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Summary

This paper addresses the control problem of adaptive backstepping control for a
class of nonlinear active suspension systems considering the model uncertain-
ties and actuator input delays and presents a novel adaptive backstepping-based
controller design method. Based on the established nonlinear active suspension
model, a projector operator–based adaptive control law is first developed to esti-
mate the uncertain sprung-mass online, and then the desirable controller design
and stability analysis are conducted by combining backstepping technique and
Lyapunov stability theory, which can not only deal with the actuator input delay
but also achieve better dynamics performances and safety constraints require-
ments of the closed-loop control system. Furthermore, the relationship between
the input delay and the state variables of this vehicle suspension system is
derived to present a simple and effective method of calculating the critical input
delay. Finally, a numerical simulation investigation is provided to illustrate the
effectiveness of the proposed controller.
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1 INTRODUCTION

It is well known that active suspension systems have been widely studied and implemented in vehicle application sce-
narios due to its advantages including the isolation, absorption, and dissipation of the vibration energies caused by road
roughness.1,2 Generally, the key issue of developing controller in active suspensions involves a trade-off between ride qual-
ity and road handling stability, which has been a subject of many research literatures.3-5 Therefore, to deal with this issue,
a number of control schemes such as adaptive fuzzy control,6,7 robust H∞ control,8 slide mode control,9,10 and adaptive
backstepping control11,12 have been proposed to improve the vehicle performance in the presence of system uncertainties
and to minimize the negative effect of road disturbance on the control system.

In fact, a number of scholars have conducted the control design of active suspensions based on their linear models for
the sake of simplicity and convenience of controller development.13,14 However, it would be much more practical and

NOMENCLATURE: ms, mass of vehicle body; zs, sprung-mass displacement of vehicle body; .zs, sprung-mass velocity of vehicle body; z̈s, sprung-mass
acceleration of vehicle body; msmin, the lower of vehicle body mass; msmax, the upper of vehicle body mass; Fc, damping force of suspension; Fs, stiff-
ness force of suspension; ks, nonlinear spring rigidity coefficient; kns, spatial stiffness coefficient of suspension; cs1, extending damping coefficient of
suspension; cs2, compressing damping coefficient of suspension; kt, stiffness coefficient of tire wheel; △ymax, the maximum of suspension dynamic
displacement; mu, unsprung mass of suspension; zu, unsprung-mass displacement of vehicle body; .zu, unsprung-mass velocity of the tire wheel; △y,
suspension dynamic displacement; zr, road displacement disturbance of the tire wheel; .zr , road velocity disturbance of the tire wheel; 𝜏, time-varying
input delay of actuator; u(t-𝜏), control force of the actuator with input delay; g, standard gravity acceleration; Fstatic, tire static load; Fkt, stiffness force of
tire wheel; Fct, damping force of tire wheel; ct, distance from CG to the suspension; u(t)max, the maximum of actuator control force.
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consistent with the actual situation if the spring and damper coefficients are taken as a nonlinear term, which is helpful
to design an appropriate controller. Consequently, in the field of active suspension control, many researchers15,16 have
brought the nonlinear model of the spring and damper into the nonlinear active suspension model during the controller
development process, in which the piecewise nonlinear spring force and the linear damper force are popularly used in
the controller design for active suspension system.17,18

In nonlinear active suspension system, time delays are often encountered in the controlled channel, particularly in the
digital controller as it carries out some calculations associated with the complex control law.19 The existence of time delay
may result in unexpected degradation in control performance and even instability.20 Additionally, when modeling the
real active suspension system, the model uncertainty generated from different vehicle body loads21 is ubiquitous, and this
may impose some difficulties in the implementation of the designed control scheme.

Among the abovementioned control methods during the latest several decades, the adaptive backstepping control, as
an effective control scheme for a class of uncertain nonlinear system, has been widely and extensively investigated and
reported in other works22-25 because of such merits as anti-input saturation, interference suppression, accurate control,
good robustness, etc. For instance, Khan et al22 designed an efficient and novel adaptive neuro-fuzzy control or full
car model with eight-degrees-of-freedom through the combination of the conventional adaptive backstepping technique
and Mamdani fuzzy logic control, and the simulation results revealed that this control method can better improve the
dynamical performances of vehicle suspension system compared to the linear-quadratic-regulated suspension systems.
A nonlinear adaptive controller based on backstepping technique in the work of Nguyen et al23 was presented to deal
with the nonlinearity of the hydraulic actuator, whereas the suspension dynamic was linearly treated by H∞ method.
An adaptive position control method in the work of Ahn et al24 was presented for a pump-controlled electrohydraulic
actuator (EHA) based on adaptive backstepping control technology. In addition, the core feature of this study was the
combination of a modified backstepping algorithm with a special adaptation law to compensate for all nonlinearities and
uncertainties in EHA system. Zapateiro et al25 have designed an optimal vibration controller for a class of vehicle suspen-
sion system with a magnetorheological actuator by combing the neural network and standard backstepping technique,
which aimed to reduce the vibrations and enhance the suspension's performances. To sum up, the conventional adap-
tive backstepping control method has higher reliability in dealing with the ongoing variations of vehicle body masses,
as well as the trajectory tracking error control of the grade-connection nonlinear system subjected to the external road
disturbances.

On the other hand, there inevitably exists a time lag from the actuator to the plant, which will impose some negative
effects on the controller performances.26 Currently, the control design problems of active suspension system with the
actuator time delay have attracted considerable attention due to the challenging issue of how to optimize the required
suspension performances. Du and Zhang27 have designed a constrained delay-dependent H∞ state feedback controller to
enhance the ride comfort, road holding ability, and stroke limitation performance to prescribed level regardless of a time
delay in the control input, wherein the time delay was considered and assumed to be uncertain time invariant within
a known constant bound. Li et al28 have proposed a multiobjective H∞ control for vehicle active suspension systems
with random actuator delay, which can be represented by a signal probability distribution. Moreover, Du et al29 have
presented a parameter-dependent output feedback controller design for vehicle active suspensions to deal with changes
in vehicle inertial properties and existence of actuator time delays, a good control performance was achieved within a
certain range of time delay. In the work of Sun et al,30 the problem of vehicle active suspension control with frequency
band constraints and actuator input delay has been investigated and the controller design was transformed into a convex
multiobjective optimization using LMI algorithm. To the best knowledge of the authors, only a few of studies on the
adaptive backstepping control approaches were done for active suspension system with the actuator input delay. For
example, the relevant study on the adaptive backstepping control design was described in literature,31 wherein the full
vehicle model with seven DOFs was taken as the control object with considering the time delay, and a Smith predictor was
then employed to make a compensation for the time delay in this semi-active suspension system. However, the control
effects of time delay on the suspension performances have not been addressed in the controller design, and the model
uncertainties of suspension system are not considered.

Moreover, to the best of the authors' knowledge, the corresponding adaptive backstepping controller design is rarely
reported in the published literatures, especially for nonlinear active suspension systems with the model uncertain-
ties and the actuator input delays. Therefore, in order to cope with this problem, this paper addresses the control
problem of adaptive backstepping control for a class of nonlinear active suspension systems considering the model
uncertainties and actuator input delays. Based on the backstepping technique and Lyapunov stability theory, a novel
adaptive backstepping-based controller is developed, and an evaluation approach for the critical input delay is presented.
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FIGURE 1 The nonlinear quarter-vehicle suspension model with
input delay [Colour figure can be viewed at wileyonlinelibrary.com]

The proposed adaptive backstepping control scheme can guarantee that all the closed-loop signals are uniformly
ultimately bounded. The main contributions of this paper are summarized as follows:

1. Different with the traditional adaptive backstepping controller in which the actuator input delay is rarely considered,
the sprung-mass uncertainty and the actuator input delay, as well as the safety constraints of the nonlinear active
suspension system, are taken into account simultaneously during the design process of our proposed novel adaptive
backstepping-based controller.

2. The relationship between the input delay and state variables of the active suspension system is obtained through
the theoretical derivations, and a solution method of the critical input delay is then presented, which is appropriate
for the majority of the closed-loop control system.

3. The control stability is carried out by using Lyapunov theory to guarantee the asymptotic stability of the subsystem
and the entire control system, thus further to obtain the upper bounds of each safety performance indicator, which
reduce the conservativeness of the proposed controller.

The remainder of this paper is organized as follows. Section 2 presents system modeling of active suspension system and
problem formulation. The proposed adaptive backstepping-based controller design with input delay is specifically dis-
cussed in Section 3. How to evaluate the critical input delay for the control plant is introduced in Section 4. In Section 5, the
simulation investigation and discussion are presented to demonstrate the effectiveness and comparability of the designed
controller. The conclusions are given in Section 6.

2 SYSTEM MODELING AND PROBLEM STATEMENT

2.1 System modeling of uncertain nonlinear active suspension
A quarter-vehicle model with the nonlinear spring and damping coefficients is considered and shown in Figure 1 with
freedoms of motion in the heave directions, and this model has been extensively used in the previous literatures28-30 due
to its simplicity. Note that the input delay 𝜏 is a time-invariant unknown constant.

Based on Newton's second law, the dynamics equations of this control model are given by

⎧⎪⎨⎪⎩
msz̈s = −Fs (zs, zu, t) zs − Fc (

.zs,
.zu, t) + u (t − 𝜏)

muz̈u = Fs (zs, zu, t) + Fc (
.zs,

.zu, t) − u (t − 𝜏)
−F𝑘𝑡 (zu, zr, t) − F𝑐𝑡 (

.zu,
.zr, t) .

(1)

Note that the mathematical expressions of nonlinear spring force Fs(zs, zu, t) and the piecewise linear damper force
Fc (

.zs,
.zu, t) are, respectively, defined in (2) and (3),32 and the tire elastic and damping forces of Fkt(zu, zr, t) and F𝑐𝑡 (

.zu,
.zr, t)

are given in (4)17 as follows:
Fs (zs, zu, t) = ksΔ𝑦 + k𝑛𝑠Δ𝑦3 (2)

Fc (
.zs,

.zu, t) =

{
cs1Δ

.
𝑦,Δ .

𝑦 > 0
cs2Δ

.
𝑦,Δ .

𝑦 ≤ 0
(3)

http://wileyonlinelibrary.com
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F𝑘𝑡 (zu, zr, t) = kt (zu − zr)
F𝑐𝑡 (

.zu,
.zr, t) = ct (

.zu −
.zr) ,

(4)

where Δy = zs − zu.
Define the state variables x1(t) = zs, x2 (t) =

.zs, x3(t) = zu, and x4 (t) =
.zu, then the state-space equations of vehicle body

motion in (1) can be rewritten as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

.x1 (t) = x2 (t)

.x2 (t) = 1
ms

(−Fs (zs, zu, t) − Fc (
.zs,

.zu, t) + u (t − 𝜏))
.x3 (t) = x4 (t)
.x4 (t) = 1

mu
(Fs (zs, zu, t) + Fc (

.zs,
.zu, t) − F𝑘𝑡 (zu, zr, t)

−F𝑐𝑡 (
.zu,

.zr, t) − u (t − 𝜏)).

(5)

2.2 Problem statement of the control system
For the control plant, ms is determined as the uncertain parameter in the active suspension system of (5) due to the
variations of passenger numbers and vehicle body loads, and suppose that the lower and upper bounds of ms, denoted as
ms min and ms max, satisfy

ms ∈ {ms ∶ ms min ≤ ms ≤ ms max} .
Herein, the key objective of this work is to design an effective finite-time control law, which can not only deal with the

tolerable input delay but also stabilize the vertical acceleration of vehicle body. By following the related studies in the
works of Sun et al,33-35 in order to ensure that the controlled active suspension system has better dynamic performances
such as the ride comfort and handling capacity, the performance requirements to be considered in the controller design
include the following two aspects:

(i) Ride comfort: The designed controller can achieve the asymptotic convergence of the vertical acceleration within
a finite time in the presence of the uncertain parameters ms and the input delay 𝜏 in (5).

(ii) Safety performance constraints
1© Suspension space limits: Considering the limit of suspension mechanical structure, the suspension dynamic

displacement should be restrained within its allowable maximum value, which is expressed by

|Δ𝑦| ≤ Δ𝑦max. (6)

2© Road holding ability: To ensure vehicle riding safety, the dynamic loads of the tire should not exceed static loads,
which is given by

Fradio = |kt (zu − zr) + ct (
.zu −

.zr)| ∕Fstatic < 1, (7)
where Fstatic = (ms + mu)g.

3© Actuator saturation: The amplitude of control force generated by the actuator should be restrained in a reasonable
range. If the limitation exceeded, the performance of the closed-loop system (5) will be degraded or even unstable, the
related-input delay control force is given by |u (t − 𝜏)| ≤ u(t)max. (8)

Assumption 1. The external unknown disturbance Zr(t) satisfies ‖Zr (t)‖ ≤ d, where d > 0 is an unknown constant.

Remark 1. Assumption 1 is used to clarify the boundedness of the real control input and the external disturbance, and
it is noted that this assumption is reasonable in most of the nonlinear output feedback system under normal working
conditions.

3 ADAPTIVE BACKSTEPPING-BASED CONTROL DESIGN

In this section, the control problem formulated in Section 2 will be solved by designing a nonlinear adaptive backstepping
controller that is able to guarantee the following requirements:

1. The proposed controller can succeed in stabilizing the vertical motion of vehicle body and isolating the force
transmitted to the passengers in the presence of the uncertain parameters and the external disturbances.
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FIGURE 2 The control diagram of the proposed adaptive
backstepping controller [Colour figure can be viewed at
wileyonlinelibrary.com]

2. The required suspension safety performance constraints such as suspension space limit in (8), ride safety condition
in (9), and actuator saturation in (10) can be definitely satisfied.

3.1 Adaptive control scheme
In the first place, the proposed adaptive backstepping control diagram is presented in Figure 2, wherein the control plant,
the virtual controller, the projection adaptive law, and the active control force are included. Note that the control variables
are the vertical displacement x1(t) and the vertical velocity of vehicle body x2(t), respectively. Next, it is necessary to
establish the error of the vehicle sprung-mass displacement denoted as e1(t), whereby the predetermined virtual control
𝛼1(t) is employed to ensure the suspension performances; and the error of the sprung-mass velocity denoted as e2(t),
which is taken as the input of projection adaptive law 𝜃̂ (t) that is used to eliminate the effect caused by the sprung-mass
uncertainty. Finally, the related-input delay control force u(t − 𝜏) is designed to make e1(t) and e2(t) be convergent and
stable with t →∞, wherein r(t) = 0 is zero reference value.

To facilitate the controller design and stability analysis, Lemma 1 is presented in the following.

Lemma 1 (See the work of Sun36). If a general error variable e(t) (ie, e1(t) or e2(t) in this work) is uniformly continuous
and lim

t→∞
∫ t

0 e (s) 𝑑𝑠 exists with a finite bound, then one has lim
t→∞

e (t) → 0, which is an extended derivation of Barbalat
lemma, extensively appearing in the literature of control theory.

3.2 Controller design and stability analysis
Overall, we need to design an appropriate adaptive backstepping controller consisting of the control input u(t − 𝜏) and
the adaptive law

.
𝜃̂(t) with aiming to inhibit the vibrations caused by the input delay and the uncertain parameter of body

mass. To that end, the controller design is achieved by the sequential four steps as follows.
First, by introducing the zero reference value of x1(t), one can easily obtain e1(t)= x1(t) and then design a virtual control

function 𝛼1(t) satisfying x2(t) = 𝛼1(t) so as to make e1(t) tend to stability within a finite time, and meanwhile, define the
error of e2(t) between the actual state x2(t) and the virtual input 𝛼1(t), we have

e2 (t) = x2 (t) − 𝛼1 (t) =
.x1 (t) − 𝛼1 (t) . (9)

Afterwards, define a semidefinite Lyapunov candidate function V1(e1(t)) as

V1 = 1
2

e2
1 (t) . (10)

Following the design of the virtual control function 𝛼1(t), we have

𝛼1 (t) = −k1 tanh (e1 (t)) , (11)

where k1 is a positive constant.
Differentiating (10) gives

.
V 1 (e1 (t)) = e1 (t) e2 (t) − k1e1 (t) tanh (e1 (t)) . (12)

From (12), if e2(t) = 0, thus we can derive that
.

V 1 (e1 (t)) = −k1e1 (t) tanh (e1 (t)) ≤ −k1e2
1 (t) ≤ 0 holds, and it is

consequently easy to guarantee e1(t) reach a stability state asymptotically.

http://wileyonlinelibrary.com
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Second, design u(t − 𝜏) in system (5) to make .x1 (t) well track the evaluation of 𝛼1(t) in the presence of the uncertain
parameter 𝜃1 of ms.

By taking the time derivative e2(t) in (9), one obtains

.e2 (t) = 𝜃𝛿1 (x, t) − .
𝛼1 (t) , (13)

where 𝛿1 (x, t) = −Fc (zs, zu, t) − Fs (
.zs,

.zu, t) + u (t − 𝜏), and 𝜃 = 1/ms∈[𝜃min, 𝜃max], 𝜃min = 1/msmax, 𝜃max = 1/msmin.
Herein, the Lyapunov function is selected as

V2(e1, e2, 𝜃, t) = V1 (e1 (t)) +
1
2

e2
2 (t) +

1
2r𝜃

𝜃2 (t) , (14)

where 𝜃 (t) = 𝜃 (t) − 𝜃 is the difference between the estimated parameter 𝜃 (t) and the real value 𝜃.
Differentiating Equation (14) yields to

.
V 2(e1, e2, 𝜃, t) =

.
V 1 (e1 (t)) + e2 (t)

.e2 (t) + r−1
𝜃 𝜃 (t)

.
𝜃̂ (t)

= e1 (t) e2 (t) − k1e1 (t) tanh (e1 (t)) + e2 (t)
.e2 (t) + r−1

𝜃 𝜃 (t)
.
𝜃̂ (t)

= e2 (t) (e1 (t) − 𝜃Δ1 (x, t) − .
𝛼1 (t)) − k1e1 (t) tanh (e1 (t)) + r−1

𝜃 𝜃 (t)
.
𝜃̂ (t) .

(15)

If we choose the control law u(t − 𝜏) as

u (t − 𝜏) = Fc (zs, zu, t) + Fs (
.zs,

.zu, t) + 1
𝜃̂ (t)

( .
𝛼1 (t) − k2 tanh (e2 (t)) − e1 (t)) , (16)

where k2 is a positive constant, then we have

.
V 2(e1, e2, 𝜃, t) = −k1e1 (t) tanh (e1 (t)) − k2e2 (t) tanh (e2 (t)) + 𝜃(t)

(
r−1
𝜃

.
𝜃̂ (t) − e2 (t) Δ1 (x, t)

)
. (17)

Based on the projection operator,37,38 the adaptive control law
.
𝜃̂ (t) is defined as

.
𝜃̂ (t) = proj𝜃 (r𝜃e2 (t) Δ1 (x, t)) =⎧⎪⎨⎪⎩
0, if 𝜃̂ (t) = 𝜃max and r𝜃e2 (t) Δ1 (x, t) > 0

0, if 𝜃̂ (t) = 𝜃min and r𝜃e2 (t) Δ1 (x, t) < 0
r𝜃e2 (t) Δ1 (x, t) , othercase,

(18)

where r𝜃 > 0 is the tuning parameter for the adaptive control law proj𝜃 (r𝜃e2 (t) Δ1 (x, t)).

Remark 2. The projection operator–based adaptive control law proj𝜃̂ (r𝜃e2 (t) Δ1 (x, t)) has the following three main
features:

1© The parameter estimation 𝜃 (t) can be always ensured within a known range, ie, 𝜃min < 𝜃̂ (t) < 𝜃max.
2© The hold of 𝜃 (t) (r−1

𝜃
proj𝜃 (r𝜃e2 (t) Δ1 (x, t)) − e2 (t) 𝛿1 (x, t)) ≤ 0 can be always guaranteed.

3© A constrained function of tanh (ei) is used to replace the linear feedback term ei with the purpose of avoiding the
safety constraints going beyond its limits that are caused by the overlarge tracking error ei.

In (18), the online estimation of ms can be realized by selecting an appropriate value of r𝜃 and 𝜃(0) for the closed-loop
system, and then the influence of uncertain sprung mass on the system stability can be further eliminated, which
guarantees the being of 𝜃min < 𝜃̂ (t) < 𝜃max.

Furthermore, we can obtain

.
V 2(e1, e2, 𝜃, t) = −k1e1 (t) tanh (e1 (t)) − k2e2 (t) tanh (e2 (t)) ≤ 0. (19)
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Next, we will perform the following proof so as to ensure that the tracking errors of e1(t) and e2(t) can achieve the
stability state within a finite time by using the designed control input u(t − 𝜏) and the adaptive control law

.
𝜃̂ (t).

For the inequality of
.

V 2(e1, e2, 𝜃, t) ≤ 0, integrating both of the sides in (19) from the range of 0 to t simultaneously,
we can get

V2(e1, e2, 𝜃, t) = ∫
t

0

.
V 2(e1, e2, 𝜃, t)𝑑𝜏 + V2(e,1 (0) e2 (0) 𝜃 (0))

≤ V2(e,1 (0) e2 (0) 𝜃 (0)).
(20)

It can be observed that e1(0) and e2(0) are bounded, which is expressed in the following forms:

⎧⎪⎨⎪⎩
|e1 (t)| ≤ √

2V2(e,1 (0) e2 (0) 𝜃 (0)) ,|e2 (t)| ≤ √
2V2(e,1 (0) e2 (0) 𝜃 (0)) .

(21)

Meanwhile, 𝜃1 (0) is also bounded, from (21), we can further get

⎧⎪⎨⎪⎩
|x1 (t)| ≤ √

2V2(e,1 (0) e2 (0) 𝜃 (0))|x2 (t)| ≤ (k1 + 1)
√

2V2(e,1 (0) e2 (0) 𝜃 (0)) .
(22)

Thus, we have

−Fs (zs, zu, t) − Fc (
.zs,

.zu, t) + u (t − 𝜏) ∈ L∞. (23)

Henceforth, we get .e2 ∈ L∞ and

V̈2(e1, e2, 𝜃, t) ≤ −k1e1 (t) (1 − tanh2 (e1 (t)))
.e1 (t) − k1

.e1 (t) tanh (e1 (t))
−k2e2 (t) (1 − tanh2 (e2 (t)))

.e2 (t) − k2
.e2 (t) tanh (e2 (t)) .

(24)

Remark 3. From (22), we obtain the conclusions that V̈2 ∈ L∞and
.

V 2 are uniformly continuous. Moreover, it can
be derived from Lemma 1 that it is true for lim

t→∞

.
V 2 → 0 with t → ∞, the further expressions are lim

t→∞
e1 (t) → 0 and

lim
t→∞

e2 (t) → 0. In other words, we can arrive at the conclusion that the tracking errors of e1(t) and e2(t) will definitely
tend to be asymptotic stability.

Third, it is needed to conduct the stability analysis of zero dynamics for the controlled suspension system.
Since Equation (5) is composed of a four-order system, the error system in the proposed controller is a two-order

system. Therefore, the zero dynamics system consists of two state variables of x3(t) and x4(t). To find out the zero
dynamics, the tracking error of e1(t) is set to zero, ie, e1(t) = 0, thus we have e2(t) = 0 and the following equation:

u (t − 𝜏) = Fs (zs, zu, t) + Fc (
.zs,

.zu, t) . (25)

Substituting Equation (25) into Equation (5) gives

⎧⎪⎨⎪⎩
.x3 = x4,
.x4 = 1

mu
(Fs (zs, zu, t) + Fc (

.zs,
.zu, t) − u (t − 𝜏 (t))

−kt (zu − zr) − ct (
.zu −

.zr)).

(26)

The zero dynamics equation can be obtained as follows:

.
X (t) = AX (t) + BZr (t) , (27)
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where X(t) = [x3(t), x4(t)]T and

A =

[
0 1

− kt
mu

− ct
mu

]
,B =

[
0 0
kt

mu

ct
mu

]
,Zr (t) = [zr (t)

.zr (t)]T.

By defining the positive definite function as V3 = XT(t)PX(t), wherein P is a positive definite matrix, then we have

.
V 3 (x (t)) =

.
XT (t)PX (t)+XT (t)P

.
X (t)

= XT (t)
(

ATP + PA
)

X (t) + 2XT (t)PBZr (t) .
(28)

Since the eigenvalues of the real parts for matrix A are all negative values, thus one can get ATP + PA = −Q, where
Q is a positive definite matrix.17 Moreover, the following inequality of (29) holds as

2XT (t)PBZr (t) ≤ 1
v1

XT (t)PBBTPX (t) + v1ZT
r (t)Zr (t) . (29)

In (29), v1 is an adjustable parameter, and then we can deduce from (28) and (29) that the following inequality holds:

.
V 3 (x (t)) ≤ −XT (t)QX (t) + 1

v1
XT (t)PBBTPX (t) + v1ZT

r (t)Zr (t)

≤
[
− 𝜆min

(
P− 1

2 QP− 1
2

)
+𝜆max

v1

(
P

1
2 BBTP

1
2

)]
V3 (x (t)) + v1ZT

r (t)Zr (t) .
(30)

Selecting matrix P and Q with the appropriate dimensions and a tunable parameter v1 can guarantee

𝜆min

(
P− 1

2 QP− 1
2

)
− 𝜆max

v1

(
P

1
2 BBTP

1
2

) ≥ 𝛽1, (31)

where 𝛽1 is a positive constant.
Define ZT

r (t)Zr (t) ≤ Zr max so as to get

v1ZT
r (t)Zr (t) ≤ v1Zr max = 𝛽2. (32)

Thus far, we can obviously get
.

V3 (x (t)) ≤ −𝛽1V3 (x (t)) + 𝛽2 and the following inequality:

V3 (x (t)) ≤
(

V3 (x (0)) −
𝛽2

𝛽1

)
e−𝛽1t + 𝛽2

𝛽1
. (33)

It is clear from (33) that there exists a known boundary in V3(x(t)), and meanwhile, we have

|xk (t)| ≤ √
q

𝜆min (P)
, (k = 3, 4) , (34)

where

q =
⎧⎪⎨⎪⎩

V3 (x (0)) , if V3 (x (0)) ≥ 𝛽2
𝛽1

2𝛽2
𝛽1

− V3 (x (0)) , if V3 (x (0)) <
𝛽2
𝛽1
.

It can be concluded from the above three steps that all of the state variables have a certain boundary, and all the
upper boundaries can be estimated.
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Fourth, determine the adjustable parameter selection law to ensure the satisfaction of the safety performance
constraints for the controlled suspension system, which is described as the following aspects:

1. The upper bound of suspension dynamic displacement can be estimated by

|zs − zu| ≤ |x1 (t)| + |x3 (t)| ≤ √
2V2

(
e,1 (0) e2 (0) 𝜃 (0)

)
+
√

q
𝜆min (P)

= 𝜂1. (35)

2. The upper bound of tire dynamic load can be estimated by

|kt (zu − zr) + ct (
.zu −

.zr)| ≤ kt |x3 (t)| + kt |zr| + ct |x4 (t)| + ct | .zr|
≤ (kt + ct)

√
q

𝜆min (P)
+ kt‖zr‖∞ + ct‖ .zr‖∞ = 𝜂2.

(36)

3. The upper bound of the control input can be estimated by

|u (t − 𝜏)| ≤ 1
𝜃min

(k1 | .e1 (t)| + k2 |e2 (t)| + |e2 (t)|) + ||F,s (zszut)|| + |Fc (
.zs,

.zu, t)| = 𝜂3. (37)

It is worth pointing out that the safety performance constraints mentioned in the control objectives can be guaran-
teed through setting an appropriate value of v1 and the tuning gains of k1, k2 simultaneously make the inequalities of
(38) to (40) below hold |zs − zu| ≤ 𝜂1 ≤ Δ𝑦max (38)

Fradio = |kt (zu − zr) + ct (
.zu −

.zr)|
𝜂2

≤ 1 (39)|u (t − 𝜏)| ≤ 𝜂3 ≤ u(t)max, (40)

wherein Δymax = 0.15 m and u(t)max = 1000 N. Thus far, the adaptive backstepping controller design can be concluded
as Theorem 1 as follows.

Theorem 1. Consider the nonlinear active suspension system in (5), the implementation of the designed control laws in
(18) can ensure the following safety performance constraints:

1. The closed-loop system (5) is asymptotically stable, ie, all the output signals tend to stability gradually with t →∞.
2. Only if the initial values of the system (5) satisfy the constraint conditions in (38)-(40), the suspension performance

constraints as given in (6)-(8) can be guaranteed.

Remark 4. In this section, a novel adaptive backstepping controller that can inhibit the input delay is developed based
on Lyapunov stability theory, which is presented in Step 1 to Step 4. Moreover, this designed controller can guarantee
the global asymptotic stability and the stability of zero dynamics of the closed-loop system, and further guarantee that
all the control signals are bounded in a certain range and the upper bounds of each variable are estimable. In addition
to this, the safety performances in the control objects can be ensured by giving an appropriate control gain.

4 PERFORMANCE EVALUATION OF THE PROPOSED CONTROLLER

It is generally accepted the fact that the excessive input delay may usually lead to the instability of the designed controller.
To further investigate the influence of input delay 𝜏 on the suspension performance, the critical input delay of the actuator,
denoted as 𝜏max, should be evaluated based on the linearization principle of the nonlinear system39 and the vibration
control theory.40

4.1 The calculation method of the critical input delay
First, as shown in Equation (2) and Equation (3), the nonlinear spring and damping forces Fs and Fc are related to the
vertical displacement and velocity of vehicle body, respectively. These two nonlinear forces can be linearized without
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considering the actuator input delay and the root-means-square (RMS) for Fs and Fc that is related to the vertical
displacement and velocity of active suspension system can be further mathematically expressed by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fs(zs, zu, t)RMS =

√
1
n

n∑
i=1

(Fs (zs, zu, t))2

Fc(
.zs,

.zu, t)RMS =

√
1
n

n∑
i=1

(Fs (
.zs,

.zu, t))2

Δ𝑦(t)RMS =

√
1
n

n∑
i=1

(Δ𝑦 (t))2

Δ .
𝑦(t)RMS =

√
1
n

n∑
i=1

(Δ .
𝑦 (t))2.

(41)

Second, in terms of linearization theory,39 the force feedback coefficients are introduced to derive the new and simple
expression of Fs and Fc as follows:

Fs (zs, zu, t) = lsΔ𝑦 (42)

Fc (
.zs,

.zu, t) = lcΔ
.
𝑦, (43)

where ls and lc are the feedback coefficients to be determined, respectively.
However, it is noticed that, in a certain control scheme, the corresponding control force can be obtained by determining

the appropriate control variable's values. For this controller design, if we carry out the selection of the suitable control
variables satisfying e1(t) → x1(t), e2 (t) →

.x1 (t), the desirable active control force u(t − 𝜏) can be obtained during the
adaptive control design process in Section 3.2. Specifically, when the closed-loop system is input delay-free, that is 𝜏 = 0,
the expression of the control input u(t) is given by

u (t) = l1x1 (t) − l2
.x1 (t) , (44)

where l1 and l2 are the feedback coefficients to be determined.
Based on the abovementioned analysis and discussion, we can get Remark 4 as follows.

Remark 5. It is well known that the suitable feedback coefficients are significantly to derive the ideal control input
u(t),41 after some iterative calculations and comparative analysis for this case, we found out that the bump signal
has a greater effect on the dynamics performance of active suspension system in (5) compared to the random signal.
Therefore, it is necessary to calculate the desired l1 and l2 to further evaluate the critical input delay 𝜏max.

By taking some calculations, we get ls = 15166 N/m, lc = 1313 Ns/m, l1 = 2720 N/m, l2 = −1268 Ns/m, which will
be used in the subsequent solution of 𝜏max. Substituting Equations (42)-(44) into Equation (1), we can obtain

⎧⎪⎨⎪⎩
msz̈s (t) = −lsΔ𝑦 − lcΔ

.
𝑦 + l1zs (t − 𝜏max) − l2

.zs (t − 𝜏max)
muz̈u (t) = lsΔ𝑦 + lcΔ

.
𝑦 − l1zs (t − 𝜏max) + l2

.zs (t − 𝜏max)
− kt (zu (t) − zr (t)) − ct (

.zu (t) −
.zr (t)) .

(45)

To derive the calculation expression of 𝜏max, we rewrite Equation (45) by removing the external road disturbance zr
and .zr as follows: ⎧⎪⎨⎪⎩

msz̈s (t) = −lsΔ𝑦 − lcΔ
.
𝑦 + l1zs (t − 𝜏max) − l2

.zs (t − 𝜏max)
muz̈u (t) = lsΔ𝑦 + lcΔ

.
𝑦 − l1zs (t − 𝜏max) + l2

.zs (t − 𝜏max)
− ktzu (t) − ct

.zu (t) .
(46)

Applying the basic vibration analysis theory, the solutions of Equation (46) can be given as{
zs (t) = z10e𝑤𝑡 = z10e(𝜎+𝑗𝜔c)t

zu (t) = z20e𝑤𝑡 = z20e(𝜎+𝑗𝜔c)t,
(47)
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where w = 𝜎 + j𝜔c is the complex mode frequency, z10 and z20 are the initial values of the eigenvector in (46),
respectively, 𝜎 is the attenuation coefficient, and 𝜔c is the natural frequency for the closed-loop system in (46).

Substituting Equation (47) into Equation (46) generates the coefficient matrix determinant as follows:

[
z11 z12
z21 z22

] [
z10
z20

]
=
[

0
0

]
, (48)

where

z11 = (𝜎 + 𝑗𝜔c)2ms + lc (𝜎 + 𝑗𝜔c) + ls −
[
l1 − l2 (𝜎 + 𝑗𝜔c)

]
e−(𝜎+𝑗𝜔c)𝜏max ,

z12 = −ls − lc(𝜎 + 𝑗𝜔c),

z21 = −ls − lc (𝜎 + 𝑗𝜔c) +
[
l1 − l2 (𝜎 + 𝑗𝜔c)

]
e−(𝜎+𝑗𝜔c)𝜏max ,

z22 = (𝜎 + 𝑗𝜔c)2mu + (lc + ct) (𝜎 + 𝑗𝜔c) + ls + kt.

If Equation (48) has a nonzero solution, then the following condition should be satisfied

|||| z11 z12
z21 z22

|||| = 0. (49)

By using the Euler formula to simplify (49), the corresponding solutions can be expressed in the form of a + bj = 0.
The real part a and the imaginary part b are separated and assumed to be zero, thus the value of 𝜎 and 𝜔c can be solved
in terms of this equation. It is noted that the value of 𝜎 includes three situations as 𝜎 < 0, 𝜎 = 0, and 𝜎 > 0.

When 𝜎 < 0, the closed-loop system is stable, and for 𝜎 = 0, the system is critically stable; and for 𝜎 > 0, the system
is unstable. For this reason, this article mainly focuses on the solving of 𝜔c and 𝜏max, then substituting 𝜎 = 0 into
Equation (49) forms

||||−𝜔2
c ms + lc𝑗𝜔c + ls − (l1 − l2𝑗𝜔c) e−𝑗𝜔c𝜏max −ls − lc𝑗𝜔c
−ls − lc𝑗𝜔c + (l1 − l2𝑗𝜔c) e−𝑗𝜔c𝜏max −𝜔2

c mu + (lc + ct) 𝑗𝜔c + ls + kt

|||| = 0. (50)

By taking further transformations, we have

⎧⎪⎨⎪⎩
𝜔4

c msmu − ls𝜔
2
c mu − lcct𝜔

2
c − ls𝜔

2
c ms − kt𝜔

2
c ms + lskt = 0(

−lcmu𝜔
3
c − lc𝜔

3
c ms − ct𝜔

3
c ms + lsct𝜔c + lckt𝜔c

)
𝑗+(

𝜔2
c mul1 − 𝜔3

c mul2𝑗 − ctl1𝑗𝜔c − ctl2𝜔
2
c − ktl1 + ktl2𝑗𝜔c

)
e−𝑗𝜔c𝜏max = 0.

(51)

Based on the above derivations, we can separate the real part a and the imaginary part b in Equation (50) by Euler
formula, and then evaluating Equation (51) yields the values of 𝜔c and 𝜏max as𝜔c = 6.71 Hz, and 𝜏max≈38 ms by setting
a = 0 and b = 0, respectively.

By further synthesizing the aforementioned derivations, we can get Remark 6 as follows.

Remark 6. In general, the actuator input delay usually causes the performance penalties of active suspension system
in (5), and the increased input delay 𝜏 will impose the more serious impacts on vehicle suspension dynamics per-
formance, and the obtained critical input delay 𝜏max is useful for accessing the control performances of the designed
controller. In this case, if the actuator input delay is less than the value of 𝜏max, then the proposed controller can ensure
that the safety performance constraints in (6)-(8) are satisfied, which improves the ride quality and handling stability
of active suspension system.
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4.2 Stability analysis of the critical delay system
Define the state variables x5(t) = zs, x6 (t) = .zs, x7(t) = zu, and x8 (t) = .zu, and substituting Equations (42)-(43) into
Equation (45), we can get

⎧⎪⎪⎨⎪⎪⎩

.x5 (t) = x6 (t)

.x6 (t) = 1
ms

(−Fs (zs, zu, t) − Fc (
.zs,

.zu, t) + u (t − 𝜏max))
.x7 (t) = x8 (t)
.x8 (t) = 1

mu
(Fs (zs, zu, t) + Fc (

.zs,
.zu, t) − u (t − 𝜏max) − ktzu (t) − ct

.zu (t)),

(52)

where u (t − 𝜏max) = l1zs (t − 𝜏max) − l2
.zs (t − 𝜏max).

First, the tracking error of vehicle body displacement e3(t) and its derivate are given by

e3 = x5 (t) ,
.e3 = x6 (t) . (53)

Based on Lyapunov stability theory, define a semidefinite Lyapunov candidate function V4(e3(t)), it is easy to get
V4(e3(t)) →∞ and when |e3(t)| →∞, whereby e3(t) is taken as a regulated variable.

V4 (e3 (t)) =
1
2

e2
3 (t) . (54)

Next, let 𝛼3(t) as the ideal value of x6(t), which is designed as

𝛼3 (t) = k3 tanh (e3 (t)) , (55)

where k3 is a positive constant.
The tracking error of vehicle body velocity e4(t) is then derived as

e4 (t) = x6 (t) − 𝛼3 (t) . (56)

By further derivation, we can obtain

.
V 4 (e3 (t)) = e3 (t) e4 (t) − k3e3 (t) tanh (e3 (t)) . (57)

From (57), if e4(t) = 0, we have
.

V 4 (e3 (t)) = −k3e3 (t) tanh (e3 (t)) ≤ −k3e2
3 (t) ≤ 0, and thus the asymptotical stability of

e3(t) can be accordingly guaranteed.
Third, according to Equation (53) and Equation (56), define a new semidefinite Lyapunov candidate function

V5(e3,e4,t) as

V5 (e3, e4, t) = 1
2

e2
3 +

1
2

e2
4. (58)

Then, the control force with respect to u(t − 𝜏max) in Equation (52) can be rewritten as

u (t − 𝜏max) =Fs (zs, zu, t) + Fc (
.zs,

.zu, t)
+ ms

(
−k3

(
1 − tan h2 (e3)

) .e3 − k4 tanh (e4) − e3
)
,

(59)

where k4 is a positive constant.
Differentiating Equation (58) yields to

V5 (e3, e4, t) = e3 (t)
.e3 (t) + e4 (t)

.e4 (t)
= e3 (t) e4 (t) − k3e3 (t) tanh (e3 (t)) + e4 (t) (

.x6 (t) −
.
𝛼 (t))

= −k3e3 (t) tanh (e3 (t)) − k4e4 (t) tanh (e4 (t)) .
(60)
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Parameter Value
ms 300 kg
mu 60 kg
ks 15 000 N/m
kns 150 000 N/m3

cs1 1500 Ns/m
cs2 1000 Ns/m
ct 2000 Ns/m
kt 200 000 N/m

TABLE 1 The parameters of quarter-vehicle active suspension system

Parameter r𝜃 k1 k2 𝜽min 𝜽max

Value 0.001 10 10 1/330 1/270

TABLE 2 The design parameters of the adaptive backstepping controller

It is observed from (60) that, for arbitrary parameter k3 > 0 and k4 > 0, we obtain
.

V 5 are uniformly continuous. Moreover,
it can be derived from Lemma 1 that it is true for lim

t→∞

.
V 5 → 0 with t → ∞, the further expressions are lim

t→∞
e3 (t) → 0 and

lim
t→∞

e4 (t) → 0. In other words, we can arrive at the conclusion that the tracking errors of e3(t) and e4(t) will definitely tend
to be asymptotic stability.

5 SIMULATION RESULTS AND DISCUSSION

In this section, a numerical example is provided to illustrate the effectiveness of the proposed adaptive backstepping
controller under bump and random road excitation. The parameters used for this simulation32 are given in Table 1, and
the initial values of the control system are set as xi = 0 (i = 1, 2, 3, 4), 𝜃(0) = 1/270, and the parameters of the designed
controller are determined in Table 2.

To better verify the superior performance of the proposed adaptive backstepping controller in this paper, a comparative
simulation is performed for the following three types of vehicle suspension systems as:

• The passive suspension, denoted as PS;
• The traditional adaptive backstepping controller, denoted as TABC;
• The proposed novel adaptive backstepping controller, denoted as NABC.

5.1 Performance analysis of the controller under bump road
Generally, the bump road disturbance is used to mimic an isolated shock on a smooth road surface,32 which is
mathematically expressed by

z𝑟𝑓 =

{
hb
2
(1 − cos (8𝜋𝑡)) , 1 ≤ t ≤ 1.25

0, otherwise,
(61)

where hb = 0.03 m is the height of road bump.
Figure 3 shows the response comparisons of the vertical acceleration and the safety constraint indicators for active

suspension system with NABC under different input delays. It is observed from Figure 3A that, with the increase of input
delay, there is also an increase in the vertical acceleration of vehicle body, which illustrates that the ride quality is getting
worse. When the input delay gets closer to or even exceeds its maximal value 𝜏max = 38 ms, we find that the motion of
vehicle body will reach into an unstable state even if the bump road disturbance disappears, which illustrates that the
control failure is encountered for the closed-loop system, and meanwhile the input delay has significant negative effects
on the control system. Moreover, one can obtain from Figure 3B-D that all the required safety performance conditions
can be fully guaranteed. Specifically, the value of suspension defect is less than 0.15 m, the tire load ratio is less than one,
and the maximal control input force does not exceed its allowed upper boundary 1000 N, which demonstrates that the
proposed controller can ensure the ride stability and safety performance requirements of active suspension system in the
presence of the input delay and the bump road disturbance.

Figure 4 reveals the response comparisons of the sprung-mass acceleration z̈c for the PS, TABC, and NABC systems
when selecting 𝜏 = 0 ms and 𝜏 = 20 ms. It is observed that both of the TABC and NABC can effectively reduce the vertical
acceleration of vehicle body and isolate the vibrations caused by the road disturbance compared to the PS system response
in case of 𝜏 = 0 ms, besides, the time evaluation of z̈c for the proposed NABC shows a smooth tendency with the smaller
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FIGURE 3 The response comparisons of
the performance indicators as (a) the
vertical acceleration, (b) suspension
dynamic displacements, (c) tire load ratios,
and (d) control forces for active suspension
system with novel adaptive backstepping
controller (NABC) under different input
delays [Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

(C) (D)

FIGURE 4 The response
comparisons of the sprung-mass
acceleration for the PS, TABC, and
NABC suspensions when (a) 𝜏 = 0 ms
and (b) 𝜏 = 20 ms under bump road
disturbance. NABC, novel adaptive
backstepping controller; PS, passive
suspension; TABC, traditional
adaptive backstepping controller
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

TABLE 3 Root-means-square (RMS) comparisons of z̈c under bump
road disturbance

Controller z̈c(m∕s𝟐) Changes/ %
(− enhance, + worsen)

PS 1.5789 —
TABC (𝜏 = 0 ms) 0.2918 −81.52
NABC (𝜏 = 0 ms) 0.0346 −97.81
TABC (𝜏 = 20 ms) 1.7474 +9.64
NABC (𝜏 = 20 ms) 0.2027 −87.16

Abbreviations: NABC, novel adaptive backstepping controller; PS, pas-
sive suspension; TABC, traditional adaptive backstepping controller.

peak value of z̈c, whereas in case of 𝜏 = 20 ms, the developed NABC can well improve the ride quality of active suspension
system, yet the sprung-mass acceleration z̈c for the TABC has deteriorated to a situation that is worse than that of the PS
suspension, which shows that the critical input delay of TABC is less than or equal to 20 ms, and NABC can tolerate with
a greater input delay.

To further demonstrate the advantages of the designed controller, when the input delay is set as 𝜏 = 0 ms and 𝜏 = 20 ms,
Figure 5 is provided to show the power spectral density (PSD) comparisons of z̈c for active suspension system, Table 3 lists
the RMS values of z̈c and Figure 6 gives the histogram comparisons of z̈c for the PS, TABC, and NABC systems. It should
be noted that the calculation expression of RMS for z̈c is defined by32

z̈c(t)RMS = ‖z̈c (t)‖√
n

=

√√√√ 1
n

n∑
i=1

(z̈c (t))2, i = 1, … ,n. (62)

According to ISO2361 criteria, the most sensitive vibration frequency of human viscera and vertebral system usually
ranges from 4.0 Hz to 8.0 Hz. Therefore, it would be much better if the sprung-mass acceleration gets smaller in this

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(A)

(B)

FIGURE 5 The PSD comparisons of z̈c for the PS, TABC, and
NABC systems when (a) 𝜏 = 0 ms and (b) 𝜏 = 20 ms under bump
road disturbance. NABC, novel adaptive backstepping controller;
PS, passive suspension; TABC, traditional adaptive backstepping
controller [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 The root-means-square (RMS) histogram comparisons of z̈c

for different input delays under bump road disturbance. NABC, novel
adaptive backstepping controller; PS, passive suspension; TABC,
traditional adaptive backstepping controller [Colour figure can be viewed
at wileyonlinelibrary.com]

(A) (B)

FIGURE 7 The response comparisons of
z̈c for the novel adaptive backstepping
controller (NABC) with different values of
ms when (a) 𝜏 = 0 ms and (b) 𝜏 = 20 ms
under bump road disturbance [Colour
figure can be viewed at
wileyonlinelibrary.com]

frequency range. By analyzing the plots in Figure 5, we can easily get that the PSD response of z̈c for the NABC is better than
those of the PS and TABC systems. Particularly, the PSD response of the TABC is much larger than that of the PS system
in the frequency band of 7-8 Hz, which indicates that the output performances of vehicle suspension with the TABC are
even getting worse than the PS system. Additionally, it can be concluded from Table 3 and Figure 6 that, compared to the
corresponding acceleration in the PS system, the sprung-mass acceleration z̈c can be reduced about 81.52% and 97.81%
for the TABC and NABC in case of 𝜏 = 0 ms, whereas in case of 𝜏 = 20 ms, z̈c is increased about 9.64% for the TABC and
is reduced about 87.16% for the NABC system.

It can be concluded from Figures 4 to 6 and Table 3 that, compared to the TABC, our designed NABC can generate
obvious improvements for vehicle body acceleration regardless if 𝜏 = 0 ms or 𝜏 = 20 ms under bump road disturbance,
and the NABC can tolerant with greater input delay under a certain external road disturbance and retain better dynamics
performance for active suspension system.

To further analyze the variation of z̈c for the proposed NABC with changing ms, the simulation is conducted and the
results are shown in Figure 7. It can be observed that the changes in ms have a little impact on the sprung-mass acceleration
for the NABC.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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5.2 Performance analysis of the controller under random road
The random road disturbance can also be employed to carry out the comparative simulation, and it is often assumed as a
vibration signal that is consistent and typically specified by42

.q (t) = −2𝜋𝑓0q (t) + 2𝜋n0𝜔 (t)
√

Gq (n0) v, (63)

where f0 is the lower cut-off frequency of road profile, n0 is the reference spatial frequency with a constant value of
n0 = 0.1(1/m), Gq(n0) is the road roughness coefficient, 𝜔(t) is a Gauss white noise of unit intensity. In this case, we choose
Gq(n0) = 64 × 10−6 m3 as B-class road, and v = 72 (km/h).

Herein, the simulation is conducted for the designed NABC under random road disturbance and different input delays,
and the simulation results are presented in Figure 8.

One can obtain that the sprung-mass acceleration of z̈c shows an increasing variation when the input delay gets larger
from 0 to 38 ms, whereas the safety performance constrains are all basically remained in a relative stability state for the
various input delays and are satisfied with the performance requirements of active suspension system, which illustrates
the NABC can well reduce the vibration effects caused by the actuator input delay.

On the other hand, the simulation results of z̈c and its corresponding PSD variation are provided in Figure 9 and
Figure 10 to show the response comparisons of the PS, TABC, and NABC systems by choosing 𝜏 = 0 ms and 𝜏 = 20 ms
under random road disturbance.

As it is shown in Figure 9, compared to the PS system, both of TABC and NABC can obviously reduce the amplitude
of z̈c, whereas the latter one has a gentler and smaller acceleration curve. Additionally, it is seen from Figure 10 that,
regardless if the input delay is set as 𝜏 = 0 ms and/or 𝜏 = 20 ms, both of the PSD responses of z̈c for the TABC and NABC
are all less than those of the PS system in the concerned frequency band. Moreover, the superiority of the designed NABC
is more obvious than that of the TABC.

In a similar way, Table 4 summarizes the RMS values of z̈c and Figure 11 displays the histogram comparisons of z̈c for
the PS, TABC, and NABC systems. As shown in Table 4, the RMS values of z̈c with the TABC and NABC can be reduced
about 93.34%, 98.49% and 79.87%, 87.47%, respectively, compared to the PS system in case of 𝜏 = 0 ms and/or 𝜏 = 20 ms,

FIGURE 8 The response comparisons of
the dynamics indicators as (a) the vertical
accelerations, (b) suspension dynamic
displacements, (c) tire load ratios, and (d)
control forces for active suspension system
with novel adaptive backstepping controller
(NABC) under different input delays
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

(D)(C)

FIGURE 9 The response comparisons of
z̈c for the PS, TABC, and NABC systems
when (a) 𝜏 = 0 ms and (b) 𝜏 = 20 ms under
random road disturbance. NABC, novel
adaptive backstepping controller; PS,
passive suspension; TABC, traditional
adaptive backstepping controller [Colour
figure can be viewed at
wileyonlinelibrary.com]

(A) (B)
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(A)

(B)

FIGURE 10 The PSD comparisons of z̈c for the PS, TABC, and
NABC systems when (a) 𝜏 = 0 ms and (b) 𝜏 = 20 ms under random
road disturbance. NABC, novel adaptive backstepping controller; PS,
passive suspension; TABC, traditional adaptive backstepping
controller [Colour figure can be viewed at wileyonlinelibrary.com]

Controller z̈c(m∕s𝟐) Changes/ %
(− enhance, + worsen)

PS 0.8877 —
TABC (𝜏 = 0 ms) 0.0591 −93.34
NABC (𝜏 = 0 ms) 0.0134 −98.49
TABC (𝜏 = 20 ms) 0.1787 −79.87
NABC (𝜏 = 20 ms) 0.1112 −87.47

Abbreviations: NABC, novel adaptive backstepping controller; PS, pas-
sive suspension; TABC, traditional adaptive backstepping controller.

TABLE 4 Root-means-square (RMS) comparisons of z̈c under random
road disturbance

FIGURE 11 The root-means-square (RMS) histogram comparisons of
z̈c for different input delays under random road disturbance. NABC, novel
adaptive backstepping controller; PS, passive suspension; TABC,
traditional adaptive backstepping controller [Colour figure can be viewed
at wileyonlinelibrary.com]

which indicates that the control performance of the designed NABC is overall better than that of the TABC with satisfying
the safety performance constraints under random road profiles.

From the simulation results in Figures 9 to 11 and Table 4, compared with the TABC, it is clear that the vehicle body
acceleration with the NABC can be significantly enhanced whether there exists the actuator input delay or not, compared
with the TABC, which indicates that our proposed NABC can effectively prevent the resonance caused by the road surface
and the human body, and provide much better ride quality.

Figure 12 shows the variation of z̈c with different values of ms, and it can be observed that the changes in ms have
almost no effect on the suspension performances for the NABC in the presence of random road disturbance, which further
illustrates that the proposed NABC has a good adaptive control effect for this active suspension system. In summary,
regardless of how to choose the values of input delay (0-38 ms), the proposed controllers can guarantee the suspension
safety performance constraints under random road disturbance.

5.3 Actuator power consumption
In order to evaluate the power consumption for the different control schemes, the actuator power demand is mathemat-
ically expressed by the RMS of the positive mechanical power generating from the active control force u(t − 𝜏) and its

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 12 The response comparisons
of z̈c for the novel adaptive backstepping
controller (NABC) with different values of
ms when (a) 𝜏 = 0 ms and (b) 𝜏 = 20 ms
under random road disturbance [Colour
figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

FIGURE 13 The response of power consumption for the TABC and
NABC when (a) 𝜏 = 0 ms and (b) 𝜏 = 20 ms under bump road disturbance.
NABC, novel adaptive backstepping controller; TABC, traditional adaptive
backstepping controller [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 14 The response of power consumption for the TABC and
NABC when (a) 𝜏 = 0 ms and (b) 𝜏 = 20 ms under random road
disturbance. NABC, novel adaptive backstepping controller; TABC,
traditional adaptive backstepping controller [Colour figure can be viewed
at wileyonlinelibrary.com]

velocity .zs −
.zu with respect to the input delay as18

P+
RMS (t) =

‖P+ (t)‖√
n

=

√√√√ 1
n

n∑
i=1

(P+ (t))2 i = 1, … ,n, (64)

where

P+ (t) =

{
u (t − 𝜏) ( .zs −

.zu) ,u (t − 𝜏) ( .zs −
.zu) > 0

0, otherelse.
Figures 13 and 14 reveals the power consumption of active suspension system with the TABC and NABC when the

input delay is set as 𝜏 = 0 ms and 𝜏 = 20 ms.
It can be observed that, regardless of the presence of bump or random road disturbance, the proposed NABC could have

much less power consumption compared with the TABC under the same ride quality situation. At the same time, the
power consumptions for the TABC and NABC under random road are overall less than those under bump road, which
reflects that the proposed NABC should at least meet the performance requirements for this active suspension system
under bump road.

It can be concluded from Section 5 that, regardless if the input delay is considered or not, the proposed NABC can
effectively improve the dynamics performance of the controlled active suspension system and has better adaptive control
effect and lower energy consumption, as long as the input delay disturbance is less than the critical time delay 𝜏max. In
addition to this, the proposed NABC can tolerant with greater input delay in comparison with the TABC. More specif-
ically, the proposed controller can effectively suppress the negative impacts of the system nonlinearities, the parameter
uncertainties, as well as the input delays on active suspension system.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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6 CONCLUSIONS

In this paper, a novel adaptive backstepping-based control design is proposed for uncertain nonlinear active suspension
system with the input delay. A nonlinear dynamics model of quarter-vehicle suspension is first established by consider-
ing the actuator input delay and the safety performance constraints for active suspension system in the presence of the
sprung-mass uncertainties. Then, based on this model, an adaptive control law is designed to meet the requirements of
suspension safety constraints. Meanwhile, the stability analysis of zero dynamics is conducted to guarantee the bound-
edness of the safety constraint performances. Moreover, a simple and effective method for calculating the critical input
delay is presented through deriving the relationship between the actuator input delay and the state variables of active
suspension system. Finally, a simulation investigation is performed to show the effectiveness of the designed adaptive
backstepping controller. Future study will focus on the development of implementation of the hardware-in-loop con-
troller. Our future work will focus on the multiobjective coordinated optimization control over the performance indicators
including sprung-mass acceleration, suspension dynamic displacement, and tire dynamic load on the active suspension
system.
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