

to protect the privacy of customer data. This paper uses

convergent encryption to ensure data security.

B. convergent encryption

Convergent encryption (CE) [3] aims to provide data

confidentiality for deduplication. Here, the client derives a

convergent key K from each original data copy M, and uses

K to encrypt the data copy to get ciphertext C. In addition,

the client also derives a tag Tag for the data copy, which is

used to detect the copy. Here, we assume that tag correctness

attribute [41] is true. More precisely, if two copies of data are

the same, they have the same tag. To detect a replica, the

user first sends a tag to the server to check that the same

replica has been stored. Note that the convergence key and

the tag are independently derived, and the tag cannot be used

to derive the convergent key and destroy data confidentiality.

The encrypted copy of the data and its corresponding tag are

stored on the server-side. Formally, according to the

definition of [3], the following is the definition of the

convergent encryption scheme used in the system.

A convergent encryption scheme (CE) is composed of a

four-tuple)(ec, TGKG, Enc, D .

()KG M K . KG is an important generation algorithm,

input data M, and output convergent key K.
(,)Enc K M C . Enc is a symmetric encryption algorithm

that outputs ciphertext C with K and M as inputs.

(,)Dec K C M . Dec is a decryption algorithm that

outputs a copy of the original data M with K and C as inputs.

() ()TG M Tag M . TG is a tag generation algorithm for

the original data copy M. (Normally, the input to the TG is

the ciphertext of M, so () ()TG C Tag M). In this paper, the

file ciphertext C is hashed using the hash function SHA-256

to generate a file tag Tag to achieve tag unification.

 C. signature scheme

In the digital signature scheme, the sender first publishes

its public key pk, and then uses its private key sk to sign the

message. When a signed message is received by the receiver,

the sender's public key can be used to verify the message.

Digital signature scheme is a set of probability polynomial

time algorithm (Gen, Sign, Verify), so that:

(pk,sk)Gen(k) .The key generation algorithm Gen takes

the security parameter k as input and outputs a pair of keys

(pk,sk), which are called public key and private key

respectively.

σSign(sk,m) .The signature algorithm Sign accepts the

private key sk and the message m from the message space as

input. It outputs a signature σ .

bmpkV ),,(erify  .The deterministic verification

algorithm Verify enters the public key pk, message m, and

signature σ . It outputs a bit b; b = 1 means valid, b= 0 means

invalid.

It is required that for each k, every (pk,sk) output of Gen(k),

and each message m in the plaintext space, the signature of

the message m satisfies 1),,(erify mpkV .

 D. Proof of Ownership

Cloud storage systems are gaining popularity. One

promising technique to reduce the cost of deduplication is to

store only one copy of the duplicates. Client deduplication

attempts to identify existing deduplication opportunities on

the client and to save bandwidth by uploading existing copies

of files to the server.

Harnik et al. recently found that client-side deduplication

introduces new security issues [43]. For example, the server

tells the client that it does not need to send the file, which

indicates that some other clients have exactly the same file,

which may be sensitive information. Specifically, an attacker

who knows the file tag Tag can convince the storage service

that it owns the file, so the server allows the attacker to

download the entire file.

To overcome such attacks, [4] introduces the concept of

proof of ownership (POW), which allows the client to

effectively prove to the server that the client holds a file,

rather than just some brief information about the file.

The concept of POW can be achieved by using a Merkle

tree-based retrievable protocol proof. That is, we first use the

Erasure Code to encode the file so that we can recover the

entire file from, for example, 90% of the encoded bits. Then,

we build a Merkle tree on the encoded files, and lets the

server asks a random selection of super-logarithmic leaves.

According to the erasure code properties, if the enemy is

missing any part of the file, then at least 10% of the leaves

are not aware of it. Moreover, if the file has a high min-

entropy [4] from the point of view of the adversary, it cannot

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

5

even guess the value of the 10% leaf, and there is no obvious

chance of success. Therefore, it is very likely to be caught.

Detailed POW scheme description references [4].

1. Basic knowledge

(1) MME


 }1,0{}1,0{: is an erasure code [4] that can

erasure up to a  portion of the bit (for a certain

constant 0). Namely, the file nF }1,0{ is erasured with

the security parameters n. From any M )1( position

of)(FE , in principle, the original file nF }1,0{ can be

completely recovered.

(2) The Merkle tree provides a clean promise for large

buffers [4], so that later blocks of the buffer can be opened

and validated without providing the entire buffer. To

construct the Merkle tree, we split the input buffer into

blocks, then group the blocks in pairs, and hash each pair

using a collision resistant hash function. The hash values are

then grouped in pairs again, and each pair is further hashed,

repeating the process until only one hash value remains. This

generates a binary tree with the leaves corresponding to the

blocks of the input buffer and the roots corresponding to the

final remaining hash values. (When the number of blocks in

the input buffer is h2 , the resulting tree is a complete binary

tree of height h.)

Use)(, XMT bH to represent the binary Merkle tree of buffer

X, using the b-bit leaf node and the hash function H. In

addition, let H be a collision resistant hash function with an

output length of n bits (e.g., SHA256, 256n). For each

node n in)(, XMT bH , we use nv to represent the value

associated with that node. That is, the value of the leaf node

is the corresponding block of the buffer X, and the value of

the intermediate node)(, XMTn bH is the hash),(rln vvhv  ,

rl vv , are the values of the left child node and the right child

node of n, respectively. (If a child of a node is missing from

the tree, its value is treated as null.)

For a leaf node)(, XMTl bH , the sibling path of l consists

of the value lv

and the sibling path values of all the nodes in

the path from l to the root.

Given the subscript of leaf node)(, XMTl bH and the

sibling path of l, we can calculate the values of all the leaves

on the l-root path in a bottom-up manner, by starting from

two leaf nodes and then repeatedly computing the value of

the parent node as a hash of the values of the two child nodes.

We say that a s ibl ing path),...,,,(10 ninnl vvvvP  of

)(, XMT bH is valid, if i is indeed the height of the tree, and th

e calculated root value in the sibling path is the same as the r

oot value of)(, XMT bH . Note that in order to verify that a giv

en sibling path is valid, it is sufficient to know the number of

leaves and the root value of)(, XMT bH .

2. Basic structure

According to [4], the following POW scheme is a strong

proof of ownership protocol with robustness u)1( .

(1) Let the parameter 256b be the leaf size of the Merkle

tree;  , the desired robust boundary; and  , the erasure

recovery capability of the erasure code. We use the collision

resistant hash function)(H , and the erasure code)(E with a

recovery capability of .

(2) Once the M-bit file F is inputted, the verifier calculates

the code)(FEX  and the Merkle tree)(, XMT bH , and holds

only the root of the tree and the number of leaves as the

verification information.

(3) During the proof protocol, the verifier randomly selects

a u leaf index, ull ,...,1 , u is the smallest integer that

makes   u)1(.The verifier asks the prover for the sibling

path of all the leaves, and calculates the Merkle root by using

the returned sibling path, and determines whether all the

sibling paths are valid for the Merkle tree)(, XMT bH .

(4) If all sibling paths are valid, the prover proves to the

verifier that it owns the file.

In this paper, to prevent unauthorized access, a secure

proof of ownership scheme, POW, is used so that when the

server discovers a copy, the client provides proof that it does

have the same file.

E. blockchain technology and ethereum

Blockchain technology was introduced to the world by

"bitcoin". Bitcoin is a P2P encrypted digital currency. Since

the establishment of Nakamoto Satoshi[13] in 2008, its value

and popularity have increased. In the case of bitcoin,

blockchain supports a payment system and a complete digital

currency, which is secure and decentralized. That is, it is a

user-driven peer-to-peer network with no central authority.

As bitcoin began to attract attention, developers took

advantage of the blockchain technology as an infrastructure

to create their own platform (in addition to the primary use of

bitcoin to facilitate the transfer of digital money). On the one

hand, some platforms use the bitcoin network as

infrastructure to notarize or certify the existence of digital

documents, crowdfunding, dispute mediation, and spam

control. On the other hand, several platforms have emerged

in the form of tokens, a blockchain-based cryptocurrency that

aims to enhance bitcoin's capabilities by implementing its

own features and functions. So far, there are almost 2,000

tokens, but the most attractive are ether [20], litecoin[35] and

dogecoin[36].

In this paper, we will use the ethereum platform. In 2013,

ethereum [20] [37] was proposed by Vitalik Buterin to create

a distributed computing platform based on blockchain, with

the ability to build and run decentralized applications and

smart contracts. Ethereum's development was achieved

through online crowdfunding in mid-2014, and the platform

was launched in 2015. Ethereum has since gained

considerable attention and is a pioneer of blockchain 2.0[37],

the next generation cryptographic space. As a cryptocurrency

based on the blockchain, it provides the same functions as

bitcoin: simple mobile payment, reliability, complete control

over one's own money, high availability, fast internal

payment, zero or low cost, protected identity and privacy.

However, ethereum offers an online transfer of digital

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

6

currency that enables its users to build and deploy smart

contracts. So ethereum is a programmable blockchain.

F. ethereum virtual machine

The core of ethereum is the Ethereum Virtual Machine (E

VM) [20], which can execute code with arbitrary algorithm c

omplexity. Ethereum is "turing-complete", and developers ca

n use existing programming languages to create applications

that run on ethereum virtual machines, such as JavaScript an

d Python. To maintain consistency across the blockchain, eac

h network node runs an ethereum virtual machine. The decen

tralized consistency allows ethereum to be highly fault tolera

nt, with zero downtime, and the ability to store data on the bl

ockchain to remain constant and censor resistant. Computing

in ethereum virtual machines is paid for with ether (ETH), th

e currency used by ethereum.

G. ethereum account

The basic unit of ethereum is the account. Ethereum uses t

wo types of accounts: external accounts (EOA) and contract

accounts. The external account EOA is controlled by a corres

ponding private key, has an Ether balance, can send transacti

ons (forward Ether to another account or trigger a contract co

de), and has no associated code. The external account EOA i

s similar to a bitcoin address and consists of hexadecimal dig

its, such as 0x990069a8450174f7a988ace7e3211309b5a2329

6, so the external account EOA is anonymous. A contract acc

ount has its own Ether balance and associated code, and all a

ctions are performed by the external account through the tran

saction. Execution of the contract code means receiving a tra

nsaction from the external account EOA. The contract code c

an also be triggered by messages from other contract account

s. Compared to Bitcoin scripts, contracts execute Turing's co

mplete calculations and are written in high-level languages s

uch as Solidity [38], Serpent, and more. The behavior of a co

ntract is entirely dependent on his code and the transactions i

nitiated to it, creating the possibility for a decentralized syste

m.

H. smart contract

Smart contract [20-21] is essentially a program written in a

certain computing programming language, which can be run

in the container provided by the blockchain system, and at

the same time, the program can be automatically run under

the activation of some external and internal conditions. The

combination of such features and blockchain technology can

not only avoid artificial malicious tampering with rules, but

also take advantage of the efficiency and cost of smart

contracts. Since the code of the smart contract is stored in the

blockchain, the operation of the smart contract is also in the

container provided by the blockchain system. Combined with

the cryptographic principle used by the blockchain

technology, the smart contract is naturally tamper resistant

and anti-counterfeiting features. The results produced by the

smart contract are also stored in the block, so that the

execution from the source, the execution process and the

result are all executed in the blockchain, which ensures the

authenticity and uniqueness of the release, execution and

record of the smart contract.

I. transaction information

The smart contract [20-21] deployment is essentially a tran

saction initiated on ethereum. Ethereum transactions are sign

ed data packets that allow the transfer of ether from one acco

unt to another. In addition to transmitting Ether, transactions

can trigger the execution of code in smart contracts. Transact

ions include the initiation account address, the transaction de

stination account address, gasPrice, gasLimit, the Ether value

 transferred, additional data fields, etc. (the specific meanings

 of the transaction information parameters are shown in Tabl

e 1 below). The originating transaction account can place the

data field into the additional data field of the transaction, whi

le in the smart contract, the binary bytecode of the smart cont

ract code is placed into the additional data field. In this sche

me, we mainly make fair payment between client and cloud s

torage server through smart contract. Each call to a smart con

tract is an Ethereum transaction and can trigger the execution

 of the relevant code in the contract.

TABLE 1. The specific parameters of the transaction information

Parameters Parameters Meaning

blockHash Block hash in blockchain

blockNumber Block height in blockchain

contract address
The contract account address (only when the
contract is created, the transaction returns the

contract address, the rest is null)

from
Source of the transaction (Ethereum account for

deploying smart contracts)

gasPrice The gas value required for the transaction

gasLimit Maximum amount of gas allowed to be consumed

hash
Transaction hash (you can get the information of

the entire transaction through this value)

input Binary bytecode for smart contracts

to

Transaction destination address (the transaction

destination information generated after deploying

the smart contract is null)

value Transaction cost

IV. System Model and Security Requirements

Our scheme is improved on the cloud deduplication

system [22]. The original scheme [22] introduces the concept

of deduplication into common cloud storage schemes, and

uses traditional payment methods with trusted third parties

for transactions. And our scheme based on cloud storage

deduplication, cancel the third party, introducing the

ethereum smart contract for both sides pay agreement. More

importantly, clients and cloud storage service providers use

ethereum smart contract to transfer and pay tokens, and

every contract call is recorded on the blockchain. Therefore,

the information transfer between the client and the cloud

storage service provider is tamper resistant and non-

repudiation. The symbolic annotations used in the scheme

are shown in Table 2.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

7

TABLE 2. The symbolic meaning in the scheme

Symbols Symbolic meaning

S-CSP The cloud storage server

tID The client

1b The payable when "uploading files duplicated"

2b The payable when "uploading files not duplicated"

ServerContract Smart contracts deployed on the server side

ClientContract Smart contracts deployed on the client side

ClientAccount The ethereum account of the client

ServerAccount The ethereum account of the cloud storage server

CSPSpk  The public key of the cloud storage server

CSPSsk  The private key of the cloud storage server

TAB
The table that stores the records uploaded by the

clients

),(linktagTAB
The table that stores the file tag Tag

TxId
A transaction number containing payment transaction

information

 The signature of the cloud storage server to the client

L
The location where files are stored on the cloud

storage server

F The file uploaded by the client

Tag The file tag generated using tag generation algorithm

state The status of the file uploaded by the client

h
The hash function to generate a file tag to achieve tag

unification

K The convergent key

C The ciphertext of file F

A. System Model

The scheme has three roles, namely client, cloud storage

server and ethereum blockchain, where miners in ethereum

blockchain are not considered.

Client: request to upload the encrypted file to the cloud

storage server, and make the active payment when receiving

the payment from the cloud storage server.

Cloud storage server: our solution is to build on the

deduplication, that is, the cloud storage server needs to

determine whether the file is duplicated or not. According to

whether the uploaded files of the client are duplicated or not,

the scheme provides two different payables: "uploading files

duplicated", payable is 1b ; "uploading files not duplicated",

payable is 2b , 21 bb  . The cloud storage server then sends

the corresponding amount payable. After the cloud storage

server confirms the payment from the client, the cloud

storage server performs the operation of uploading encrypted

files and performs different file uploading algorithms

according to whether the files are repeated or not. The

specific file upload process is shown in figure 2. After the

encrypted file is uploaded, the cloud storage server returns

the payment receipt and the file link pointer to the client.

Ethereum blockchain: The client and cloud storage server

deploy smart contract ServerContract, ClientContract

respectively, and smart contracts open storage data and

interface for acquiring data on Ethereum.

FIGURE 1. System Model

The description of the steps in the Figure 1 is as follows:

○1 The cloud storage server S-CSP deploys the server

contract ServerContract to blockchain;

○2 The client registers in the cloud deduplication system

for payment;

○3 The cloud storage server S-CSP responds to the

client's registration request, authorizes the client, and writes

the client's address into the blockchain;

○4 The cloud storage server S-CSP sends the registered

transaction number, S-CSP contract address, contract ABI,

and client contract code to the client through a secure

channel.

○5 The client requests to upload files to the cloud storage

server S-CSP;

○6 The cloud storage server S-CSP returns the payable to

the client according to the request of the client through a

secure channel.

○7 Before making payment, the client checks whether the

registration is successful or not according to the registered

transaction number;

○8 The client checks whether the ethereum account has

enough funds to pay;

○9 The client initiates the payment;

○10 S-CSP obtains TxId of payment transaction

information through ethereum smart contract;

○11 After the cloud storage server confirms receipt of

payment, it returns the transaction receipt for the client;

○12 The cloud storage server S-CSP performs file

uploading;

○13 The cloud storage server S-CSP returns the

signature and the link pointer L to the file;

○14 When the cloud storage server S-CSP has a malicious

situation, the client can initiate a penalty transaction fine to

get a penalty.

⑤

Smart contract

⑩

⑬

⑥

⑫

④

③

⑦

⑪

⑭

⑨

⑧

Client S-CSP

Ethereum blockchain

①

②

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

8

After understanding the overall architecture of the

blockchain-based cloud deduplication system fair payment

scheme, we now elaborate on the cloud deduplication of file

uploads. The specific process is shown in Figure 2.

FIGURE 2. Secure cloud deduplication process

○1 The client uses convergent encryption scheme to

encrypt file F, and then uses tag generation algorithm to

generate the file tag Tag;

○2 The client sends the file tag Tag to the cloud storage

server S-CSP;

○3 After the cloud storage server S-CSP receives the file

tag, it checks whether the tag of the same file exists in the

table TAB , and stores the record in the table;

○4 The cloud storage server returns the check result of the

file tag to the client;

○5 If the client receives the return result "no file

duplicate", the client will upload the ciphertext and file tag to

the cloud storage server; If the client receives the return

result "file duplicate", the client will run the POW scheme to

prove that it owns the file stored in the cloud storage server;

○6 The cloud storage server returns the corresponding

signature  and file link pointer L to the client after

confirming payment;

○7 The client stores the convergent key K and file link

pointer L, and deletes file F at the same time.

The fair payment scheme of cloud deduplication system

based on blockchain consists of the following algorithms:

System setup:

Initializing convergent encryption scheme

(KG,Enc,Dec,Tag) to encrypt client data; Also, initialize the

consensus solution POW as a black box so that the client can

prove to the cloud storage server S-CSP that it has some

specific data.

The cloud storage server S-CSP initializes public-private

key pairs),(CSPSCSPS skpk  and publishes public key to all

clients in the network. At the same time, two types of storage

systems are initialized: rapid storage system is used to store

tag table),(linktagTAB , tag means the file tag, and link stores

the corresponding file address (that is, the location of the

encrypted file in the file storage system); and the

corresponding user information table

)),,(,,(statetimeIDusernumtagTAB , tag item is as described

above, num refers to the number of users sharing the same

tag, user refers to the user information, where ID refers to the

user's identity, time records the time when the user uploads

the file, and state marks the status of the user's file upload (If

S-CSP does not respond, state is 0, state is 1 when

confirming the response, and state is -1 when deleting the

response). File storage systems are used to store encrypted

copies of data.

In Ethereum, the client tID and cloud storage server S-CSP

create Ethereum accounts and deploy corresponding smart

contracts to the blockchain respectively, and publicize the

smart contract address and smart contract ABI (Application

Binary Interface, which contains several functions in JSON

format) for later work. The client registers with the cloud

deduplication payment system to make a payment.

File outsourcing:

The client calculates the file tag Tag and sends it to the

cloud storage server S-CSP; S-CSP checks if the same tag is

in the table TAB , stores the record, and sets state to 0. In

turn, S-CSP replies to the client with "file duplicate" or "no

file duplicate" and returns different payables to the client

depending on whether the same file exists.

After the cloud storage server S-CSP confirms payment

from the client, S-CSP performs file upload. If the response

received by the client is "no file duplicate", the encrypted file

and tag are uploaded to S-CSP, and S-CSP returns the

signature of the client and the link pointer L of the file, and

sets state to 1. In the case of "file duplicate", the client proves

to the cloud storage server S-CSP that it actually has the

same file by running the POW scheme (see section 2.4)

without actually sending the file. If POW passes, the cloud

storage server S-CSP returns the signature of the client and

the link pointer L of the file to the client, and sets state as 1.

If POW fails, S-CSP aborts the upload operation.

Payment phase:

When the client sends an upload file request to the cloud

storage server S-CSP, S-CSP returns different payables to the

client based on whether the same file exists. The client

transfers tokens by calling the method transfer(address _to,

uint256 _value) in the smart contract, that is, payment. The

cloud storage server S-CSP obtains the payment transaction

number TxId; after confirming the payment, the transaction

receipt is sent to the client.

If the cloud storage server S-CSP appears malicious, the

client can appeal to the S-CSP and ask it to return the link

pointer L of the file. If the appeal fails, the client can initiate

Client S-CSP

3

4 Yes/No

5.1No

5.2Yes

6.1σ, L

POW

6.2σ, L

7

()

(,)

()

K KG F

C E K F

Tag TG C







2 () ()Tag F TG F

 C, ()Tag F

1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

9

fine transactions that have been preset in the smart contract

to get the penalty.

File download:

The client tID first sends a request to the cloud storage

server S-CSP containing an identity and a pointer to a file

link. Upon receiving the request, the S-CSP will check

if tID is eligible to download the file. If it fails, S-CSP will

send an abort signal to tID indicating that the download failed.

Otherwise, S-CSP returns the corresponding data. After

receiving data from S-CSP, the client tID uses the convergent

key K to decrypt the data and recover the original file.

B Security Requirements

Next, we will consider the safety performance of the

system.

Confidentiality: In the blockchain environment, the

payment process from the client to the cloud storage server is

not affected by illegal modification. The client's payment

process is confidential.

Authentication: In the fair payment system for cloud

deduplication based on blockchain, only authorized clients

can use the system to make payments.

Scalability: In a fair payment system for cloud deduplicati

-on based on blockchain, the number of clients should be scal

-able.

Integrity: Integrity means that if an honest client and an

honest cloud storage server execute an agreement, the honest

cloud storage server can get the payment from the client and

the honest client can receive the required data.

Fairness: When the malicious client executes the protocol,

if the client does not pay, the cloud storage server will not

perform file uploading and the client cannot get any required

data; when the malicious cloud storage server executes the

protocol, if it fails to return the result data to the client in

time, the client will appeal and require it to return the

required result data. If the appeal fails, the client will initiate

fine transaction to obtain the penalty from the cloud storage

server.

B Potential Attacks

The following attacks may exist in the cloud deduplication

fair payment system.

Denial of service attack: An attacker could issue a large

number of upload file requests to the network layer to crash

the system.

Unfair upload attack: like the sybil attack, an attacker

forges a large number of client request file uploads, but the

client does not pay and does not require the server to return

results. In turn, the server causes a lot of useless work and

consumes resources.

Collusion attacks: Many clients may gather to request file

uploads without paying for them in order to consume server

resources. This is an extension of the unfair upload attack.

Re-Entry attack: The attacker has many malicious entries

into the network. When a malicious action on the client is

exposed, it can register as a new client.

V. SCHEME CONSTRUCTION

The fair payment protocol based on blockchain proposed

by us can be directly combined with most cloud storage

systems to realize decentralized fair payment in the cloud

storage payment system. In the scheme, we added a group of

authorized users to the smart contract to prevent anyone from

invoking the smart contract to make payment. An

unauthorized user's request for a payment call will be

rejected by the smart contract. Meanwhile, our scheme

guarantees the fairness of payment process through smart

contract.

In this scheme, on the basis of cloud deduplication

payment system, Ethereum blockchain technology is

introduced to improve the cloud deduplication payment

system scheme. And the Ethereum smart contract technology

is used for payment. Through the blockchain network,

payment is transparent and publicly viewable.

A. CONCRETE CONSTRUCTION

System setup:

The parameters needed to initialize the scheme in the

system setup phase.

(1) Initiate convergent encryption scheme

(KG,Enc,Dec,Tag) to encrypt client data and perform

deduplication on the cloud server. The convergent encryption

scheme adopted by cloud deduplication payment system is as

follows: firstly, a hash function h is selected. For file F, set

the convergent key K equal to the hash of file F, that

is,)(MhK  ; ciphertext C is equal to the use of convergent

key K to encrypt file F, that is,),(MKEncC  ; Tag is equal

to hashing ciphertext C, that is,)(ChTag  .

(2)In addition, the client initializes POW algorithm,

specifically, selects collision resistant hash function H and

erasure code MME


 }1,0{}1,0{: , and specifies the leaf

size 256b of Merkle tree. It is used to prove to the cloud

storage server S-CSP that the client has files already stored

on the cloud storage server. Here, we use the POW algorithm

as a black box.

(3)The cloud storage server S-CSP initializes public-

private key pairs),(CSPSCSPS skpk  , and issues the public

key to all clients in the network, and secrets the private key.

(4)Initialize the fast storage system to store tags table

),(linktagTAB for effective duplicate checking; It is used to

store user information table

)),,(,,(statetimeIDusernumtagTAB for effective repetition

rate check. Initializes a file storage system for storing copies

of encrypted data, that is, the file ciphertext C.

The tag in TAB table represents the file tag, and link stores

the corresponding file address. In the table TAB , the tag is

as described above, num refers to the number of users

sharing the same tag, user refers to the user information,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

10

where ID refers to the user's identity, time records the time

when the user uploads the file, and state marks the status of

the user’s file upload to indicate whether the file upload was

successful or not.

 If the client wants to store the file and make a query to the

cloud storage server S-CSP, the S-CSP stores the record in

the table TAB and sets state to 0.If the S-CSP confirms a

response to the record, that is, the file was stored successfully,

then the status for this user is 1.If S-CSP responds to the

deletion of the record, that is, the file storage fails, the status

about the user is marked as -1.

(5) The file storage system is initialized to NULL. Note

that if the cloud storage server S-CSP has to provide different

link for different clients, it must also add a user identity entry

to the TAB table.

(6) In Ethereum, client tID and cloud storage server S-CSP

create ethereum account ClientAccount and ServerAccount

respectively for later work.

(7) In the system setup stage, when building the smart

contract, in order to make the payment system more secure

and perfect, we introduce the cloud storage server

ServerContract. The S-CSP strictly limits the access of users

in the payment system and takes the form of authorized user

set authorizeClients[newClientAddress]. The cloud storage

server S-CSP can add, modify and delete users through the

relevant function interface of the contract. (See algorithms 3

and 4 below for details)

(8) In order to ensure the payment fairness of the system,

we preset fine transaction in server S-CSP contract

ServerContract. If the server is malicious and the client fails

to appeal, the client can initiate the fine transaction and get

the penalty. (See algorithm 5 in the following section for

details)

File upload:

Assume that the client tID upload file is F. Then, in the file

upload phase:

(1) Once file F is entered, the client tID calculates and

sends file tag)()(CTGMTag  to the cloud storage server S-

CSP. The S-CSP checks if the same file tag is in the

table TAB . The S-CSP stores the client tID record and sets

state to 0.

(2) In general, we consider public deduplication (rather

than private deduplication between individual user data) and

assume that users always upload different data to the cloud.

However, if the "file tag duplicated", the cloud storage server

S-CSP provides the client with a response; if "no file tag

duplicated", the cloud storage server S-CSP performs fine-

grained deduplication [40].

Once a file tag)(MTag is received, the cloud storage

server S-CSP verifies that the same file tag exists. If the same

file tag exists, S-CSP responds to the client with "file

duplicated"; otherwise, "no file duplicated". At the same time,

S-CSP will return different payables to the client based on

whether the files are duplicated, that is, “Uploading file is

duplicated", payable is 1b ; “Uploading file is not duplicated",

payable is 2b .

After the cloud storage server S-CSP confirms payment

from the client, S-CSP performs file upload. If the response

received by the client is "no file duplication", the client

uploads the unique encrypted file and file tag to the cloud

storage server. Also, the S-CSP returns a signature to the

identity ID of the client tID , and a file link pointer L pointing

to the corresponding file address stored in the link field.

If the response the client receives is "file duplicate," the

client runs the POW algorithm (see section 2.4) to prove that

it actually has the same file F stored on S-CSP.

If POW passes, the S-CSP only returns a signature to the

client and a link pointer to the file L to the client, with no

further information to upload. Based on this, S-CSP will

change the state of the client to 1; If POW fails, S-CSP

aborts the upload operation.

Payment phase:

During the system setup phase, both the client tID and the

cloud storage server S-CSP set up their own accounts in

ethereum and deployed corresponding smart contracts. When

the client sends an upload file request to the cloud storage

server S-CSP, S-CSP returns different payables to the client

based on whether the same file exists. The client transfers the

token by calling the method transfer (address _to, uint256

_value) in the smart contract, that is, payment, where the

transaction details are in the receipt. The transaction receipt

includes the client address ClientAddress, the server address

ServerAddress, payable amount, the transaction number TxId:

the transaction hash receipt.getTransactionHash (), the block

hash receipt.getBlockHash (), and the cost of gas

(receipt.getGasUsed()). The client can use the transaction

number TxId to trace each payment. The cloud storage server

S-CSP obtains the payment transaction number TxId; upon

receipt of payment, the receipt is sent to the client. The

detailed payment process is described as follows:

(1) Before the client makes payment, the system first

checks whether the client s'tID ethereum address

ClientAddress has sufficient funds, and if so, deploys the

contract to the ethereum blockchain; otherwise, an exception

is thrown (see algorithm 1 for details). Among them, the

payable duePayment are from the payable returned by the

cloud storage server to the client.

(2) The client initiates the payment, and after checking

that there is enough funds, creates the smart contract

ClientContract and deploys it to the Ethereum blockchain,

and transfers the token by calling the method

transfer(address _to, uint256 _value) in the smart contract to

make the payment (see the algorithm 8 in the next section for

details).

(3) The cloud storage server S-CSP obtains the payment

transaction number TxId; after confirming the payment, S-

CSP sends the transaction receipt to the client. The

transaction number TxId in the transaction receipt:

transaction hash receipt.getTransactionHash (); block hash

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

11

receipt.getBlockHash(); cost of gas(receipt.getGasUsed()),

obtained by algorithm 2.

More often, in our system, we consider two special cases:

the first one, the client is malicious because he did not pay

after receiving the payment request from the cloud storage

server; the second, the cloud storage server is not completely

trusted. After receiving the payment from the client, the file

link information and the receipt are not returned.

Case 1: our payment scheme requires the client to make

payment first, and then the cloud storage server will execute

the client's request for file upload after confirming the

payment, and finally send the file link information to the

client. Therefore, if the client does not pay, it cannot receive

any information about the stored file, and uploading is

meaningless.

Case 2: since our payment process is in the form of smart

contract, the client can trace the payment information. If the

client finds a malicious situation in the cloud storage server,

it can appeal to the cloud storage server.

In the long-term development of the system, the cloud

storage server should promptly handle client complaints and

return the file link information and receipt. If the client still

does not receive the file link information returned by the

server, the client obtains the pre-deposit of the server by

publishing a fine transaction.

File download:

The client tID first sends a request to the cloud storage

server S-CSP containing an identity and a pointer to a file

link. Once receiving the request, the S-CSP checks whether

the client tID is eligible to download file F. Specifically, the

S-CSP compares the identity information and file

information in the request with the stored information

already in the file storage system. If it fails, the S-CSP sends

an abort signal to the client tID indicating that the download

failed. Otherwise, the S-CSP returns the corresponding data.

Once the client tID receives the data from S-CSP, the client

uses the convergent key K to decrypt the data and restore the

original file.

Remark 1: In our protocol, we assume that the blockchain

system contains enough honest miners, of which 51% attack

is unavailable. The blockchain is a secure environment with

sufficient bandwidth to prevent denial of service attack. For

malicious situations, smart contracts presuppose a penalty

transaction to get a penalty.

Remark 2: For unfair upload attacks and collusion attacks,

the cloud storage server will mark the malicious client to the

database. If it reaches a certain number of times, it will be

removed from the collection of authorized users of the

system.

Remark 3: One way to prevent client re-entry attacks is to

link the client's IP address as its unique identity. In our

protocol, the blockchain is a secure environment where the

number of clients is scalable. Only authorized clients can use

the system to make payments.

B. Contract construction

This section mainly introduces the smart contract related

interface and algorithm logic used in this paper. The

Ethereum smart contract is written by solidity [38]. There are

always some special variables and functions in the global

namespace, which are mainly used to provide information

about the blockchain. In this paper, we mainly use the

following special variables:

msg.sender: The sender of the message or transaction (the

current call). When the smart contract is deployed, it is the

address of the contract creator, and when the smart contract

is invoked, it is the address of the smart contract caller.

msg.value: The number of wei in the message sent.

weiether 18101  . For subsequent usage, we use $msg.value

to indicate the number of wei attached to the message, and

$value to indicate the number of fixed wei.

Server contract

The contract is deployed by the cloud storage server S-

CSP and we call it the server contract ServerContract.

Server contract initialization: This process defines some of

the contract's variables when the contract is created.

(1) Address type cloud storage server S-CSP variable,

which defines the address of the S-CSP.

(2) The authorized user variable authorizeClients of the

mapping type, which defines a mapping set from the

authorized user address to the bool value. The cloud storage

server S-CSP can add, modify, and delete collection

elements through the relevant functional interfaces of the

contract.

In this paper, the smart contract ServerContract is created

and deployed by the cloud storage server S-CSP which

mainly provides the following function interfaces:

1. addClient (newClientAddress): The function can only

be executed by the contract creator (S-CSP). Each time the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

12

client sends the S-CSP a registration request and its

certificate of identity (which can be done through a secure

channel), the external ownership account EOA of the client

is authorized through this function after the client's identity is

verified. (See Algorithm 3 for details)

2. removeClient (oldClientAddress): The function can

only be executed by the contract creator S-CSP. When the S-

CSP needs to remove the client, it removes the client from

the authorization set by passing the client's external

ownership account EOA to the function. (See Algorithm 4

for details)

3. fine (client, fixedValue, startTime, daysAfter): The

function is created and deployed by the cloud storage server

S-CSP, but can only be executed by the client. When the

client finds that the S-CSP appears malicious, if the appeal

fails, the client will initiate a fine transaction after the time

daysAfter, and get the penalty of the S-CSP (See Algorithm

5 for details). Among them, the penalty fixedValue is set to a

fixed value.

4. withdraw (): The function can only be executed by the

contract creator S-CSP, so that S-CSP can withdraw the

contract account balance at any time. (See Algorithm 6 for

details)

 Client contract

Contracts are deployed by clients tID , and we call them

client contracts ClientContract.

Client contract initialization: this process defines some of

the contract's variables when the contract is created.

(1) The client tID variable of address type, which defines

the client's address.

(2) A mapping type of user balance variable balances

that defines a collection of mappings from user addresses to

uint256 values. It is used to describe changes in the amount

of wallet between the cloud storage server and the client.

Client contracts mainly provide the following functional

interfaces:

5. deposit(value): The function is used to store the ether

to the client contract. The smart contract balance is used for

the payment function of the client. (See Algorithm 7 for

details)

6. transfer(_to , _value): The function is used to make

payments to the cloud storage server S-CSP. (See

Algorithm 8 for details)

In some cases, the contract creator needs to terminate the

smart contract to obtain the ether in the contract, so he

needs to call the self-destruct method self-destruct

(Address). After the contract is self-destructed, if anyone

sends ether to this contract address, the ether can no longer

be redeemed and will disappear. Therefore, the smart

contract in this paper cannot easily implement the self-

destruct contract method to avoid economic losses.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

13

VI. ANALYSIS AND EVALUATION

A. SECURITY ANALYSIS

This paper combines Ethereum blockchain, cloud

deduplication system, payment mechanism and smart

contract technology to realize the advantages of data

storage and payment in traditional cloud storage system.

The smart contract technology of ethereum has transformed

the traditional payment scheme of cloud deduplication

system, no longer relying on the third party, but realizing

the payment interaction between the client node and the

cloud storage server node through the smart contract

technology. In this section, we discuss the benefits, security,

and privacy of this scheme.

Conclusion1: Convergent encryption is of semantic

security.

According to the security analysis of convergent

encryption in literature [22], it is concluded that when

encrypted data copies are unpredictable, they are

semantically secure. That is, if the user does not have the

file, they cannot obtain ownership of the data from S-CSP

by running the proof of ownership protocol. Therefore, data

is safe for adversaries who do not have it.

Conclusion 2: Our scheme realizes fairness of payment.

Proof: In a traditional scheme, we need to rely on a

trusted third party to pay accordingly. However, the cloud

storage server may return incorrect result or return no

results to save resources. At this time, the client needs to

obtain the payment voucher from the third party, and then

make a complaint, etc., resulting in the waste of resources

and time. In this paper, we propose a solution to ensure the

fairness of the payment process through smart contracts.

Smart contracts can honestly perform payment operations

based on predefined logic and return corresponding results.

First, the payment is made by the client. When the server

confirms that the payment is received from the client, the

server sends the file link information to the client, which is

to resist the malicious situation of the client; then, due to

the transparency and traceability of the payment scheme,

the scheme reduce server-side dishonesty. Therefore, the

fairness of both parties to the payment is realized.

Conclusion 3: The scheme realizes payment integrity.

Proof: In normal case, when the client tID , and the cloud

storage server S-CSP execute the protocol, the cloud

storage server S-CSP will obtain the corresponding

payment ether/token, and the client will receive the file link

information and receipt.

Conclusion 4: The scheme realizes auditability.

Proof: When a malicious situation occurs on the client,

the client sends a file to the cloud storage server without

paying. Due to our payment system settings, if the client

does not pay, the server will not send file link information,

that is, the client will not get any results. Therefore, we

mainly discuss the malicious situation of cloud storage

server. Here, three time nodes are set, the final time of

payment is 1t , the final time of client receiving the result

is 2t , and the final time of complaint is 3t , where 321 ttt  .

If the client still does not receive the result from the cloud

storage server at time 2t , it enters the appeal stage and

requires the cloud storage server to return the result. If the

cloud storage server returns the result and the client verifies

correctly, the transaction ends; otherwise, at the final

time 3t , the client initiates a fine transaction and gets the

penalty of cloud storage server.

Conclusion 5: The scheme realizes authentication.

Proof: In this system, only authorized clients can use the

payment system to make payment to the cloud storage

server S-CSP. On the one hand, when the client initiates a

file upload operation to the cloud storage server S-CSP, the

system first checks whether the client account is in the

authorized user set. If the client account is not in the

authorized users of the system, the system requires the

client to register with the cloud storage server S-CSP to

obtain the authorization of the S-CSP. After the client

account is successfully authorized by S-CSP, the cloud

storage server S-CSP will send the registered transaction

number, the S-CSP contract address, the contract ABI, and

the client contract code to the client through a secure

channel, so as to facilitate the client to conduct the

subsequent payment operation; If the client account is in

the collection of authorized users of the system, the client

can perform subsequent payment and file upload operations.

On the other hand, for attacks launched by malicious clients

that cause the server to do a lot of useless work and

consume resources, the cloud storage server S-CSP will

mark the malicious clients to the database. If it reaches a

certain number of times, it will be removed from the system

authorized users.

B. VULNERABILITY ANALYSIS

Once deployed, smart contracts are difficult to modify,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

14

so if there are security holes in smart contracts, it is

difficult to prevent attacks by hackers. In this case, it’s

important to ensure that you don’t write code that has any

security threats. Smart contracts belong to emerging things,

so there are still many defects and security holes.

The Decentralized Autonomous Organization (DAO)

was one of the major hacking incidents during ethereum’s

early development. The contract lost 3.6 million ethers and

resulted in a hard fork in ethereum’s network. Other

vulnerabilities in smart contracts include Transaction-

Ordering Dependence(TOD), Timestamp Dependency,

Error Handling Exception, etc., which can cause significant

losses. Therefore, using secure analysis tools to analyze

code is critical.

SECURIFY[44, 45] is a security scanner of ethereum

smart contracts, created by ICE center, ETH Zurich and

ChainSecurity AG, a top provider for smart contract audits.

The contract bytecode is first converted into their own

custom language, and then compared with a validation

module to verify whether its semantics are satisfied. Finally,

the security report is generated. Figure3 shows the security

analysis report for the smart contract. Problems with smart

contracts are classified, and info displays detailed reports.

The red box said Violation: the contract is guaranteed to

violate the vulnerability, orange said Warning: the contract

may, but us not guaranteed to violate the vulnerability. We

use SECURIFY security scanner to analyze security before

deploying the smart contracts. Figure3 (a) and Figure3 (b)

are security analysis reports for the client contract and the

server contract, respectively. The security scanner shows

that the contract we used without any Violation.

FIGURE 3. (a)safety analysis report for the client contract

FIGURE 3. (b)safety analysis report for the server contract

C. PERFORMANCE ANALYSIS

In this section, we compare the performance of our

protocol with similar protocols that already exist. Table 3

shows the comparison between the four schemes. First of

all, the four schemes are all about payment under cloud

services. Secondly, our scheme is based on the blockchain

system, which does not require a trusted third-party

currency system (bank). The schemes in [11, 22] both

require a currency system for payment transactions.

However, there are bottlenecks in third-party currency

systems. If the transaction load in the system is too heavy,

which will lead to the failure of the payment transaction,

then the third-party currency system is impossible to

complete the task. However, the payment transaction

process of our scheme is on the blockchain network. As the

blockchain network is a decentralized and peer-to-peer

network, so there is no bottlenecks for payment transactions.

Moreover, each payment transaction is untampered and

traceable in our scheme. Scheme 42 uses the blockchain

system to replace the traditional currency system to

complete the payment transaction, but a trusted third party

is still required to supervise both parties to achieve fair

payment. Our scheme achieves fair payment without the

need for any trusted third party. Firstly the scheme in [19]

realizes the fair payment without the need of a trusted third

party, but it realizes the fairness by the way of the client

paying the deposit. However, our scheme does not require

the client to pay a deposit, which is more practical in

practice. Secondly, our scheme not only achieves fair

payment without a trusted third party, but also achieves

safe and effective cloud storage by combining

deduplication technology. Finally, our scheme requires the

cloud storage server S-CSP to return the corresponding

receipt to the client, and both parties can trace each

payment process according to the transaction number, so as

to realize the transparency and verifiability of the payment

process.

D. EXPERIMENTAL EVALUATION

In order to analyze the feasibility and performance of this

scheme, we implement a prototype. The specific

configuration of the experimental platform and environment

is: Intel core i5-3230@2.60GHz processor, 4GB RAM, and

the system are Windows10 and Linux Ubuntu 16.04LTS.

The programming languages are Java and Solidity. External

helper is web3j. Web3j is a lightweight Java development

library for integrating Ethereum functionality, which is

implemented in the Java version of the Ethereum JSONRPC

interface protocol. Web3j provides a package of smart

contracts for solidity that enables packaged objects generated

by web3j to interact directly with all methods of smart

contracts.

The implementation of this paper is based on the two

operating systems, the Ethereum blockchain is deployed in

the Linux ubuntu16.04 LTS established in the virtual

machine. The smart contract was developed by the Solidity

programming language and deployed on the private chain

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

15

TABLE 3. Comparison of the four schemes

Scheme Confidentiality Verifiability
Deduplication

technology
Fairness

Based on

blockchain

Trust third

party
Receipt

Miao[22] yes yes yes no no yes no

Chen[11] yes yes no yes no yes no

Huang[42] yes yes no yes yes yes no

Zhang[19] yes yes no yes yes no no

Our protocol yes yes yes yes yes no yes

created by the Ethereum Geth client under the Linux ubuntu

16.04 LTS system.

Under the Windows 10 system, use the development

environment of the Remix IDE to develop and test. This

development environment can be connected to the Ethereum

Geth client via IP to deploy the smart contract on the Geth

client. After the compilation is successful, use the web3j to

generate the JavaBean from the smart contract to the Maven

project in eclipse. By relying on some jar packages of web3j,

the interaction between the client and the S-CSP for the

smart contract is realized, which makes the fair payment

algorithm of this paper better by using the smart contract.

Taking the literature [22] as an example, the scheme is

applied to fair payment algorithm and experiment. Because

of the high value of the Ethereum, it is necessary to test in

the Ethereum private chain or the open test chain before the

smart contract is deployed on the Ethereum main chain. The

gas costs some operations on smart contracts are deployed

for testing on Rinkeby, the test network of the Ethereum

network. However, considering the experimental operability,

the efficiency comparison of the solution is deployed for

testing on the local private chain of the Ethereum network.

Compared with the traditional payment encryption scheme,

the execution of the algorithm in this chapter has additional

consumption mainly reflected in the gas consumption of the

method call in the smart contract.

There are additional drains on the creation and execution

of smart contracts, and Table 4 lists the gas costs and costs of

some operations on smart contracts.

Considering the wide application and circulation of

tokens at present, this experiment uses the ERC20 standard

to produce tokens and Ether for testing respectively. Next

we analyze the cost of creating and executing the function

of the smart contract. First, in April 2019, 1 ether≈160 USD

and set 1 gasPrice≈1 Gwei， etherweiGwei 99 10101  .

TABLE 4. The smart contract cost (gasprice = 1 Gwei，1 ether = 160 USD)

function GasUsed Actual Cost(ether) USD

ServerContract
create

662390 0.00066239 0.1059824

addClient 44305 0.000044305 0.0070888

removeClient 14319 0.000014319 0.00796112

fine 49757 0.000049757 0.00796112

ClientContract

create
763098 0.000763098 0.12209568

transfer 51417 0.000051417 0.00822672

Table 4 shows the cost of some of the operations of the

smart contract, with little change in the cost of multiple

executions. The cloud storage server S-CSP’s smart

contract creation operation is created only once, consuming

662,390 gas, and costs about $0.11. Each client's smart

contract creation operation is created only once, consuming

763,098gas and costing about $0.12. When the cloud

storage server S-CSP adds an authorized client, the cost of

performing the addClient operation is about $0.007. When

the cloud storage server S-CSP removes the authorized

client, it costs about $0.008 to perform the removeClient

operation. When the client receives the payment request

from the cloud storage server S-CSP, the transfer operation

will cost about $0.008. When the client finds that the cloud

storage server S-CSP is maliciously affected and fails to

appeal, it will cost about $0.008 to perform fine operation

after the time daysAfter. These costs are based on

prototypes deployed on the blockchain and can be reduced

using optimized code. If the input size of these functions is

minimal, the cost can be further reduced.

FIGURE 4. Run time of algorithm under different number of payment

The abscissa in Figure 4 is the number of payments at the

same time, the number is 5, 10, 15, 20; the ordinate is

expressed as the running time of the fair payment algorithm.

The broken line of the blue diamond shape indicates the

change trend of the execution time of the algorithm in the

literature [22] with the increase of the payment; and the

broken line of the orange square indicates the change rule

of the execution time of the algorithm as the payment

grows. Similarly, the execution time of the original

algorithm increases as the payment increases. The running

time of the algorithm is almost consistent with the trend of

the running time of the original algorithm. Since the

protocol of this chapter is based on blockchain, it is slightly

higher in efficiency than the original scheme.

VII. CONCLUSION

In this paper, we propose a decentralized fair payment

scheme based on blockchain technology. Our proposed

protocol can be applied as follows: when Mary plans to buy

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

16

something in an online mall, she needs to register as a user

of the online mall and then add her favorite item to the

shopping cart and pay for it. In the meantime, Mary will

receive a receipt for this order. The merchant then sends

Mary the items for this order. Then Mary received the

purchase. At this point, a normal payment process is

completed. However, if the merchant does not send the

goods to Mary after Mary pays, then at time A, Mary can

appeal to the merchant and ask the merchant to send the

goods. If Mary receives the purchase, the payment process

is completed; Otherwise, at time B, Mary initiates a fine

transaction to get the merchant's pre-existing penalty on the

blockchain network. Our scheme improves the traditional

payment system based on trusted third party by using the

smart contract technology of ethereum. In order to prevent

the trusted third party from reaching the bottleneck due to

the excessive visits of users, the decentralized payment

scheme is realized through the interaction between the

client node and the cloud storage server node. On the one

hand, based on the smart contract under ethereum

blockchain, the system solves the problem of fairness of

payment under malicious circumstances and the opaque

payment process in traditional payment, and the payment

process is traceable. On the other hand, the system weakens

the attacks that occur on the client to some extent by

combining our fair payment scheme with deduplication.

Experiments have shown that the cost of making a payment

to a cloud storage server by a client is minimal.

The shortcoming of the scheme in this paper is that the

decentralized structure is not complete. The scheme is

based on cloud storage platform. Future work can replace

cloud storage platform with a decentralized storage

platform, such as InterPlanetary File System IPFS [39],

Storj [33], etc., including the study of decentralized fair

payment schemes.

REFERENCES
[1] Douceur J R, Adya A, Bolosky W J, et al. Reclaiming space from

duplicate files in a serverless distributed file system[C]//Proceedings

22nd international conference on distributed computing systems.

IEEE, 2002: 617-624.
[2] Li J, Chen X, Li M, et al. Secure deduplication with efficient and

reliable convergent key management[J]. IEEE transactions on

parallel and distributed systems, 2013, 25(6): 1615-1625.
[3] Bellare M, Keelveedhi S, Ristenpart T. Message-locked encryption

and secure deduplication[C]//Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer,
Berlin, Heidelberg, 2013: 296-312.

[4] Halevi S, Harnik D, Pinkas B, et al. Proofs of ownership in remote

storage systems[C]//Proceedings of the 18th ACM conference on
Computer and communications security. ACM, 2011:491-500.

[5] Abadi M, Boneh D, Mironov I, et al. Message-locked encryption for

lock-dependent messages[C]//Annual Cryptology Conference.
Springer, Berlin, Heidelberg, 2013: 374-391.

[6] Keelveedhi S, Bellare M, Ristenpart T. DupLESS: server-aided

encryption for deduplicated storage[C]//Presented as part of the 22nd
{USENIX} Security Symposium ({USENIX} Security 13). 2013:

179-194.

[7] Carbunar B, Tripunitara M. Fair payments for outsourced
computations[C]//Sensor Mesh and Ad Hoc Communications and

Networks (SECON), 2010 7th Annual IEEE Communications

Society Conferenceon. IEEE, 2010: 1-9.

[8] Carbunar B, Tripunitara M V. Payments for Outsourced

Computations[J]. IEEE Transactions on Parallel & Distributed

Systems, 2011, 23(2):313-320.

[9] Shi L, Carbunar B, Sion R. Conditional e-cash[C]//International
Conference on Financial Cryptography and Data Security. Springer,

Berlin, Heidelberg, 2007: 15-28.

[10] Chen X, Li J, Ma J, et al. New and efficient conditional e-payment
systems with transferability[J]. Future Generation Computer Systems,

2014, 37: 252-258.

[11] Chen X, Jin L, Susilo W. Efficient Fair Conditional Payments for
Outsourcing Computations[J]. IEEE Transactions on Information

Forensics & Security, 2012, 7(6):1687-1694.

[12] Chen X, Li J, Ma J, et al. New and efficient conditional e-payment
systems with transferability[J]. Future Generation Computer Systems,

2014, 37: 252-258.

[13] Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system,”
http://bitcoin.org/bitcoin. pdf." (2008).

[14] Andrychowicz M, Dziembowski S, Malinowski D, et al. Fair two-

party computations via bitcoin deposits[C]//International Conference
on Financial Cryptography and Data Security. Springer, Berlin,

Heidelberg, 2014: 105-121.

[15] Andrychowicz M, Dziembowski S, Malinowski D, et al. Secure
multiparty computations on bitcoin[C]//Security and Privacy (SP),

2014 IEEE Symposium on. IEEE, 2014: 443-458.

[16] Ateniese G, Goodrich M T, Lekakis V, et al. Accountable
storage[C]//International Conference on Applied Cryptography and

Network Security. Springer, Cham, 2017: 623-644.
[17] Campanelli M, Gennaro R, Goldfeder S, et al. Zero-knowledge

contingent payments revisited: Attacks and payments for

services[C]//Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017: 229-243.

[18] Dong C, Wang Y, Aldweesh A, et al. Betrayal, distrust, and

rationality: Smart counter-collusion contracts for verifiable cloud
computing[C]//Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security. ACM, 2017: 211-227.

[19] Zhang Y, Deng R H, Shu J, et al. TKSE: Trustworthy Keyword
Search over Encrypted Data with Two-side Verifiability via

Blockchain[J]. IEEE Access, 2018, 6: 31077-31087.

[20] Wood, G. (2014). Ethereum: a secure decentralised generalised
transaction ledger. Ethereum Project Yellow Paper, 1–32.

https://doi.org/10.1017/CBO9781107415324.004

[21] “Ethereum blockchain app platform.” [Online]. Available:
https://www.ethereum.org/

[22] Miao M , Jiang T , You I . Payment-based incentive mechanism for

secure cloud deduplication[J]. International Journal of Information
Management, 2015, 35(3):379-386.

[23] Yuan J, Yu S. Secure and constant cost public cloud storage auditing

with deduplication[C]//2013 IEEE Conference on Communications

and Network Security (CNS). IEEE, 2013: 145-153.

[24] Bentov I, Kumaresan R. How to use bitcoin to design fair

protocols[C]//International Cryptology Conference. Springer, Berlin,
Heidelberg, 2014: 421-439.

[25] Gennaro R, Gentry C, Parno B. Non-interactive verifiable computing:

Outsourcing computation to untrusted workers[C]//Annual
Cryptology Conference. Springer, Berlin, Heidelberg, 2010: 465-482.

[26] Song W, Wang B, Wang Q, et al. Publicly verifiable computation of

polynomials over outsourced data with multiple sources[J].
IEEETransactions on Information Forensics and Security, 2017,

12(10): 2334-2347.

[27] G.Developers. (2017) Google cloud platform.[Online]. Available:
https://cloud.google.com/free/docs/frequently-asked-questions

[28] Buterin, Vitalik. "A next-generation smart contract and

decentralized application platform." white paper (2014).
[29] Zhao Y, Li Y, Mu Q, et al. Secure Pub-Sub: Blockchain-Based Fair

Payment With Reputation for Reliable Cyber Physical Systems[J].

IEEE Access, 2018, 6: 12295-12303.
[30] He Y, Li H, Cheng X, et al. A Blockchain Based Truthful Incentive

Mechanism for Distributed P2P Applications[J]. IEEE Access, 2018,

6: 27324-27335.
[31] Dorsala M R, Sastry V N. Fair Protocols for Verifiable Computations

Using Bitcoin and Ethereum[C]//2018 IEEE 11th International

Conference on Cloud Computing (CLOUD). IEEE, 2018: 786-793.

https://www.ethereum.org/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2939492, IEEE Access

 S. Wang et al.: Blockchain-based fair payment protocol for deduplication cloud storage system

17

[32] Delgado-Segura, Sergi, et al. "A fair protocol for data trading based

on Bitcoin transactions." Future Generation Computer

Systems (2017).

[33] C. Gray, “Storj Vs. Dropbox: Why Decentralized Storage Is The
Future,”2014.

[Online].Available:https://bitcoinmagazine.com/articles/storj-vs-

dropbox-decentralized-storage-future-1408177107/
[34] Keelveedhi S, Bellare M, Ristenpart T. DupLESS: server-aided

encryption for deduplicated storage[C]//Presented as part of the 22nd

{USENIX} Security Symposium ({USENIX} Security 13). 2013:
179-194.

[35] Litecoin.[Online].Available:https://litecoin.org/. Accessedon:July 20,

2018.
[36] Dogecoin. [Online]. Available: http://dogecoin.com/. Accessed

on:July 10, 2018.

[37] Ulieru M. Blockchain 2.0 and Beyond: Adhocracies[M]// Banking
Beyond Banks and Money. Springer International Publishing, 2016.

[38] Dannen C. Introducing Ethereum and Solidity : foundations of

cryptocurrency and blockchain programming for beginners[M]//
Introducing Ethereum and Solidity. Apress, 2017.

[39] Benet J. Ipfs-content addressed, versioned, p2p file system[J]. arXiv

preprint arXiv:1407.3561, 2014.
[40] Li J, Chen X, Li M, et al. Secure deduplication with efficient and

reliable convergent key management[J]. IEEE transactions on

parallel and distributed systems, 2014, 25(6): 1615-1625.
[41] Memopal, Online backup. http://www.memopal.com/

[42] Huang H, Chen X, Wu Q, et al. Bitcoin-based fair payments for
outsourcing computations of fog devices[J]. Future Generation

Computer Systems, 2018, 78: 850-858.

[43] Harnik D, Pinkas B, Shulman-Peleg A. Side channels in cloud
services: Deduplication in cloud storage[J]. IEEE Security & Privacy,

2010, 8(6): 40-47.

[44] Mense A, Flatscher M. Security Vulnerabilities in Ethereum Smart
Contracts[C]//Proceedings of the 20th International Conference on

Information Integration and Web-based Applications & Services.

ACM, 2018: 375-380.
[45] https://securify.ch/

