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a b s t r a c t

This paper proposes a novel constraint adaptive backstepping based tracking controller for nonlinear
active suspension system with parameter uncertainties and safety constraints. By introducing the virtual
control input and reference trajectories, the adaptive control law is developed to stabilize both of the
vertical and pitch motions of vehicle body using backstepping technique and Lyapunov stability theory,
and further to track the predefined reference trajectories within a finite time, which not only ensure
the safety performance requirements, but also achieve improvements in riding comfort and handling
stability of vehicle active suspension system. Next, the stability analysis on zero dynamics error system
is conducted to ensure that all the safety performance indicators are all bounded and the corresponding
upper bounds are estimable. Finally, a numerical simulation is provided to verify the effectiveness of the
proposed controller and to address the comparability between the classical Barrier–Lyapunov Function
based adaptive tracking controller and the proposed controller.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Active suspension system is an effective way to isolate, absorb
or dissipate the vibration energies transferred from the road sur-
face disturbance to vehicle body, which can adjust itself and im-
prove riding comfort and handling stability by ensuring the safety
performance constraints of vehicle suspension system. When de-
signing an active suspension system, it should satisfy such suspen-
sion performance requirements as (1) ride comfort, i.e., the min-
imization of vehicle body acceleration should be guaranteed, (2)
the safety performance constraints including suspension dynamic
displacement, tire dynamic load and actuator input saturation [1–
3]. However, these performance requirements are usually conflict-
ing, improving ride comfort will lead to a larger suspension work
space, which usually imposes a great effect on chassis layout and
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then deteriorates vehicle handling stability and maneuverability.
Therefore, it is necessary to manage the tradeoff between ride
comfort and safety performance constraints for active suspension
system.

Recently, a number of researchers have paid significant atten-
tion to the challenging issue of how to propose a reasonable control
method to guarantee ride quality while providing handling sta-
bility as much as possible. Subsequently, many control strategies
were proposed and reported in literatures [4–10] therein. Among
these control schemes, the controller designwas usually converted
to a single objective control problem by characterizing ride com-
fort as the main control goal and the other safety performances
as hard constraints in time domain. However, there unavoidably
exist some uncertain parameters in active suspension system, such
as vehicle body mass and its moment of inertia caused by the
changeable number of passenger and dynamic loads. This will
absolutely make it difficult to develop an accurate dynamic model
and further to design an appropriate controller. Therefore, the
adaptive backstepping technique has been extensively employed
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in the controller design for the strict-output feedback systemswith
uncertain parameters due to such merits of anti-input saturation,
interference suspension, accurate control, good robustness over
the conventional control approaches [11–17]. For example, the
authors in [11] suggested an intelligent adaptive backstepping
control using a recurrent neural network to control the mover
position of a magnetic levitation apparatus to compensate for the
uncertainties of friction force. The authors in [12,13] investigated
the control synthesis for a general class of strict feedback nonlinear
systems, and presented the controller design by introducing a
hysteretic quantize to avoid chattering byusing backstepping tech-
nique. For a class of nonlinear systems with sampled and delayed
measurements, an adaptive fuzzy backstepping control procedure
was addressed through the combination of backstepping tech-
nique with the classic adaptive fuzzy control method [14]. For a
double-rope winding hoisting system, a robust nonlinear adaptive
backstepping controller combined with a nonlinear disturbance
observer was proposed with considering the parameter uncertain-
ties and external disturbances. Experimental studies have verified
the excellent performance of the proposed controller [15]. In [16],
the nonminimum phase problem for a flexible hypersonic vehicle
was addressed to study the relationship between nonminimum
phase and backstepping control and further to develop a stable
nonlinear controller, which can guarantee the output tracking and
internal stability well.

Motivated by the aforementioned studies, some scholars and
researchers have carried out many remarkable researches in the
control design for active suspension system. In [18,19], the adap-
tive controller was developed by a combination of selecting suit-
able Lyapunov function and non-linear backstepping control tech-
nique, which can deal with the parametric uncertainties, external
disturbances and uncertain coefficients without control input in
the hydraulic active suspension systems. Additionally, by lineariz-
ing the nonlinear suspension model based on H∞ method, the
authors in [20] developed an adaptive backstepping controller to
guarantee the robustness of the closed-loop system in the pres-
ence of system uncertainties and to minimize the effect of road
disturbance on the control system. An adaptive position control for
a pump-controlled electrohydraulic actuator (EHA) was presented
based on an adaptive backstepping control framework, and the
core feature of this study was the combination of a modified back-
stepping algorithm with a special adaptation law to compensate
for all nonlinearities and uncertainties in EHA system [21]. From
the viewpoint of control method, although the above-mentioned
control schemes have a low conservatism, nevertheless, less at-
tention are paid to the safety performance constraints of sus-
pension system. More specifically, the stability analysis on zero
dynamics system is rarely discussed which often yields instability
of the control system. Moreover, Barrier–Lyapunov Function (BLF)
has been used by several researchers to deal with the nonlinear
constraints [22–25] when developing an adaptive backstepping
controller. It should be noted that the control principle of BLF
method is choosing a specific Lyapunov candidate function with
the property of growing to infinity if the function parameters are
restrained within a certain limit, which ensures the satisfaction
of the performance constraints for the closed-loop system and
provides some inspirations for the follow-up studies.

On the other hand, Quadratic-Lyapunov Function (QLF)was also
widely utilized in designing the adaptive backstepping controllers
for vehicle suspension system. For instance, the authors in [26]
conducted a comparative study of BLF and QLF based backstepping
controllers for stabilizing the vertical displacement of a quarter-
car active suspension system in dealing with the uncertain sprung
mass, and the simulation result showed that the former backstep-
ping controller has less conservatism while the later one has a
higher accuracy in trajectory tracking. Similarly, the authors in [27]

studied the adaptive backstepping control design based on BLF
and QLF approach and proposed the backstepping controller to
tolerate with the system uncertainties. A backstepping control
design was proposed for a non-linear full vehicle suspension by
using QLF-based adaptive feedback control law [28]. However,
the model uncertainties were not taken into consideration, only
the estimated equivalent control input was utilized to design the
backstepping controller. To fulfill the coordination control over
the vertical acceleration and suspension dynamic displacement,
an intelligent fuzzy logic controller [29] was proposed based on
QLF method, yet the tracking errors are not considered. Therefore,
it is still a challenge to develop an adaptive backstepping-based
tracking controller for nonlinear active suspension systemwith the
parameter uncertainties and safety performance constraints.

Based on the above discussions, this paper proposes an en-
hanced adaptive backstepping-based tracking controller for non-
linear active suspension system with the system parameter un-
certainties and safety performance constraints. To stabilize both of
the vertical and pitch motions of vehicle body, the virtual control
inputs and reference trajectories are introduced to establish the
dynamic tracking system, and then an adaptive control law is
designed to asymptotically track the predefined reference trajec-
tories within a finite time and to satisfy the safety performance
requirements in the presence of uncertain vehicle sprung-mass
and its moment of inertia. Simultaneously, the stability analysis
on zero dynamics system is conducted to ensure the boundness of
the safety performance constraints. Finally, a numerical simulation
case is provided to verify the proposed controller under bump,
random and periodic road surface.

The rest of this paper is organized as follows: Section 2 presents
systemmodeling of active suspension system and problem formu-
lation. The proposed adaptive backstepping-based tracking control
scheme is specifically discussed in Section 3. In Section 4, simu-
lation investigation is presented to demonstrate the effectiveness
and comparability of the designed controller. The conclusions are
given in Section 5.

2. Systemmodeling and problem formulation

A half-vehicle model is considered and shown in Fig. 1 with
freedoms of motion in the heave and pitch directions, this model
has been extensively used in the previous literatures [30,31] due
to its symmetry. In this model, ms and Iy denote the sprung mass
and its moment of inertia, muf and mur denote the unsprung mass
of the front and rear suspension, respectively; a and b denote the
horizontal distances from the center of gravity (CG) of vehicle body
to the front and rear axles, respectively; zc andφ denote the vertical
and angular displacement at the CG of vehicle body, respectively;
zuf and zur represent the vertical displacement of the front and
rear unsprung masses, respectively; zrf and zrr represent the road
disturbance inputs to the front and rear wheels, respectively. The
nonlinear spring and damper force for the front and rear suspen-
sions are denoted as Fsf and Fsr , Fcf and Fcr , respectively; ucf and ucr
represent the active control forces of the front and rear suspension,
respectively; ktf , ktr and ctf , ctr represent the stiffness coefficients
and the damping coefficients of the front and rear tire, respectively.

According to Newton’s second law, the dynamic equations for
this half-vehicle model shown in Fig. 1 can be expressed as⎧⎪⎨⎪⎩
msz̈c + Fsf + Fcf + Fsr + Fcr − uc = 0
Iyφ̈ + [a(Fsf + Fcf ) − b(Fsr + Fcr )] − ucφ = 0
muf z̈uf − Fsf − Fcf + ktf (zuf − zrf ) + ctf (żuf − żrf ) + ucf = 0
mur z̈ur − Fsr − Fcr + ktr (zur − zrr ) + ctr (żur − żrr ) + ucr = 0

(1)

In terms of the different controllers used for active suspension
system, the subscript letter c in uc , ucφ , ucf , and ucr can be deter-
mined as B or Q, which stands for BLF or QLF based controllers.
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Fig. 1. Half-vehicle active suspension model.

Thus, in Eq. (1), the control forces of uc and ucφ , are given by

uc = ucf + ucr
ucφ = aucf − bucr

(2)

In Eq. (1), Fsf , Fsr , Fcf and Fcr are given by [28]:

Fsf = ksf (zc + a sinφ − zuf ) + knsf (zc + a sinφ − zuf )3

Fsr = ksr (zc − b sinφ − zur ) + knsr (zc − b sinφ − zuf )3

Fcf = csf (żc + a cosφφ̇ − żuf )
Fcr = csr (żc − b cosφφ̇ − żur )

(3)

where ksf and ksr , knsf and knsr are the stiffness coefficients of
the linear and cubic terms, respectively; csf and csr represent the
stiffness coefficients of the front and rear suspension, respectively,
for simplicity, the suspension dynamic displacements of the front
and rear suspension system are defined as follows:{
∆yf = zc + a sinφ − zuf
∆yr = zc − b sinφ − zur

(4)

Next, define the state vector as x = [x1, x2, x3, x4, x5, x6, x7, x8]T

= [zc, żc, φ, φ̇, zuf , żuf , zur , żrr ]T , and then Eq. (1) can be rewritten
as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 =
1
ms

(−Fsf − Fcf − Fsr − Fcr + uc)

ẋ3 = x4

ẋ4 =
1
Iy
(−a(Fsf + Fcf ) + b(Fsr + Fcr ) + ucφ)

ẋ5 = x6

ẋ6 =
1

muf
(Fsf + Fcf − ktf (zuf − zrf ) − ctf (żuf − żrf ) − ucf )

ẋ7 = x8

ẋ8 =
1

mur
(Fsr + Fcr − ktr (zur − zrr ) − ctr (żur − żrr ) − ucr )

(5)

In addition, due to the changeable number of passengers or
dynamic payload, ms and Iy will accordingly change in a certain
range, so those two parameters are determined as the uncertain
parameters of active suspension system. To facilitate the follow-up
study, it is assumed that the known upper and lower bound of ms
and Iy satisfy{
ms ∈ {M:msmin ≤ ms ≤ msmax}

Iy ∈
{
I: Iymin ≤ Iy ≤ Iymax

} (6)

To ensure that the controlled active suspension system has a
better dynamic performance and satisfy the safety constraints, the
following aspects should be considered [32] as:

(i) Ride comfort: The designed controller can guarantee the
accurate trajectory tracking performances of the vertical and pitch
displacement and then simultaneously achieve the minimization
of the vertical acceleration and pitch angular acceleration.

(ii) Safety performance constraints
① Since it is needed to satisfy the limit of suspensionmechanical

structure, the suspension dynamic displacement should be re-
strained within its allowable maximum value, which is expressed
by{⏐⏐∆yf

⏐⏐ ≤ ∆yf max
|∆yr | ≤ ∆yr max

(7)

where ∆yf max and ∆yr max are the maximum suspension displace-
ment limits for the front and rear suspension, respectively.

② To ensure vehicle riding safety, the dynamic loads of the front
and rear tire should not exceed their static loads, which are given
by{
F f
ratio =

⏐⏐ktf (zuf − zrf ) + ctf (żuf − żrf )
⏐⏐ /Ff < 1

F r
ratio = |ktr (zur − zrr ) + ctr (żur − żrr )| /Fr < 1

(8)

where F f
ratio and F r

ratio denote the load ratio of the front and rear
wheel, respectively; and the static loads of Ff and Fr are calculated
by{
Ff + Fr = (ms + muf + mur )g
Ff (a + b) = msga + mf g(a + b) (9)

In Eq. (9), the gravitational acceleration g = 9.8 N/m2.
③ The actuator input saturation should be taken into consid-

eration in the controller design to satisfy the safety performance
constraints of active suspension system. Here, the actuator control
forces of the front and rear suspension should be smaller than their
corresponding maximum limits ucf max and ucr max, respectively,
which is given by{⏐⏐ucf

⏐⏐ ≤ ucf max
|ucr | ≤ ucr max

(10)

3. The adaptive backstepping controller synthesis

In this section, our main purpose is to develop the adaptive
backstepping-based tracking controller for the closed-loop system
in (5) by employing the backstepping technique and Lyapunov
stability theory. This designed controller can ensure the asymptotic
stability of the vertical and pitch motions of active suspension
system when dealing with the uncertain parameters and external
disturbances, and concurrently satisfy the safety performance con-
straints shown in Eqs. (7)–(10). To better illustrate the design pro-
cedure of the proposed controller, the classical BLF-based adaptive
backstepping controller design are first introduced, and the desired
QLF-based adaptive tracking controller is subsequently presented
in detail. Note that the same initial constraints are imposed to both
of the controllers in order to obtain the effective comparability.

3.1. The BLF-based controller design

The design process of the BLF-based adaptive backstepping
controller is briefly presented in [33]. For system (5), define the
tracking errors as e1 = x1 − x1r , e3 = x3 − x3r , e2 = x2 − βB,
e4 = x4 − β1B, wherein x1r and x3r are respectively the reference
trajectory, βB and β1B are respectively the virtual control function
to be designed.We need to apply the BLF-based controller to make
the tracking errors converge to zero asymptotically. In terms of the
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boundness of the initial values for the BLF-based controller, the
bounded Lyapunov candidate function is given as

V1B(e1) =
1
2
ln

γ 2
1

γ 2
1 − e12

V3B(e3) =
1
2
ln

γ 2
3

γ 2
3 − e32

(11)

where γ1 and γ3 are positive constant.
If βB and β1B are appropriately designed, the tracking errors of

e1 and e3 will converge to zero within a preset time. To that end,
the virtual control functions of βB and β1B are defined as follows:

βB = ẋ1r − k1(γ 2
1 − e12)e1

β1B = ẋ3r − k3(γ 2
3 − e32)e3

(12)

where k1 and k3 are positive constants.
Taking the derivative of Eq. (11) gives

V̇1B(e1) =
e1e2

γ 2
1 − e12

− k1e21

V̇3B(e3) =
e3e4

γ 2
3 − e32

− k3e23
(13)

In a similar way, the second bounded Lyapunov candidate func-
tions are determined as

V2B = V1B +
1
2
e22 +

1
2rθ1

θ̃2
1

V4B = V3B +
1
2
e24 +

1
2rθ2

θ̃2
2

(14)

where θ̃1 = θ̂1 − θ1, θ̃2 = θ̂2 − θ2 are respectively the differences
between the estimated parameters of θ̂1, θ̂2 and the real value of θ1,
θ2. Note that θ1 ∈ [θ1min, θ1max], θ1min = 1/msmax, θ1max = 1/msmin,
θ2 ∈ [θ2min, θ2max], θ2min = 1/Iymax, θ2max = 1/Iymin.

To achieve the asymptotic stability of the vertical and pitch
angular accelerations, the adaptive backstepping control law uB
and uBφ are designed as

uB = Fcf + Fcr + Fsf + Fsr +
1

θ̂1
(β̇B − k2e2 −

e1
γ 2
1 − e12

)

uBφ = a(Fcf + Fsf ) − b(Fcr + Fsr ) +
1

θ̂2
(β̇1B − k4e4 −

e3
γ 2
3 − e32

)

(15)

where k2 and k4 are positive constants.
Following the projection adaptive laws in [34,35], the projec-

tion operator projθ̂1 (rθ1e2τ1(x, t)) is given by

˙̂
θ1(t) = projθ̂1 (rθ1e2τ1(x, t))

=

⎧⎨⎩0, if θ̂1(t) = θ1max and rθ1e2τ1(x, t) > 0
0, if θ̂1(t) = θ1min and rθ1e2τ1(x, t) < 0
rθ1e2τ1(x, t), otherwise.

(16)

where rθ1 is a tunable positive value, and τ1(x, t) = −Fcf − Fcr −

Fsf − Fsr + uB.
Additionally, assuming that θ̂2 is the estimated value of θ2, and

˙̂
θ2 is then defined by

˙̂
θ2(t) = projθ̂2 (rθ2e4τ2(x, t))

=

⎧⎨⎩0, if θ̂2(t) = θ2max and rθ2e4τ2(x, t) > 0
0, if θ̂2(t) = θ2min and rθ2e4τ2(x, t) < 0
rθ2e4τ2(x, t), otherwise.

(17)

where rθ2 is a tunable positive value, and τ2(x, t) = −a(Fcf + Fsf )+
b(Fcr+Fsr )+uBφ . It should benoticed that both of τ1(x, t) and τ2(x, t)
are the force-related algebraic term.

Remark 1. It is known from Eq. (13) that V1B(e1(0)) is the max-
imum value of V1B(e1) with e2 = 0, thus only if the inequality
e1(0) < γ1 holds, the constraint inequality |e1| < γ1 can be
guaranteed in the entire time domain. Similarly, V3B(e3(0)) is the
maximum value of V3B(e3) with e4 = 0, and only if e3(0) < γ3,
the constraint inequality |e3| < γ3 can be guaranteed in the entire
time domain.

The BLF-based adaptive backstepping controller design can be
described as Theorem 1 [26].

Theorem 1. By designing the adaptive laws expressed in (16) and
(17), the adaptive control forces of (15) can be obtainedwith satisfying
the following conditions:

(1) The system (5) is asymptotically stable with t→∞, and all the
output signals will gradually converge to zero;

(2) Only if the initial values of the vertical displacements at the CG
of vehicle body are satisfied with |x1(0)| < γ1 and |x3(0)| < γ2, then
x1(t) and x3(t) will definitely be restrained within the preset limits in
the entire time domain.

(3) The safety performance requirements such as (7), (8) and (10)
can be guaranteed.

3.2. The QLF-based controller design

To facilitate the proposed controller design, the following four
design steps are used to fulfill the development of the adaptive
QLF-based tracking controller. It is worth noting that the same ex-
pressions and symbols used in this sectionhave the samedefinition
as described in the BLF-based controller design.

Step 1. For the closed-loop system in (5), our main purpose is
to develop an appropriate tracking controller to stabilize both of
the vertical and pitch motions of vehicle body and make them ac-
curately track the prescribed reference trajectories within a finite
time, i.e. let the tracking errors of e1 and e3 converge to zerowithin
a preset time. Then, taking the time derivative of e1 and e3 yields

ė1 = x2 − ẋ1r , ė3 = x4 − ẋ3r (18)

To ensure that both of the proposed controller and the BLF-
based controller have the same initial condition, it is required that
|x1| < γ1 and |x3| < γ3 hold in the entire time domain. Moreover,
define two virtual control functions as βQ and β1Q satisfying x2 =

βQ and x4 = β1Q , respectively.
If βQ and β1Q are viewed as the control inputs of e2 and e4, then

both of e2 and e4 are redefined as

e2 = x2 − βQ , e4 = x4 − β1Q (19)

It is obvious that (19) can be rewritten as

e2 = ẋ1 − βQ , e4 = ẋ3 − β1Q (20)

Next, define two semi-definite Lyapunov candidate functions
as

V1Q (e1) =
1
2
e21, V3Q (e3) =

1
2
e23 (21)

Then, following the design of the virtual control functions of βB
and β1B, we have

βQ = ẋ1r − k1e1, β1Q = ẋ3r − k3e3 (22)

Differentiating (21) gives

V̇1Q (e1) = e1e2 − k1e21, V̇3Q (e3) = e3e4 − k3e23 (23)

If the proposed controller has the desirable effect, whichmeans
e2 = 0 and e4 = 0, thus we have V̇1Q (e1) = −k1e21 ≤ 0 and
V̇3Q (e3) = −k3e23 ≤ 0, and it is consequently easy to guarantee
e1 → 0 and e3 → 0.
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Fig. 2. Comparison of (a) vertical displacement, (b) vertical acceleration, (c) pitch angular and (d) pitch angular acceleration for active suspension system in Case I under
bump road.

Fig. 3. Comparison of (a) suspension dynamic displacement of front wheel, (b) dynamic load ratio of front wheel, (c) initial control force of front wheel, (d) suspension
dynamic displacement of rear wheel, (e) dynamic load ratio of rear wheel and (f) initial control force of rear wheel for active suspension system in Case I under bump road.

Step 2. Design the adaptive backstepping control law uQ to
make x2 well track the designed virtual control input βQ in the
presence of the uncertain parameter θ1 ofms.

By taking the time derivative of e2 in (19), one obtains

ė2 = θ1τ1(x, t) − β̇Q (24)

where τ1(x, t) = −Fcf − Fcr − Fsf − Fsr + uQ .
With the control objectives in mind, define uQ as

uQ = Fcf + Fcr + Fsf + Fsr +
1

θ̂1
(β̇ − k2(e2) − e1) (25)

Select the same projection operator ˙̂
θ1Q (t) as the BLF-based

controller, which is given by

˙̂
θ1Q (t) = projθ̂1 (rθ1e2τ1(x, t)) (26)

Then, define the second Lyapunov function V2Q (e1, e2, θ̃1) as

V2Q (e1, e2, θ̃1) =
1
2
e21 +

1
2
e22 +

1
2
r−1
θ θ̃2

1 (27)

The time derivative of (27) is obtained as

V̇2Q (e1, e2, θ̃1) = −k1e21 − k2e22 + θ̃1(r−1
θ1

˙̂
θ1 − e2τ1(x, t))

≤ −k1e21 − k2e22 ≤ 0 (28)

Integrating both sides of (28) from zero to arbitrary t yields

V2Q (t) =

∫ t

0
V̇2Q dτ + V2Q (0) ≤ V2Q (0) (29)

According (27) to (29), it is observed that both of e1 and e2 are
bounded, and θ̃1 is also bounded. That is,

|e1| ≤
√
2V2Q (0), |e2| ≤

√
2V2Q (0) (30)

From (30), we have{
|x1| ≤ ∥x1r∥∞ +

√
2V2Q (0)

|x2| ≤ ∥ẋ1r∥∞ + (k1 + 1)
√
2V2Q (0)

(31)

It is equivalent to

−Fsf − Fcf − Fsr − Fcr + uQ ∈ L∞ (32)
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Fig. 4. Comparison of (a) vertical displacement, (b) vertical acceleration, (c) pitch angular and (d) pitch angular acceleration for active suspension system in Case II under
bump road.

Fig. 5. Comparison of (a) suspension dynamic displacement of front wheel, (b) dynamic load ratio of front wheel, (c) initial control force of front wheel, (d) suspension
dynamic displacement of rear wheel, (e) dynamic load ratio of rear wheel and (f) initial control force of rear wheel for active suspension system in Case II under bump road.

From (24) and (32),we obtain ė1 and ė2 ∈ L∞, and the derivative
of (28) is obtained as

V̈2Q (e1, e2, θ̃1) ≤ −2k1e1ė1 − 2k2e2ė2 (33)

From (33), we have V̈2Q ∈ L∞. Since V̇2 is uniformly continuous,
based on Barbalat lemma and its proposition [36], we have V̇2Q →

0 with t → ∞. Therefore, we get e1 → 0 and e2 → 0, implying
the tracking errors of e1 and e2 are asymptotically stable.

Step 3. Design the adaptive backstepping control law uQφ to
make x4 accurately track the designed virtual control input β1Q
in the presence of the uncertain parameter θ2 of Iy. Noting that
the design and proof procedure is similar to those in Step 2. For
simplicity, the proof process of each sub-step is ignored and the
corresponding design is directly presented as follows.

By taking the time derivative of e4 in (20), one gets

ė4 = θ2τ2(x, t) − β̇1Q (34)

where τ2(x, t) = −Fn + uQφ and Fn = a(Fcf + Fsf ) − b(Fcr + Fsr ).

Choosing a specific Lyapunov candidate function as

V4Q =
1
2
e23 +

1
2
e24 +

1
2rθ2

θ̃2
2 (35)

It is noted that β1Q has been defined in (22), then the adaptive
backstepping function uQφ is herein selected as

uQφ = Fn +
1

θ̂2
(β̇1 − k4(e4) − e3) (36)

Define the projection operator ˙̂
θ2 as

˙̂
θ2 = projθ̂2 (rθ2e4τ2(x, t)) (37)

By conducting the same analysis as in Step 2, we conclude that
e3, e4 and θ̃2 are all bounded, that is,{
|x3| ≤ ∥x3r∥∞ +

√
2V4Q (0),

|x4| ≤ ∥ẋ3r∥∞ + (k1 + 1)
√
2V4Q (0).

(38)

From the above analysis, we have V̇2Q = −k1e21 − k2e22 ≤ 0
and V̇4Q = −k3e23 − k4e24 ≤ 0, by further deriving, we can
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Fig. 6. Comparison of tracking errors for (a) vertical displacement, (b) vertical velocity, (c) pitch angular and (d) pitch angular velocity of active suspension system in Case
II under bump road.

Fig. 7. Comparison of (a) vertical displacement, (b) vertical acceleration, (c) pitch angular and (d) pitch angular acceleration for active suspension system in Case I under
random road.

obtain V2Q (t) ≤ V2Q (0) and V4Q (t) ≤ V4Q (0). If the trajectories
of x1 and x3 satisfied the constraint conditions as |x1| ≤ γ1 and
|x3| ≤ γ3, we can absolutely have |x1r (t)| +

√
2V2Q (0) ≤ γ1 and

|x3r (t)| +
√
2V4Q (0) ≤ γ3. Therefore, when designing the reference

trajectories, let the inequalities |x1| ≤ γ1 and |x3| ≤ γ3 hold, then
wedeservedly get 2V2Q (0) < γ 2

1 and 2V4Q (0) < γ 2
3 . In otherwords,

if the following inequalities{
e21(0) + e22(0) + γ −1

θ1
θ̃2
1 < γ 2

1

e23(0) + e24(0) + γ −1
θ2

θ̃2
2 < γ 2

3

(39)

hold, then |x1| ≤ γ1 and |x3| ≤ γ3 can be ensured.
Finally, it is concluded from (25) and (36) that the correspond-

ing control force uQf and uQr are obtained as⎧⎪⎨⎪⎩
uQf =

buQ + uQφ

a + b
uQr =

buQ − uQφ

a + b

(40)

Step 4. To ensure the boundness and estimability of the safety
constraint performances, it is extremely necessary to carry on the

stability analysis of zero dynamics system. Since the adaptive back-
stepping design generates a four-order error dynamics system (e1,
e2, e3, e4), while the original system (5) is an eight-order system,
thus the zero dynamics system contains four states as x5, x6, x7 and
x8. In order to find out them, one can set x1 = x3 = 0. Henceforth,
we have{
uQ = msẍ1r + Fsf + Fcf + Fsr + Fcr
uQφ = Iyẍ3r + a(Fsf + Fcf ) − b(Fsr + Fcr )

(41)

Substituting (41) into (5) gives the zero dynamics equation as

ẋ = Ax + Bzr + Cxr (42)

where x = [x5 x6 x7 x8]T , zr = [zrf żrf zrr żrr ]T and xr = [ẍ1r ẍ3r ]T ,
and the corresponding coefficient matrices are as follows:

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0

−
ktf
muf

−
cbf
muf

0 0

0 0 0 1

0 0 −
ktr
mur

−
cbr
mur

⎤⎥⎥⎥⎥⎥⎦ ,
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Fig. 8. Comparison of (a) vertical displacement, (b) vertical acceleration, (c) pitch angular and (d) pitch angular acceleration for active suspension system in Case II under
random road.

Fig. 9. Comparison of tracking errors for (a) vertical displacement, (b) vertical velocity, (c) pitch angular and (d) pitch angular velocity of active suspension system in Case
II under random road.

B =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0
ktf
muf

cbf
muf

0 0

0 0 0 0

0 0
ktr
mur

cbr
mur

⎤⎥⎥⎥⎥⎥⎦ ,

C =

⎡⎢⎢⎢⎢⎢⎣
0 0

−
ams

muf (a + b)
−

Iy
muf (a + b)

0 0

−
bms

mur (a + b)
Iy

mur (a + b)

⎤⎥⎥⎥⎥⎥⎦ .

Define the positive definite function V5Q = xTPxwherein P is a
positive definite matrix, the derivative of V5Q is given by

V̇5Q = xT(ATP + PA)x + 2xTPBzr + 2xTPCxr (43)

Because the real parts of the eigenvalue value formatrixA are all
negative, we have ATP+PA = −Q, whereinQ is a positive definite

matrix [37]. Moreover, consider the following inequalities⎧⎪⎨⎪⎩
2xTPBzr ≤

1
v1

xTPBBTPx + v1zTr zr

2xTPCxr ≤
1
v2

xTPCCTPx + v2xTr xr
(44)

where v1 and v2 are tunable positive parameters. Based on (43) and
(44), we obtain

V̇5Q ≤ −xTQx +
1
v1

xTPBBTPx +
1
v2

xTPCCTPx + v1zTr zr
+v2xTr xr

≤ [−λmin(P−
1
2 QP−

1
2 ) +

λmax

v1
(P

1
2 BBTP

1
2 )

+
λmax

v2
(P

1
2 CCTP

1
2 )]V5Q + v1zTr zr + v2xTr xr

(45)

Choosing matrix P, Q with appropriate dimensions, as well as
v1 and v2, the following (46) can be guaranteed as

λmin(P−
1
2 QP−

1
2 ) −

λmax

v1
(P

1
2 BBTP

1
2 ) −

λmax

v2
(P

1
2 CCTP

1
2 ) ≥ η1 (46)
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Fig. 10. Comparison of (a) vertical displacement, (b) vertical acceleration, (c) pitch angular and (d) pitch angular acceleration for active suspension system in Case I under
periodic road.

Fig. 11. Comparison of (a) vertical displacement, (b) vertical acceleration, (c) pitch angular and (d) pitch angular acceleration for active suspension system in Case II under
periodic road.

where η1 is a positive constant.
Define zTr zr ≤ zrmax and xTr xr ≤ xrmax, and let v1zrmax +

v2xrmax = η2, thus we get

v1zTr zr + v2xTr xr ≤ η2 (47)

where η2 is a positive constant.
Further, we obtain V̇5Q ≤ −η1V5Q + η2 and that V5Q (t) has the

known boundness range, that is

V5Q (t) ≤ (V5Q (0) −
η2

η1
)e−η1t +

η2

η1
= ε (48)

Form (48), we have

|xk| ≤

√
ε

λmin(P)
(k = 5, 6, 7, 8) (49)

where

ε =

⎧⎪⎨⎪⎩
V5Q (0), if V5Q (0) ≥

η2

η1
2η2
η1

− V5Q (0), if V5Q (0) <
η2

η1

.

From the above-mentioned analysis, it is observed that all the

signals are boundedwithin the known ranges, and theupper bound

of suspension dynamic displacement can be estimated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⏐⏐∆yf
⏐⏐ ≤ ∥x1∥∞ + a ∥x3∥∞ +

√
ε

λmin(P)

= ∥x1r∥∞ +
√
2V2Q (0) + a ∥x3r∥∞

+a
√
2V4Q (0) +

√
ε

λmin(P)
= ∆yfbd

|∆yr | ≤ ∥x1∥∞ + b ∥x3∥∞ +

√
ε

λmin(P)
= ∥x1r∥∞ +

√
2V2Q (0) + b ∥x3r∥∞

+b
√
2V4Q (0) +

√
ε

λmin(P)
= ∆yrbd

(50)
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Fig. 12. Comparison of tracking errors for (a) vertical displacement, (b) vertical velocity, (c) pitch angular and (d) pitch angular velocity of active suspension system in Case
II under periodic road.

Similarly, the upper bound of tire dynamic load is estimated as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⏐⏐⏐F f
ratio

⏐⏐⏐ =
⏐⏐ktf (zuf − zrf ) + ctf (żuf − żrf )

⏐⏐
≤

(ktf + ctf )
√

ε

λmin(P)
+ ktf

zrf ∞
+ ctf

żrf ∞
= Ffbd⏐⏐F r

ratio

⏐⏐ = |ktr (zur − zrr ) + ctr (żur − żrr )|

≤
(ktf + ctf )

√
ε

λmin(P)
+ ktr ∥zrr∥∞ + ctr ∥żrr∥∞ = Frbd

(51)

Further, the upper bound of actuator control input is estimated
as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⏐⏐uQ
⏐⏐ ≤

1
θ1min

(∥ẍ1r∥∞ + k1 |ė1| + |e1| + k2 |e2|) +
⏐⏐Fsf ⏐⏐

+
⏐⏐Fcf ⏐⏐ + |Fsr | + |Fcr | = uQbd⏐⏐uQφ

⏐⏐ ≤
1

θ2min
(∥ẍ3r∥∞ + k3 |ė3| + |e3| + k4 |e4|)

+a(
⏐⏐Fsf ⏐⏐ +

⏐⏐Fcf ⏐⏐) + b(|Fsr | + |Fcr |) = uQφbd

(52)

The further derivation of (52) gives the upper bound of
⏐⏐uQf

⏐⏐ and⏐⏐uQr
⏐⏐ as⎧⎪⎨⎪⎩

⏐⏐uQf
⏐⏐ =

buQbd + uQφbd

a + b
=

⏐⏐uQfbd
⏐⏐⏐⏐uQr

⏐⏐ =
buQbd + uQφbd

a + b
=

⏐⏐uQrbd
⏐⏐ (53)

It is obvious that the following inequalities will hold through
setting the system initial values and adjusting v1 and v2, in sub-
sequent, the safety constraint performances shown in (7), (8) and
(10) can all be guaranteed. That is,{⏐⏐∆yf

⏐⏐ ≤ ∆yfbd ≤ ∆yf max

|∆yr | ≤ ∆yrbd ≤ ∆yr max
(54)⎧⎨⎩

⏐⏐⏐F f
ratio

⏐⏐⏐ ≤ Ffbd ≤ Ff⏐⏐F r
ratio

⏐⏐ ≤ Frbd ≤ Fr
(55)

{⏐⏐uQf
⏐⏐ ≤ uQfbd ≤ uQf max⏐⏐uQr
⏐⏐ ≤ uQrbd ≤ uQr max

(56)

Based on the above discussion, the proposed QLF-based con-
troller and its stability analysis can be summarized as Theorem 2
and Remark 2.

Theorem 2. Considering the nonlinear active suspension system (5),
the implementation of the designed control laws in (26) and (37) can
ensure the following safety performance constraints such that

(1) The closed-loop system (5) is asymptotically stable, i.e., all the
output signals gradually converge to zero with t→∞.

(2) Only if the initial values of the vertical and pitch angular
displacement zc and φ are satisfied with the constraint condition in
(39), then both of zc and φ will be restrained within the preset limits
in the entire time domain.

(3) Only if the initial values of system (5) satisfy the constraint
conditions in (54)–(56), the suspension performance constraints as
given in (7), (8) and (10) can be guaranteed.

Remark 2. From the above analysis, if the constraint conditions
such as |x1| < γ1 and |x3| < γ3 hold, then the safety performance
indicators shown in (7), (8) and (10) for active suspension system
(5) can be ensured. In order to obtain |x1| < γ1 and |x3| < γ3, the
initial values of safety performance constraints should be imposed
on both of the QLF-based and BLF-based adaptive backstepping
controllers with satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
QLF : e21 (0) + e22 (0) + γ −1

θ1 θ̃2
1 < γ 2

1 ⇒ |x1| < γ1

QLF : e23 (0) + e24 (0) + γ −1
θ2 θ̃2

2 < γ 2
3 ⇒ |x3| < γ3

BLF : |e1(0)| < γ1 ⇒ |x1| < γ1

BLF : |e3(0)| < γ1 ⇒ |x3| < γ3

(57)

Actually, if tracking errors of e2(0) and e4(0), the estimated er-
rors of θ̃1(0) and θ̃2(0) are equal to zero, both of the two controllers
will satisfy the suspension displacement constraints whether the
reference trajectories are introduced or not. However, the key
point of the controller design is how to select such parameters as
the initial values of the system state and controller gain, which
is extremely crucial to guarantee the safety performance require-
ments. Therefore, the suspension safety performance can be guar-
anteed if the initial conditions for system (5) satisfy with the
inequalities of (54)–(56).

3.3. The initial condition and reference trajectory

To verify the effectiveness of the proposed controller, consider
the two cases with different initial values, wherein case I and case
II are set as follows:

Case I: The initial values are x1(0) = 0 cm, x3(0) = 0 rad, xi = 0,
i = 2, 4 . . . 8, θ1(0) = 1/1100, θ2(0) = 1/550, named as zero initial
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Table 1
Model parameters of half-vehicle active suspension system.
Ms Iy muf mur a

1200 kg 600 kg m2 100 kg 100 kg 1.2 m
b ksr ksf ktr ktf
1.5 m 15000 N m−1 15000 N m−1 200000 N m−1 150000 N m−1

cbf cbr csf csf knsf ,knsr
1500 N s m−1 2000 N s m−1 1500 N s m−1 1200 N s m−1 1000 N m−3

condition; moreover the reference trajectory is set as x1r = 0 and
x3r = 0. It should be noted that this study dedicates to minimize
zc(t) andφ(t) under the external road disturbance, and tomake the
two performances indicators converge to zero asymptotically.

Case II: The initial values are x1(0)= 6 cm, x3(0)= 6 rad, xi = 0,
i = 2, 4, . . . , 8, θ1(0) = 1/1100, θ2(0) = 1/550, named as non-
zero initial condition. Additionally, we need to define a specific
polynomial xur as the reference trajectory. It is worth pointing
out that xur is a continuous derivable function satisfying x1 < γ1
and x3 < γ3. The designer can adjust zc(t) and φ(t) to reach a
higher or lower level via setting different preset time t, which can
further improve the ride quality of vehicle suspension system. The
reference trajectory xur is defined as

xur (t) =

{
au0 + au1t + au2t2 + au3t3 + au4t4, t < Tur

0, t ≥ Tur
(58)

where the polynomial coefficients aui(i = 0, 1, 2, 3, 4; u = 1, 3) are
all constants, and are expressed by

xur (0) = a0 = x1(0)
ẋur (0) = a1 = x2(0)
xur (Tur ) = a0 + a1Tur + a2Tur 2 + a3Tur 3 + a4Tur 4 = 0
ẋur (Tur ) = a1 + 2a2Tur + 3a3Tur 2 + 4a4Tur 3 = 0
ẍur (Tur ) = 2a2 + 6a3Tur + 12a4Tur 2 = 0

(59)

The aforementioned (58) and (59) can ensure that the following
conditions hold:

(1) The initial values of tracking errors of e1 and e3, and their
first-order derivative are zero, i.e. e1(0) = ė1(0) = 0, e3(0) =

ė3(0) = 0;
(2) The reference trajectory xur (t) is second-order differen-

tiable, i.e., xur (t) ∈ C2. Theoretically, one can choose an arbitrary
prescribed timeTur , and both of the vertical and pitch vibrations
caused by the external disturbances will reach attenuation more
quickly with a smaller Tur . To this end, the reference trajectory
with a decreasing polynomial form is selected to replace the zero
reference curve, and set Tur = 2 s.

4. Simulation investigation and discussion

Anumerical simulation example is provided to demonstrate the
effectiveness of the proposed controller under bump, random and
periodic road excitation in Case I and Case II situations. The half-
vehicle model parameters are listed in Table 1 and the designed
parameters for the proposed controller are given as rθ1 = rθ2 =

0.001, k1 = k2 = k3 = k4 = 100, γ1 = γ3 = 0.08,θ1min =

1/1300 kg, θ1max = 1/1000 kg, θ2min = 1/700 kg m2, θ2max =

1/500 kg m2. The vehicle performances of Uncontrolled, the BLF-
based backstepping controller and the proposed QLF-based back-
stepping controller are compared in this simulation.

For the controller design, it should be satisfied with the follow-
ing four requirements

(1) The suspension vertical and pitch angular displacements are
converged to zero within a preset time Tur , i.e., zc → 0 and φ → 0
within Tur .

(2) The front and rear suspension dynamic travels of ∆yf and
∆yr are less than the maximal value of suspension dynamic dis-
placement zmax = 0.15 m.

(3) The load ratios of the front and rear wheels represented by
F f
ratio and F r

ratio should be less than one.
(4) The actuator control force of the front and rear wheels

represented by ucf and ucr should satisfy the saturation limitation.
Noting that the maximal value of control force is ucmax = 5000 N.

4.1. Bump response

Generally, bump road excitation is employed to mimic an iso-
lated shock on a smooth road surface [38], which is expressed as

zrf =

{hb

2
(1 − cos(8π t)), 1 ≤ t ≤ 1.25

0, otherwise
(60)

where hb = 0.0 2 m is the height of road bump, V = 45 km/h is the
vehicle forward velocity. Although the front and rear wheel have
the same road input excitation, yet there exists a time delay of (a
+ b)/V.

4.1.1. Simulation analysis in Case I
Fig. 2 shows the time response comparison of the vertical dis-

placement and acceleration, the pitch angular displacement and
acceleration for active suspension system in Case I under bump
road. It is observed from Fig. 2(a) and (c) that, compared to uncon-
trolled suspension system, the BLF-based andQLF-based controller
can effectively isolate perturbations in the presence of the uncer-
tain parameters and external road disturbance. From Fig. 2(b) and
(d), it is seen that both of the two controllers can obviously improve
the vertical and pitch angular acceleration, and the stability of
vehicle dynamics performance can be achieved in a short time. It
should be noted that both of the two controllers have almost the
same control effect in Case I, implying that the two controllers have
the same conservatism under zero initial condition.

Moreover, it can be seen from Fig. 3(a) and (d) that both of ∆yf
and ∆yr are less than zmax; by analyzing Fig. 3(b) and (e), we can
obtain that F f

ratio and F r
ratio are always less than one, illustrating that

the dynamic load is less than its static load and ensuring the firm
uninterrupted contact of wheels to road. In addition to this, from
Fig. 3(c) and (f), we can see that ucf and ucr are always less than
the maximal control force ucmax. Based on the above analysis, we
can arrive at the conclusion that although there exists a significant
shock for active suspension systemwhen running across the bump
road surface, both of the two controllers can guarantee the safety
performance constraints for active suspension system under Case
I condition.

4.1.2. Simulation analysis in Case II
In this case, we provide Figs. 4 and 5 to reveal the comparability

of active suspension performance between uncontrolled, the BLF-
based controller and the proposed QLF-based controller. As shown
in Fig. 4(a) and (c), both of the latter two controllers can absorb
the vibration energies generated by the external road disturbances.
Simultaneously, it is seen fromFig. 4(b) and (d) that the vertical and
pitch angular acceleration can be improved significantly for active
suspension system with the BLF-based and QLF-based controllers,
while the QLF-based controller has a smaller peak value of the
vertical and pitch angular acceleration.

On the other hand, it is seen from Fig. 5(a) and (d) that the
suspension dynamic displacements of active suspension system
with the BLF-based and QLF-based controllers are always less zmax.
By analyzing the left sub-plots in Fig. 5, we can obtain that, the tire
load ratios and actuator forces of these two controllers can meet



34 H. Pang, X. Zhang and Z. Xu / ISA Transactions 88 (2019) 23–36

the performance requirements of active suspension system. In
summary, regardless of how to choose the initial values, both of the
two controllers can guarantee the suspension safety performance
constraints under bump road excitation.

In order to further evaluate the designed controller, Fig. 6 gives
the tracking errors of active suspension system with the two con-
trollers in Case II under bump road excitation. It is clear that the
tracking errors of the QLF-based controller can converge to zero
in a shorter finite time for tracking the vertical displacement and
velocity, the pitch angular displacement and velocity, respectively,
which implies that the proposed controller has a better tracking
performance.

4.2. Random response

The road excitation can also be generally assumed as random
vibration that is consistent and typically specified as a white noise
process given by [31]

Gq(n) = Gq(n0) (n/n0)
−c (61)

where n is the spatial frequency and n0 is the reference spatial
frequency with n0 = 0.1(1/m), Gq(n0) is the road roughness
coefficient; c = 2 is the road roughness constant. Combining the
spatial frequency n with time frequency f, we have f = nV , where
V is the vehicle forward velocity. For this simulation, we choose
Gq(n0) = 64 × 10−6 m3 as C-class road, and the vehicle forward
velocity V = 72 (km/h).

It is noted that the simulation curves of active suspension
performances under random road surface are almost the same as
the corresponding ones under bump road surface, which implies
that both of the two controllers canwell satisfy the suspension per-
formance requirements when running on random road. To reduce
redundancy in paragraph and reveal the prominent superiority of
the proposed controller in tracking trajectory, we only provide
the comparison of the vertical displacement and acceleration for
active suspension system with the two different controllers under
random road excitation in Case I and Case II situations, as well as
the comparison of tracking errors under non-zero initial condition.

4.2.1. Simulation analysis in Case I
The comparison of time-domain response for the vertical dis-

placement and acceleration, the pitch angular displacement and
acceleration of active suspension system with these two con-
trollers in Case I is presented in Fig. 7. It is worth pointing out
that, according to Fig. 7(a) and (c), both of the BLF-based and
QLF-based controllers can effectively isolate perturbations in the
presence of random road disturbance compared to uncontrolled
suspension system. Additionally, it is obviously seen from Fig. 7(b)
and (d) that both of the two controllers can significantly improve
the vertical and pitch angular accelerations to make the control
system converge to a relatively stable state in less time.

4.2.2. Simulation analysis in Case II
The simulation result in Fig. 8 reveals the comparison of time-

domain response for the vertical displacement and acceleration,
the pitch angular displacement and acceleration of active suspen-
sion system with the two controllers under Case II condition.

As can be seen from Fig. 8(a) and (c), compared to uncontrolled
suspension system, both of the two controllers can absorb the vi-
bration energies generated by random roaddisturbance,moreover,
according to Fig. 8(b) and (d), these two controllers can obviously
achieve the improvements in the vertical and pitch angular ac-
celeration. Nevertheless, the proposed QLF-based controller has a
smoother acceleration response, which implies that the controller
has a better control performance with respect to the BLF-based
controller.

Fig. 9 shows the tracking errors of e1, e2, e3 and e4 for active
suspension system with the two controllers under random road
excitation. By analyzing Fig. 9, we can obtain that the tracking
errors of the QLF-based controller can converge to zero within
less time, which demonstrates the proposed controller has the
desirable control responses.

4.3. Periodic response

In order to further evaluate the control effect of the proposed
controller, by following the same procedure as in Sections 4.1 and
4.2, we give the expression of the classical periodic road excitation
for this case, which is written as [39]

zr (t) = 0.0254 sin(2π t) + 0.005 sin(10.5π t)
+0.001 sin(21.5π t) (62)

Note that this type of road excitation is simulated by integrating
the low frequency vibration response that is close to the vehicle
body resonance frequency (1 Hz), and the high frequency vibration
response. Similarly, only the time-series comparisons of the verti-
cal displacement and acceleration response for active suspension
system with these two different controllers under Case I and Case
II conditions, as well as the comparison of tracking errors under
non-zero initial condition are provided.

4.3.1. Simulation analysis in Case I
Now we explore the output responses for active suspension

system in Case I under the periodic road excitation, and the cor-
responding time-series curves are shown in Fig. 10. It is obviously
concluded from Fig. 10(a) and (c) that, compared to uncontrolled
suspension system, both of the BLF-based and QLF-based con-
trollers can effectively isolate vibrations and perturbations caused
by the road disturbance. Additionally, according to Fig. 10(b) and
(d), it is similar to the situations in bump and random responses
that both of the two controllers can significantly improve the
vertical and pitch angular acceleration to make the control system
converge to a relatively stable state in less time.

4.3.2. Simulation analysis in Case II
We show the time-series of the displacement and acceleration

in Fig. 11 for active suspension system with the two controllers in
Case II under the periodic road excitation. Like the corresponding
simulation results of Case II in bump and random responses, we
can observe the similar improvements of suspension performance
when using the two adaptive backstepping controllers and the
closed-loop control system in (5) converges to a relatively stable
state in the presence of periodic signal interference within less
time.

Fig. 12 reveals the tracking errors of active suspension system
with the two controllers under the periodic road excitation. It is
observed from Fig. 12 that the tracking error of QLF-based con-
troller can converge to zerowithin less time in tracking the vertical
displacement and velocity of e1(t) and e3(t), the pitch angular
displacement and velocity of e2(t) and e4(t), respectively, which
demonstrates the proposed controller has the desirable control
responses.

4.4. Frequency response analysis

According to ISO 2361 criteria, human body is more sensitive
to the vertical vibrations in 4–8 Hz. To evaluate the control perfor-
mance of the proposed adaptive tracking controller in frequency
domain, the power spectral density (PSD) comparison of z̈c and φ̈
under bump, random and periodic road excitation are respectively
presented in Figs. 13–15 to compare the variation of tracking errors
for active suspension system under Case II condition.
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Fig. 13. PSD comparison of (a) vehicle body acceleration, (b) pitch angular acceler-
ation in Case II under bump road.

Fig. 14. PSD comparison of (a) vertical acceleration, (b) pitch angular acceleration
in Case II under random road.

It can be seen from Figs. 13 to 15 that compared to uncon-
trolled suspension system, both of the BLF-based and QLF-based
controllers can effectively restrain the vertical acceleration and
pitch angular acceleration of vehicle body within a certain range,
and simultaneously, the proposedQLF-based controller has a lower
peak value of vehicle acceleration responses. Finally, Tables 2–4
summarizes the root mean square values (RMS) comparisons of
z̈c and φ̈ using different controllers (uncontrolled, BLF and QLF)
under Case II in the presence of bump, random and periodic road
disturbances, respectively, the calculation expressions of RMS are
given by

z̈c(t)RMS =

√
1
t

∫ t

0
(z̈c(t))2dt

φ̈(t)RMS =

√
1
t

∫ t

0
(φ̈(t))2dt

(63)

Fig. 15. PSD comparison of (a) vertical acceleration, (b) pitch angular acceleration
in Case II under periodic road.

Table 2
RMS comparisons of vehicle body acceleration and pitch angular acceleration under
bump road excitation.
Signal Controller

(x1 = 6 cm, x3 = 6 rad) Uncontrolled BLF Controller QLF Controller

RMS z̈c 0.4470 0.0605(↓86.47%) 0.0540(↓87.91%)
RMS φ̈ 1.1670 0.0616(↓94.72%) 0.0564(↓95.17%)

Table 3
RMS comparisons of vehicle body acceleration and pitch angular acceleration under
random road excitation.
Signal Controller

(x1 = 6 cm, x3 = 6 rad) Uncontrolled BLF Controller QLF Controller

RMS z̈c 0.3649 0.0559(↓84.68%) 0.0538(↓85.26%)
RMS φ̈ 1.0408 0.0569(↓94.53%) 0.0553(↓94.69%)

Table 4
RMS comparisons of vehicle body acceleration and pitch angular acceleration under
periodic road excitation.
Signal Controller

(x1 = 6 cm, x3 = 6 rad) Uncontrolled BLF Controller QLF Controller

RMS z̈c 0.9184 0.0545(↓94.07%) 0.0375(↓95.92%)
RMS φ̈ 1.2807 0.0556(↓95.66%) 0.0538(↓95.80%)

As shown in Table 2, compared to uncontrolled suspension
system, the RMS values of z̈c and φ̈ for the BLF-based and QLF-
based controller can be enhanced about 86.47%, 87.91% and94.72%,
95.17%, respectively, under bump road excitation. Next, from Ta-
ble 3, the RMS values of z̈c and φ̈ for the BLF-based and QLF-
based controller can also be enhanced about 84.68%, 85.26% and
94.53%, 94.69%, respectively, under C-class randomroad excitation.
Moreover, it is concluded from Table 4 that the RMS values of z̈c
and φ̈ for the BLF-based and QLF-based controller can be greatly
enhanced about 94.07%, 95.92% and 95.66%, 95.80%, respectively,
under periodic road excitation. This shows that the proposed QLF-
based controller can improve vehicle ride quality while satisfying
the safety performance constraints under different road profiles,
which further illustrates that the designed controller has better
control performances.
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5. Conclusions

In this paper, an enhanced adaptive backstepping-based track-
ing controller for nonlinear active suspension system has been
proposed with considering the parameters uncertainties, safety
performance constraints and external road disturbances, simulta-
neously. By introducing the virtual control inputs and reference
trajectories, the adaptive control law is developed to stabilize
both of the vertical and pitch motions of vehicle body by using
backstepping technique and Lyapunov stability theory, and further
to track the predefined reference trajectories within a finite time.
Next, the stability analysis on zero dynamics system is conducted
to ensure that the safety performance signals are all bounded
and their upper bounds are estimable. Finally, a numerical sim-
ulation is provided to demonstrate the effectiveness and validity
of the proposed controller through addressing the comparability
between the BLF-based adaptive controller and the proposed QLF-
based controller. The simulation results show that both of the
adaptive backstepping-based controllers can stabilize the vertical
and pitch angular in a finite time under zero initial condition, while
in non-zero initial condition, the proposed QLF-based controller
can achieve greater improvements in ride comfort and safety per-
formance constraints comparedwith the BLF-based controller. It is
worth noticing that, since the safety performance indicators of the
control plant has a strong relationship with the preset time of the
reference trajectories, how to choose a suitable preassigned time
and then archiving the optimized control effect is needed to study
in the future.
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