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Abstract. An accurate large-scale positioning system is a three-dimensional workspace measuring and posi-
tioning the laser scanning-based system that is widely used in smart manufacturing and assembly applications.
The system includes laser transmitters that are typically calibrated using one of two methods: a high-precision
rotary table-dependent method or a three-dimensional (3-D) coordinate control network-dependent method.
However, these methods are error-prone and inefficient. We propose a flexible calibration method that is
based on the transmitter geometry and employs the characteristic angles of the transmitter as calibration targets
that do not change with transmitter location or orientation. The proposed method also utilizes a calibration algo-
rithm that is based on a highly precise 3-D coordinate control network and includes an optimization algorithm and
an estimation algorithm to produce initial values. The results of Monte Carlo simulations indicate that the pro-
posed method enables the characteristic angles to maintain accuracy within 3 arc sec. Furthermore, the results
of verification experiments show that the proposed method decreases the deviation of each control point and the
root-mean-square error to 0.075 and 0.052 mm, respectively. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.OE.58.6.064105]
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1 Introduction
Large-scale dimensional metrology is widely used in many
industrial applications to acquire real-time information dur-
ing product assembly processes to automatically compensate
for assembly tolerances.1–4 One of the most popular types of
metrology systems is the accurate large-scale positioning
system (ALPS), which is a distributed contact measurement
and positioning instrument that relies on the intersection of
rotating laser planes from multiple base stations and incor-
porates two or more independent laser transmitters, a control
center, and a set of wireless sensors.5–7 The primary advan-
tage of this system is scalability in that users can have as
many transmitters and sensors as required by the measure-
ment environment. Compared with traditional technologies,
such as laser trackers and theodolites, an ALPS has several
advantages, such as large measurement range, multitask par-
allel measurement, and high degree of automation.

The architecture of an ALPS can be explained by first
considering the function of an individual laser theodolite
that consists of a transmitter and sensor and constitutes an
entire measurement and positioning network. The transmitter
covers the area in its vicinity with two rotating fanned laser
beams and a strobe. The sensor is placed on the surface of the
workpiece and can detect the pulse of light from the strobe
and both fanned laser beams. Assuming that the transmitter
parameters are known, the relative angles of the lasers can be
obtained from the timing differences between the pulses of
light that reach the sensor (as explained in Sec. 2 below).
Then, the position of the sensor can be calculated by triangu-
lation based on the angle measurements from multiple trans-
mitters. As accurate angle measurement is essential, it is

critical that every transmitter is calibrated to ensure that
errors do not substantially affect the measurement results.

In general, one of two methods is commonly used for
parametric calibration of the transmitter(s). The first deter-
mines the geometric parameters using a high-precision rotary
table,8,9 while the other establishes a high-precision three-
dimensional (3-D) coordinate control network based on cer-
tain constraints.10 Then, the parameters in both methods are
calculated via iterative optimization algorithms. The rotary
table-based method requires the transmitter to be mounted
coaxially onto the table to ensure the validity of the calibra-
tion results; however, this complicates the calibration pro-
cedure and can result in artificial errors. To overcome this
limitation, Zhao et al.10 employed a 3-D coordinate control
network constructed via a laser tracker to calibrate the
parameters of the transmitter and achieved significantly
higher accuracy. However, a problem with this revised
approach is that the coefficients of the laser-plane equations
are considered to be the final calibration results even though
these coefficients vary with the location and/or orientation of
the transmitter. Thus, to accommodate this variation, the cal-
ibration procedure must be repeated before each field meas-
urement, which is time-consuming.

In this paper, we propose a practical calibration method
that is based on the intrinsic geometric characteristics of the
transmitter, namely the constant characteristic angles. There
are two steps in the proposed method. The first is to establish
a precise 3-D coordinate control network to obtain the coor-
dinates of all control points via a high-precision 3-D coor-
dinate measuring machine (CMM). The second is to calibrate
the characteristic angles based on the constraints of the 3-D
control network. This approach has many advantages. The
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first is that the characteristic angles are constant and do not
vary as the location and/or orientation of the transmitters
change. Thus, once a transmitter has been calibrated, the cor-
responding parameters can be reused as needed without
requiring recalibration. This reduces the overall calibration
time compared to conventional methods and improves the
measurement efficiency. The proposed method has been vali-
dated experimentally and found to be effective.

The remainder of this paper is organized as follows.
Section 2 provides an introduction to the positioning princi-
ple of the ALPS and also details a mathematical model of a
single laser theodolite and another of the ALPS. A summary
of the calibration procedure is presented in Sec. 3, including
definitions of the characteristic angles of the transmitter, the
optimization model, and the method of estimating the initial
iteration values. The experimental results are detailed in
Sec. 4, while the conclusions that can be drawn from this
study are provided in Sec. 5.

2 Positioning Principle of the Accurate Large-Scale
Positioning System

A typical ALPS consists of two or more laser transmitters, a
control center, and multiple wireless sensors. Each transmit-
ter operates as a reference point that continually generates
three signals, namely, an infrared LED strobe and two rotat-
ing fanned laser planes that sweep past the sensor at different
moments in time. The geometric structure of the transmitter
is shown in Fig. 1. As soon as incident optical signals are
detected by the sensor, they are converted into timing signals
by a photo detector. Next, the timing intervals are converted
into angles based on the speed of rotation of the transmitter.
Then, the characteristic angles can be used to estimate the
location of a line between the transmitter and the geometric
center of the sensor. Based on the locations and orientations
of multiple transmitters, the intersection point of the lines
connecting the transmitters with the sensor can be deter-
mined via the least squares method. This intersection
point corresponds to the 3-D position of the sensor.

2.1 Mathematical Model of a Single Laser Theodolite

Suppose O-XYZ represents the local coordinate frame of the
transmitter during the measurement process and the Y-axis is
aligned with the rotational axis of the transmitter. When the
sensor detects a pulse of light from the infrared LED strobe,
this is referred to as the initial moment. The position of the
laser planes at that same moment is called the initial position.
Then, in O-XYZ, the initial position of the laser planes can
be represented as

EQ-TARGET;temp:intralink-;e001;326;752N1 · ðP − TÞ ¼ 0 N2 · ðP − TÞ ¼ 0; (1)

where N1 and N2 are the vectors normal to laser planes LP1
and LP2, respectively, and can be estimated from the char-
acteristic angles of the transmitter, P is an unknown point,
and T is the origin of plane O-XYZ.

The transmitter in this scenario is rotating. When the laser
planes return to their initial positions, the pulse generated by
the infrared LED strobe at that point is defined as being gen-
erated at the initial moment. As shown in Fig. 2, the initial
moment is denoted as t0. Planes LP1 and LP2, respectively,
sweep through point P at t1 and t2. Consider LP1 as an exam-
ple. The normal vector to plane LP1 at t1 is, therefore, given
as

EQ-TARGET;temp:intralink-;e002;326;598N1θ ¼ R1N1 ¼
2
4 cos θ1 0 − sin θ1

0 1 0

sin θ1 0 cos θ1

3
5N1; (2)

EQ-TARGET;temp:intralink-;e003;326;531θ1 ¼ ωðt1 − t0Þ; (3)

where R1 is the rotational matrix of plane LP1 about the
Y-axis from the initial time t0 to time t1, ω is the rotational
speed of the spinning head in each transmitter, and θ1 is as
defined as shown in Fig. 2.

At t1, the plane LP1 in O-XYZ can be represented as

EQ-TARGET;temp:intralink-;e004;326;466ðR1N1Þ · ðP − TÞ ¼ 0: (4)

Similarly, at t2, plane LP2 in O-XYZ can be written as

EQ-TARGET;temp:intralink-;e005;326;424ðR2N2Þ · ðP − TÞ ¼ 0: (5)

Suppose the time delays of planes LP1 and LP2 sweeping
past point P can be ignored. The intersecting line of planes
LP1 and LP2 passing through P in O-XYZ can therefore be
written as

EQ-TARGET;temp:intralink-;e006;326;349

� ðR1N1Þ · ðP − TÞ ¼ 0

ðR2N2Þ · ðP − TÞ ¼ 0
: (6)

2.2 Mathematical Model of the Accurate Large-Scale
Positioning System

As mentioned above, for a single transmitter, it is possible to
determine the line joining the transmitter with point P. This
means that for all transmitters, many lines connect different
transmitters with point P. The line connected to the n’th
transmitter can be represented as

EQ-TARGET;temp:intralink-;e007;326;221

� ðR1nN1nÞ · ðP − TnÞ ¼ 0

ðR2nN2nÞ · ðP − TnÞ ¼ 0
: (7)

In ALPS, the world coordinate frame is defined as
Ow-XwYwZw and the line of the n’th transmitter through
point P in Ow-XwYwZw can be written as

EQ-TARGET;temp:intralink-;e008;326;144

� ðRnR1nN1nÞ · ðP − TnÞ ¼ 0

ðRnR2nN2nÞ · ðP − TnÞ ¼ 0
; (8)

where Rn is the rotational matrix of the n’th transmitter from
On-XnYnZn to Ow-XwYwZw and Tn is the coordinate of the
origin of On-XnYnZn in Ow-XwYwZw.Fig. 1 Geometric model of a transmitter.
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Thus, when the number of transmitters equals or exceeds
two, point P in Ow-XwYwZw can be determined by solving
the following nonlinear equations:

EQ-TARGET;temp:intralink-;e009;63;573

8>>>>>>>>>><
>>>>>>>>>>:

ðR1R11N11Þ · ðP − T1Þ ¼ 0

ðR1R21N21Þ · ðP − T1Þ ¼ 0

ðR2R12N12Þ · ðP − T2Þ ¼ 0

ðR2R22N22Þ · ðP − T2Þ ¼ 0

..

.

ðRnR1nN1nÞ · ðP − TnÞ ¼ 0

ðRnR2nN2nÞ · ðP − TnÞ ¼ 0

; (9)

where n is the number of transmitters, R1n and R2n are
the rotational matrices of the laser planes about the
Y-axis,N1n andN2n are the vectors normal to the laser planes
in the initial position, Rn is the rotational matrix from
On-XnYnZn to Ow-XwYwZw, Tn is the coordinate of the ori-
gin ofOn-XnYnZn inOw-XwYwZw, and P is the coordinate of
the measured point in Ow-XwYwZw.

Once the characteristic angles of the transmitter have been
calibrated, it then becomes possible to determine N1n and
N2n. The values of Rn and Tn can be optimized using the
spherical constraints method described by Zhao et al.11

The coordinates of the measured point P in Ow-XwYwZw
can then be estimated using the least squares method.

3 Calibration of the Characteristic Angles
As stated above, it is essential that the characteristic angles
be calibrated before the ALPS is employed to estimate N1n
and N2n. The method of calibration is introduced in this
section.

3.1 Characteristic Angles of a Transmitter

The characteristic angles are defined as shown in Fig. 3.
In the figure, the two fanned laser planes that emit from
the rotating head of each transmitter are nominally tilted
with respect to the axis of rotation at φ1 ≈ 30 deg and
φ2 ≈ −30 deg, where φoff describes the angular separation
between the two laser modules located in the rotating head
of each transmitter and is nominally φoff ≈ 90 deg. These
three parameters are referred to as the characteristic angles
of the transmitter that are used to calculate the unknown
parameters N1n and N2n in the measurement phase.

3.2 Optimization Model of the Characteristic Angles

There are two phases in the optimization procedure: data col-
lection and data processing. In the data collection phase, a
sensor similar to the one depicted in Fig. 4 is affixed on a
3-D CMM, while the transmitter is located some distance
away. The location of the control point is measured contin-
uously by the CMM, while the sensor is moved over a known
distance on the guide rails of the CMM. The measured con-
trol points are then processed during the data-processing
phase. In this stage, the coordinate frame of the CMM is

Fig. 2 Relationship between a typical pulse sequence and the rotational angles during a single rotation.

Fig. 3 Characteristic angles of a transmitter.
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defined as the global coordinate reference system and is
denoted as Ow-XwYwZw. As per the measurement principle,
as each observation is made, the line from the transmitter
in Ow-XwYwZw through control point P can be represented
as

EQ-TARGET;temp:intralink-;e010;63;483

� ðRR1N1Þ · ðPn − TÞ ¼ 0

ðRR2N2Þ · ðPn − TÞ ¼ 0
; (10)

where n is the number of control points, R1 and R2 are the
rotational matrixes of the two laser planes with respect to the
rotational axis and are a function of timeΔt1 andΔt2,N1 and
N2 are the normal vectors to the laser planes at the initial
position, R is the rotational matrix from the local coordinate
frame of transmitter O-XYZ to Ow-XwYwZw, T is the coor-
dinate of the origin of O-XYZ in Ow-XwYwZw, and Pn is the
coordinate of the control point in Ow-XwYwZw.

To obtain a unique solution, the values of the parameters
B1 and B2 in N1 andN2 are set to 1. Then, the normal vectors
to the laser planes at the initial position and in the rotational
matrix can be written as follows:

EQ-TARGET;temp:intralink-;sec3.2;63;306N1 ¼ ðA1 1 C1 ÞT; N2 ¼ ðA2 1 C2 ÞT;
EQ-TARGET;temp:intralink-;e011;63;264

R ¼ ðrx; ry; rzÞ ¼ RxRyRz

¼

2
664
1 0 0

0 cos rx − sin rx
0 sin rx cos rx

3
775
2
664

cos ry 0 sin ry

0 1 0

− sin ry 0 cos ry

3
775

×

2
64
cos rz − sin rz 0

sin rz cos rz 0

0 0 1

3
75: (11)

There are three unknown parameters in T, which are
denoted as tx, ty, and tz. Hence, the transmitter calibration
process includes 10 unknown parameters: A1, B1, A2, B2,
rx, ry, rz, tx, ty, and tz. Obtaining solutions for these param-
eters requires n (n ≥ 5) control points in the optimization.
The resulting system of equations is as follows:

EQ-TARGET;temp:intralink-;e012;326;538

8>>>>>>>>>><
>>>>>>>>>>:

ðRR11N1Þ · ðP1 − TÞ ¼ 0

ðRR21N2Þ · ðP1 − TÞ ¼ 0

ðRR12N1Þ · ðP2 − TÞ ¼ 0

ðRR22N2Þ · ðP2 − TÞ ¼ 0

..

.

ðRR1nN1Þ · ðPn − TÞ ¼ 0

ðRR2nN2Þ · ðPn − TÞ ¼ 0

: (12)

Based on above system of equations and the given initial
values of parameters A0

1, B
0
1, A

0
2, B

0
2, r

0
x, r0y, r0y, t0z , t0y, and t0z ,

the optimal solution can be obtained via the Levenberg–
Marquardt12,13 iterative algorithm. The objective function
is then defined as

EQ-TARGET;temp:intralink-;e013;326;375J ¼
Xn
i¼1

f½ðRR1iN1Þ · ðPi − TÞ�2 þ ½ðRR2iN2Þ · ðPi − TÞ�2g:

(13)

Of the 10 parameters, A1, B1, A2, and B2 are the most
important as they can be employed to directly compute the
characteristic angles φ1, φ2, and φoff . As shown in Fig. 5,
once a value for N1 has been determined, plane LP1 in
the initial position can be represented in O-XYZ as

EQ-TARGET;temp:intralink-;e014;326;258A1xþ yþ C1z ¼ 0: (14)

The line of intersection between plane LP1 and plane
XOZ is denoted as L1 and has the slope

EQ-TARGET;temp:intralink-;e015;326;205k1 ¼ −
A1

C1

: (15)

In XOZ, line L3 is perpendicular to L1 and direction vec-
tor N3 is normal to the plane LP3. Thus, their slopes must
satisfy the following relationship:

EQ-TARGET;temp:intralink-;e016;326;129k1k3 ¼ −1: (16)

Fig. 4 Characteristic angle calibration procedure.
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In O-XYZ, N3 can then be represented as

EQ-TARGET;temp:intralink-;e017;63;576N3 ¼
�
1 C1

A1
0
�
T
: (17)

The angle between planes LP1 and LP3 is the character-
istic angle φ1, which is simply the angle between vectors N1

and N3. Therefore, φ1 can be represented as

EQ-TARGET;temp:intralink-;e018;63;498 cos φ1 ¼
A1 þ C2

1

A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ C2

1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

1

A2
1

r : (18)

Similarly, the characteristic angle φ2 can be represented as

EQ-TARGET;temp:intralink-;e019;63;426 cos φ2 ¼
A2 þ C2

2

A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
2 þ C2

2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

2

A2
2

r : (19)

The slope of L2, which is the line of intersection between
plane LP2 and plane XOZ, is given as

EQ-TARGET;temp:intralink-;e020;63;344k2 ¼ −
A2

C2

: (20)

The characteristic angle φoff , which is the angle between
lines L1 and L2 in O-XYZ, can be represented as

EQ-TARGET;temp:intralink-;e021;63;281 cos φoff ¼
1þ A1A2

C1C2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

1

C2
1

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

2

C2
2

r : (21)

3.3 Estimating the Initial Iteration Values

As mentioned above, an essential condition to solve the opti-
mization problem described in Sec. 3.2 is the ability to obtain
a suitable initial iteration value for the equations. Initial iter-
ation values A0

1, B
0
1, A

0
2, and B

0
2 are the elements of the initial

normal vectors N1n and N2n that can be derived directly from
the characteristic angles φ1, φ2, and φoff . Computing N1n
begins with a vertical plane at x ¼ 0, which is a plane in
the Y − Z axis of which the normal vector is denoted as
ð1;0; 0ÞT . When this vertical plane is rotated around the
Z-axis by an angle φ1, the result is as shown in Fig. 6. This
new plane represents the first fanned laser inserted into the
head of the transmitter. A vector normal to the new plane can
be represented as

EQ-TARGET;temp:intralink-;e022;326;291

2
4 cos φ1 sin φ1 0

− sin φ1 cos φ1 0

0 0 1

3
5
2
4 1

0

0

3
5 ¼

2
4 cos φ1

− sin φ1

0

3
5: (22)

Suppose we then rotate the new plane about the Y-axis by
an angle θ1 in intervals of time Δt1, until it is opposite to the
initial position, then,N1n, which is the normal vector to plane
LP1 in the initial position, can be represented as

EQ-TARGET;temp:intralink-;e023;326;200N1n ¼
2
4 cos θ1 0 sin θ1

0 1 0

− sin θ1 0 cos θ1

3
5
2
4 cos φ1

− sin φ1

0

3
5: (23)

Similarly, N2n, which is the normal vector to plane LP2 in
the initial position, can be represented as

Fig. 5 Calculation of the characteristic angles.

Fig. 6 Fanned beam rotated about the Z -axis.
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EQ-TARGET;temp:intralink-;e024;63;752

N2n ¼

2
64

cos θ1 0 sin θ1

0 1 0

− sin θ1 0 cos θ1

3
75
2
64
− cos φoff cos φ2

− sin φ2

sin φoff cos φ2

3
75:

(24)

As per the geometry of the transmitter, the initial values of
the characteristic angles φ1, φ2, and φoff are chosen to be
30 deg, −30 deg, and 90 deg, respectively. The initial iter-
ation values A0

1, B
0
1, A

0
2, and B0

2 can then be estimated via
Eqs. (23) and (24).

The problem of estimating the initial values r0x, r0y, r0y, t0z ,
t0y, and t0z can be viewed as a perspective-n-point14,15 (PnP)
problem, which is the problem of estimating the pose of a
calibrated camera based on a given set of n 3-D points in
the real world and their corresponding two-dimensional pro-
jections in the image. The given image points are derived
based on the time Δt1 and Δt2 and the position of each con-
trol point in Ow-XwYwZw. The initial iteration values r0x, r0y,
r0y, t0z , t0y, and t0z are obtained by solving the PnP problem.

4 Experimental Results
The validity of the proposed method was evaluated as
follows. The characteristic angle calibration method was
tested via Monte Carlo simulation, which is a technique
used to study how a model responds to randomly generated
inputs. Based on the uncertainties in the transmitter, sensor,
and CMM—such as the angular velocity deviation of the
transmitter, the time deviation of the laser signal detected
by the sensor, and the control point coordinates deviation
measured by the CMM—the uncertainties in the character-
istic angles were propagated from the calibration model
using Monte Carlo simulation, which showed how the
characteristic angles uncertainties were affected by these
parameters. Further, the accuracy of the proposed approach

was evaluated via an experiment involving an individual
transmitter–sensor pair functioning as a laser theodolite.
In the experiment, the deviation in the control points was
compared to the results of the previous experiment carried
out by Zhao et al.10

4.1 Simulation of the Characteristic Angle Calibration
Method

The simulation model was constructed in 3-D computer-
aided design (CAD) software and independently verified
via MATLAB. The verification procedure involved the cre-
ation of multiple control points at the known coordinates in
the CAD model. Further, planes with angles φ1, φ2, and φoff

were created to simulate the laser planes. These planes were
rotated about the Y-axis until they were coincident with each
control point. This allowed the rotation angles to be mea-
sured and used to compute the rotation time via the CAD
software. The time values were then input into the MATLAB
simulation, including estimation simulation of iterative ini-
tial values and optimization simulation of characteristic
angles. The characteristic angles obtained by the MATLAB
simulation were then compared with the angles of the origi-
nal planes in the CAD model.

Because of the angular velocity deviation of the transmit-
ter, the time deviation of the laser signal detected by the sen-
sor and the control point coordinates deviation measured by
the CMM were input to the simulation as uncertainties; the
uncertainties in the characteristic angles were propagated in
the proposed Monte Carlo simulation model. The nominal
value and uncertainty of each variable in these equations
were estimated, as detailed in Table 1. The simulation results
are shown in Fig. 7, where it can be seen that the errors in
characteristic angles φ1, φ2, and φoff were all <3 arc sec
when the proposed calibration method was employed.
These results confirm the validity of the proposed calibration
method for a single transmitter.

Table 1 Variables used in the mathematical model.

Variable Nominal Standard uncertainty Unit Description

t0 0 10 × 10−9 S Time measurement strobe signal received by sensor

t1 — 10 × 10−9 S Time measurement plane LP1 signal received by sensor

t2 — 10 × 10−9 S Time measurement plane LP2 signal received by sensor

t3 — 10 × 10−9 S Time measurement for transmitter to rotate by α

x — 0.33 × 10−6 m X -coordinate of the control point

y — 0.33 × 10−6 m Y -coordinate of the control point

z — 0.33 × 10−6 m Z -coordinate of the control point

α 2π 485 × 10−9 rad Angular interval for counting the rotation of the transmitter

ω 314 α∕t3 rad/s Angular velocity of transmitter

φ1 — — rad Angle of inclination of plane LP1

φ2 — — rad Angle of inclination of plane LP2

φoff — — rad Separation angle between two laser modules
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4.2 Accuracy Comparison Experiment

To validate the proposed method, an experiment was con-
ducted in a 3-D coordinate measurement laboratory to com-
pare the deviation in the distances from each control point to
the laser plane with the results of previous transmitter param-
eter calibration experiments conducted by Zhao et al.10 The
control network comprised 30 points within the measure-
ment range of the 3-D CMM. The measurement accuracy
of each point was 0.001 mm. The experimental setup is
shown in Fig. 8. One sensor was mounted on the measure-
ment arm of the 3-D CMM and the transmitter was mounted
in front of the CMM to ensure that each control point could

be detected. Then, the characteristic angles of the transmitter
were calibrated via the optimization algorithm described in
Sec. 3.2 and the algorithm for estimating the initial iteration
values described in Sec. 3.3. Then, the residual errors and
root-mean-square error (RMSE) were calculated in order
to evaluate the deviation of the points.

In Zhao et al.’s experiment,10 the control network was
established by a laser tracker. Then, transmitter parameter
calibration was completed by optimizing the coefficients of
the laser-plane equations based on the constraints of the con-
trol network. Their experimental results showed that the
residual errors in the distance of each control point to the
laser plane were <0.1 mm and the RMSE was approximately
0.06 mm.

From the data in Table 2, it can be seen that the residual
errors in the distance of each control point to the fanned laser
plane are −0.075 to 0.075 mm and the RMSE is 0.052 mm.
These results are significantly better than those in the trans-
mitter parameter calibration method based on optimizing the
coefficients of the laser-plane equations. Thus, this demon-
strates that the proposed calibration method is better able to
describe the geometric characteristics of the transmitter and
thereby improve the positioning accuracy and efficiency of
an ALPS.

5 Conclusions
The use of large-volume measurement and positioning sys-
tems has expanded rapidly to accommodate the rising com-
plexity and flexibility of production systems. To satisfy this
demand, we propose a modularized large-scale positioning
system that we refer to as the ALPS. As a distributed system,
ALPS can include multiple transmitters, all of which must be
calibrated to ensure positional accuracy during operation. In
contrast to conventional approaches, the proposed method
employs the characteristic angles of the transmitter as the
final calibration targets and then applies a calibration method
based on a high-accuracy 3-D coordinate control network.
The results of a Monte Carlo simulation show that the accu-
racy of the characteristic angles once calibrated via the pro-
posed method are maintained within 3 arc sec. The results of
a comparison experiment demonstrate that the deviation of
each control point after calibration is 0.075 mm and the
RMSE is 0.052 mm. These results indicate that the proposed
method is feasible and provides good accuracy. Considering

Fig. 7 Errors in the characteristic angles.

Fig. 8 Experimental setup.
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the invariance of the characteristic angles of the transmitter,
the calibration results can be reused before every field meas-
urement without requiring recalibration, which improves the
measurement efficiency.
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